
A Unified Approach for Image Style Generation

Yuichi Nitto Koji Nakamaru Yoshio Ohno
Graduate School of Science and Technology, Keio University

3-14-1 Hiyoushi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522
email:{nitto | maru| ohno}@on.ics.keio.ac.jp

Abstract

There are many research for transfering a photographic image
into an image with a certain style of paintings. Most of such
research, however, simulate one specific style. We present a
unified approach for image style generation.

We propose an algorithm for automatic generation of a trans-
formed image by giving two images: an original image to be
transformed and a reference image. The most dominant factors
that influence the impression of an images include the color
distribution and the style of the edges. The proposed algorithm
checks the color distribution of the original image and trans-
forms the colors so that their distribution approaches to that of
the reference image. The algorithm also checks the edge style
of the reference image and apply that style to the original im-
age.

Our algorithm consists of two parts: the color handling part
and the edge handling part. In the color handling part, we make
the histograms of the original image and the reference image
in the YUV color space. Then by shifting the histograms, we
change the colors of original images uniformly.

In the edge handling part, the edge magnitude of the original
image is converted using the edge magnitude histogram of the
reference image. We use the most frequently appeared HLS
color in the edge pixels as the edge color of the original image.

For each pixel of the original image, either the transformed
color or the decided edge color is chosen using the specified
threshold values.

We succeeded in the automatic generation of the image with
a specified style by giving only two images. By giving vari-
ous reference images, we can obtain images with various styles
from one original image automatically.

1 Introduction

The main research goal of Computer Graphics has been the
Photorealistic Rendering (PR) for making a realistic image like
a photograph.

In the recent years a lot of resarch is done for Nonphotore-
alistic Rendering (NPR) to obtain an image that expresses in-
formation or feeling in nonphotorealistic ways.

The difference between PR and NPR corresponds to the dif-
ference between a photographic image and a painted image. PR
is suitable for the purpose to express some shape or texture as
it is. On the other hand, NPR is suitable for the purpose to em-

phasize or to simplify information as you like. Therefore, NPR
has advantages over PR for transmitting information in some
cases.

The techniques of NPR can be divided into two categories:
techniques using a 2D image as input, and techniques using a
3D model as input. NPR techniques can also be divided into
interactive techniques and automatic generation algorithms.

Many NPR algorithms simulate some traditional painting
process, e.g., oil painting, water-color drawing, pen-and-ink
drawing and woodcut printing. Some NPR technique sticks to
a style of some specific artist, e.g., Gogh and Renoir.

However, many NPR algorithms can simulate only one style.
For each artist or for each style, one dedicated algorithm must
be developed. Also, many NPR algorithms focus on the gener-
ation of brush strokes and ignore the “color style” of the artist.

We present an automatic method to convert a photo image
(an original image) into an image with different feeling speci-
fied by other image (a reference image) [8].

2 Related Works

Some techniques generate an image based on 3D model. Praun
et al.[1] present a technique for rendering a 3D model by “hatch-
ing” instead of shading. Lake [2] studys an algorithm that ren-
ders a 3D model with “toon” shading.

Kalnins et al.[3] present an interactive NPR technique. They
realize real-time rendering of a 3D model by drawing strokes
directly on the model displayed on a monitor by a pointing tool
such as a tablet.

Hertzmann [5] gives an algorithm to generate a paint image
from a 2D image drawn with brush strokes. Artists draw a lot
of brush strokes for obtaing a drawing. Hertzmann simulates
this process on the computer display. His system expresses the
brush strokes as spline curves with various lengths. Thick short
strokes are used for rough sketches, and the detailed parts are
drawn with thin long strokes. The input image is approximated
sucessively by decreasing the theickness of the strokes. This
technique succeeded the simulation of the painting style with
brush strokes, but it cannot be applied to the styles that have no
brush strokes such as woodcut printing like “Ukiyoe.”

There are research for the NPR algorithms based on 2D im-
ages. Curtis et al.[4] simulate the style of water-color paint-
ing. Salisbury et al.[6] simulate the style of pen-and-ink draw-
ing. These methods generate excellent drawings but they are
restricted to certain style of paintings.

Figure 1: the proposed algorithm

Chang et al.[7] study a system for converting the colors of
an image. Their research is based on a 2D input image and fo-
cuses on the colors. In their system, colors of the input image
are classified into eleven categories manually. Then the colors
in each category are converted based on the color distribution
in that category. This method sometimes converts a color in
unintended way of the user mainly because the unsuitable clas-
sification of the color. Also this research takes no consideration
on edges.

3 Paint-Image Generation

As described in the previous section, most NPR algorithms sim-
ulate only one particular style of painting. Our system simulates
various styles. When two images (an original image and a ref-
erence image) and some threshold values are given, it converts
the original image into an image with the contents of the origi-
nal image and with the style of reference image.

The process of our algorithm is summarized in Fig. 1.
The algorithm is divided into two main parts: the color han-

dling part and the edge handling part.
In the color handling part, intensity histograms of the orig-

inal and reference images are constructed for each component
Y, U and V in the YUV color space. Then, by blending the his-
tograms of the original image with those of the reference image,
we obtain new histograms. The colors of the original pixels are
transformed based on the new histograms.

In the edge handling part, we detect the edges in the original
and reference images. By using the histograms of edge magni-
tude, the edge expression of the original image are changed to
approximate the edge expression of the reference image.

3.1 Color Handling Part

In this section, we describe the algorithm of color handling part.

• Construct the histograms of the colors of the original and
reference images in the YUV color space. The histograms
are shifted so that the medians of the histograms match.

• Blend the DFTs of the original image histograms with
DFTs of the reference image histograms using the user
spcified parameters in the YUV color space.

• Applying DIFT to the blended DFTs, a new histogram is
obtained. Each HLS color in the original image is trans-
formed based on the histogram.

3.1.1 Consideration on the Color Spaces

(a) YUV (b) HLS

Figure 2: Difference between YUV and HLS color spaces.

In our algorithms, we use YUV and HLS color spaces. In
the YUV color space, Y is luminance while U and V are the
color components. HLS color model represents a color as a
combination of Hue (H), Lightness (L) and Saturation (S). These
color spaces are more suitable for the expression of human feel-
ing than the RGB color space.

In Fig. 2, YUV and HLS color spaces are compared. We
transform the image like Gogh’s “Sunflower” using the YUV
space histograms only (Fig. 2(a)) and using the HLS color space
histograms only (Fig. 2(b)). The image transformed in YUV is
more yellowish than in HLS, while the image in HLS is more
vivid as oil painting than in YUV. It is important to have both
features such as “totally and uniformly yellowish” and “vivid”,
so we decided to use YUV for histogram shifting and HLS for
one blending.

3.1.2 Transformation of Colors

Our technique for transforming the colors along a histogram
follows the algorithm of histogram equalization. As shown in
Fig. 3, we sort the pixel intensities in the original image into
the increasing order, and map the pixel values to the intensity
values based on the frequency in the new histogram.

Figure 3: Transformation of the colors based on a histogram.

3.1.3 Histogram Shifting in YUV

The histogram should be shifted in YUV color space before
blending, because we aim at the effect of total and uniform
color modification. For example, the histogram of Y compo-
nent will be shifted as follows: letMdinY be the median of
original image histogram,MdtarY be that of the reference im-
age, andαY be a user-specified parameter. Then the shift dis-
tancesSinY andStarY of the histograms are given by Equation
(1): {

SinY = αY (MdtarY −MdinY)
StarY = (1− αY)(MdinY −MdtarY) (1)

3.1.4 Histogram Blending in HLS

We want to transform the colors so that the histogram of the
original image resembles to that of the reference image. But
this approach sometimes produces undesirable result. For ex-
ample, such situation happens when the original image has “blue”
pixels but the reference images doesn’t have them. To avoid
such cases, we transform the color of the original image based
on the blended histogram, not on the original histogram.

We apply DFT to the frequency distributions of the his-
tograms using:

F (n) =
N−1∑

k=0

x(k)e−j 2π
N nk (2)

wherex(k) is the frequency of intensity valuek.
Then we blend the DFTs of the original image histogram

and the reference image histogram. For the H component, for
example, letFinH(n) be the DFT of the original image,FrefH(n)
be that of the reference image,FoutH(n) be that of the image to
be generated, andαH be a user-specified parameter value. The
following formula is used for the blending:

FoutH(n) = (1− αH)FinH(n) + αHFrefH(n) (3)

Finally, we get a new histogram as the DIFT ofFoutH(n)
obtained above. Based on the new histogram, the colors of the
pixels in the original images are transformed.

3.2 Edge Handling Part

The algorithm for the edge handling part can be summarized as
follows:

• Transform the both images to grayscale.

• Detect the edge of both images using Kirsch operators.

• Decide the color to be used for the edges in the trans-
formed image.

• Modify the histogram of edge magnitude of the original
image so that it matches to the similar histogram of the
reference image.

3.2.1 Edge Magnitude

We detect the edge magnitudeG using Kirsch operator. Kirsch
operators detect features of eight directions using a3×3 kernel.

We normalize the detected edge magnitude valuesG to the
range(0, 255) by

G′ = 255× (G−Gmin)/(Gmax −Gmin) (4)

where,Gmin andGmax are the minimum and the maximum of
G, respectively.

3.2.2 Decision of Edge Line Color

In the previous section, we obtained the edge magnitude in the
original image. Then we decide the color that is used for the
edge lines in the transformed image.

We search for the pixels that have higher edge magnitude
than a user-specifed threshold valuethcolor and preserve the
colors of such pixels. We make histograms in HLS color space
on these pixels and use the most frequently used value as the
edge line color in the transformed image.

3.2.3 Matchimg of the Edge Magnitude Histograms

Some painting styles draw edge lines clearly, others do not.
Therefore we detect the edge line style in the reference image
and simulate it in the transformed image.

In our method, to simulate the edge line style, we modify
the edge magnitude distribution in the original image so that it
matches to the distribution of the reference image.

For this purpose, different from the color handling part,
we simply transform the edge magnitude in the original image
along the histogram of edge magnitude in the reference image.

3.3 Composition of Color Parts and Edge Parts

In order to compose the image made in the color handling part
with that in the edge handling part naturally, we use two thresh-
olds thmin andthmax specified by the user. Letg′ be the nor-
malized value ofG, Cline be the color of edge line, andCcolor

be the color of a pixel obtained in the color handling part. The
following color composition function is used to obtain the color
Cout of a pixel:

Cout =

Ccolor (0 ≤ g′ < thmin)
(1− β)Ccolor + βCline (thmin ≤ g′ ≤ thmax)
Cline (thmax < g′ ≤ 1)

(5)

Figure 4: Composition of color parts and edge parts.

Where

β =
g′ − thmin

thmax − thmin
(6)

As shown in Fig. 4, we decide the color of pixel usingthmin

andthmax. If g′ of a pixel is smaller thanthmin, we keep the
color of the pixel. Ifg′ is larger thanthmax, we use the edge
line color. Otherwise, we blend the color of the pixel with the
edge line color.

The effect of the thresholds can be stated as follows.

• Whenthmin is large, the color is emphasized; when small,
the edge is emphasized.

• When thmax is large, the edge line are drawn roughly;
when small, they are drawn in detail.

4 Results

We show the original images in Figs. 5 and 6, and the generated
images in Figs. 7, 8, 9 and 10. Gogh’s “Sunflower” is used as
the reference image for Fig. 7. The reference image for Fig. 8
is a water painting, the reference image for Fig. 9 is a Ukiyoe
painting, and the reference image for Fig. 10 is Millet’s “Les
Glaneuses”.

As seen in Fig. 7, the generated image is “totally and uni-
formly yellowish” as Gogh’s masterpiece. This is the effect of
shifted histogram in YUV color space. Also, Fig. 8 is gener-
ated with the feature of water paintings. This effect is from
the blended histogram in HLS color space. The emphasis on
the edge line in Fig. 9 results from both parameters,thmin and
thmax, set lower. For Fig. 10, we set the parametersαH , αL

andαS smaller so that the image is changed to be somewhat
dark. In other words, we successfully keep down the effect of
oil paintings by choosing smaller values for the parameters.

Figure 5: Original image 1.

Figure 6: Original image 2.

Figure 7: Result from the reference image “Sunflowers” by
Gogh : αH = 0.4, αL = 0.9, αS = 0.9, thcolor = 0.92,
thmin = 0.06, thmax = 0.53.

Figure 8: Result from a water painting :αH = 0.3, αL = 0.9,
αS = 0.9, thcolor = 0.92, thmin = 0.22, thmax = 0.80.

Figure 9: Result from a reference Ukiyoe painting:αH = 0.7,
αL = 0.9, αS = 0.9, thcolor = 0.92, thmin = 0.06, thmax =
0.41.

Figure 10: Result from a reference image “Les Glaneuses” by
Millet : αH = 0.1, αL = 0.3, αS = 0.3, thcolor = 0.92,
thmin = 0.22, thmax = 0.61.

5 Discussion

We realize a system for modifying the original image so that
the overall feeling of the image becomes similar to that of a
reference image. The effect of the algorithm can be controlled
by the adjustment of the threshold values. The algorithm pro-
ceeds automatically. The amount of computation is not large,
and each image can be obtained within a minute. The obtained
images show the feeling of the reference image faithfully.

Our algorithm could be improved by taking the information
on the relation between each pixel and its neighborhood in con-
sideration. In addition, by including some mechanism for the
determination of suitable parameter values, the usefulness of
our algorithm will be increased.

Acknowledgements

This research is partly supported by Keio University Special
Grant-in-Aid for Innovative Collaborative Research Projects.

References

[1] Emil Praun, Matthew Webb, Adam Finkelstein, Hugues
Hoppe : Real-Time Hatching, Proceedings of SIGGRAPH
2001, pp. 581–586.

[2] Adam Lake : Stylized Rendering Techniques for Scalable
Real-Time 3D Animation, Proceedings of NPAR 2000,
pp. 13–20.

[3] Robert D. Kalnins, et al. : WYSIWYG NPR: Draw-
ing Strokes Directly on 3D Models, Proceedings of SIG-
GRAPH 2002, pp. 755–762.

[4] Cassidy J. Curtis, et al. : Computer Generated Watercolor,
Proceedings of SIGGRAPH 97, pp. 421–430.

[5] Aaron Hertzmann : Painterly Rendering with Curved Brush
Strokes of Multiple Sizes, Proceedings of SIGGRAPH 98,
pp. 453–466.

[6] Michael P. Salisbury, et al. : Orientable Textures for Im-
age Based Pen-and-ink Illustration, Proceedings of SIG-
GRAPH 97, pp. 401–406.

[7] Youngha Chang, Suguru Saito, Masayuki Nakajima :
A Framework for Transfer Colors Based on the Basic
Color Categories, 2003 Computer Graphics International,
pp. 176–181.

[8] Tomoko Ueno, Yuichi Nitto, Koji Nakamaru, Yoshio
Ohno : A Unified Approach for Paint-Image Genera-
tion, Proc. ITE Winter Annual Convention 2003, pp.72(in
Japanese).

