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Abstract— The belief propagation (BP) algorithm is a tool
with which one can calculate beliefs, marginal probabilities, of
stochastic networks without loops (e.g., Bayesian networks) in
a time proportional to the number of nodes. For networks with
loops, it may not converge and, even if it converges, beliefs may
not be equal to exact marginal probabilities although its appli-
cation is known to give remarkably good results such as in the
coding theory. Tatikonda and Jordan show a theoretical result
on the convergence of the algorithm for stochastic networks
with loops in terms of the theory of Markov random fields on
trees and give a sufficient condition of the convergence of the
algorithm. In this paper, we show a new aspect of convergence
property of BP algorithm. We discuss the “impatient” update
rule as well as the “lazy” update rule discussed in Tatikonda
and Jordan. Then we show for simple models that the impatient
update rule converges faster than the lazy one and if the
algorithm converge, the beliefs obtained by impatient update
rule give good approximations of exact marginal probabilities.

I. I NTRODUCTION

The belief propagation (BP) algorithm is a tool with which
one can calculate beliefs, marginal probabilities, of stochastic
networks without loops (e.g., Bayesian networks) in a time
proportional to the number of nodes. It has the origin in
the probabilistic expert system theory proposed by Pearlet
al., see [7]. Similar algorithms appear in several applications
such as Viterbi algorithm in hidden Markov models, iterative
algorithms for Gallager codes and turbocodes, Kalman filter
and the transfer-matrix approach in physics.

Lauritzen [1] formulated it as an algorithm on derived net-
works called junction trees. On the other hand, Yedidia [12]
showed that it can be formulated as the algorithm of mini-
mizing Bethe free energy of Gibbs distributions with pairwise
potentials on trees.

As such, it can be formally applicable to networks with
loops. However, if networks have loops, the algorithm may
not converge and, even if it converges, beliefs may not equal
to exact marginal probabilities. Nevertheless, applications
of the BP algorithm for networks with loops have been
reported to be remarkably useful such as in the coding theory
[2] [5][6]. We call BP algorithm for networks with loops
loopy belief propagation algorithm.

Weiss [10] discussed the BP algorithm on networks with
a single loop and Weiss and Freeman [11] discussed the BP
algorithm on Gaussian networks with loops. A basic idea
of Weiss is the fact that the calculation of BP algorithm for

networks with loops is equivalent to the one on corresponding
infinite trees called unwrapped networks.

Tatikonda and Jordan [9] pursued his idea and formulated
the convergence problem as the one of Markov random fields
on unwrapped networks. Surprisingly enough, an essentially
equivalent (finer in a sense) problem is already discussed
in the theory of Markov random fields on trees in order to
study their phase transition property, see [3]. They showed
a relation between the convergence of BP algorithm and
phase transition phenomena on unwrapped networks in a
proceeding paper.

In this paper, we show that the convergence of BP algo-
rithm for networks with loops depends on update rules and
discuss the “impatient” update rules, which is used in prac-
tice, as well as the “lazy” one discussed in Weiss or Tatikonda
and Jordan. We give numerical experiments to check the
difference between the convergence of both algorithms for
simple models. It is shown that the convergence with the
impatient update rule is faster than the one with the lazy
update rule. We also show some other results concerning the
property of BP algorithm with impatient update rule.

Models used in numerical experiments are known to show
phase transitions and a fairly complete condition on the
existence and the absence of phase transitions is known. For
parameters corresponding to the absence of phase transitions,
the BP algorithm converges as theoretical result shows for
both update rules. In the ferromagnetic phase transition
region, the BP algorithm still converges. However, in the anti-
ferromagnetic phase transition region, while the BP algorithm
with the lazy update rule did not converge for all parameters,
the one with the impatient update rule did converge around
the boundary. It is also shown that, if messages converge, the
beliefs give good approximations of marginal probabilities.
The present result suggests that the BP algorithm is valid in
broader region , as suggested in the literature.

We give a review of BP algorithm and introduce the theory
of Markov random fields in Section II and III. In Section
IV, we state the relation between unwrapped networks and
update rules. In Section V, results of numerical experiments
are shown. In Section VI, we give a conclusion and a remark.

II. BP ALGORITHM AND UNWRAPPED NETWORKS

There are several existing formulations of the BP algo-
rithm. The one used in this paper is as follows. LetX be a



connected and undirected finite network. A random variable
Xi is associated with eachi ∈ X and yi is its observation.
The state spaceEi of Xi is finite. Someyi may be missing.
We consider a probability function onX of the form

p(x | y) =
1
Z

∏

i∼j

φij(xi, xj)
∏

i∈X

φi(xi, yi), (1)

where∼ denotes the neighborhood relationship, and the first
product extends over all neighboring nodes(i, j). We callX a
stochastic network with the joint distributionp. Throughout
this paper,Z stands for normalizing constants and are not
always the same. Usually, the existence of a datayi restricts
the state spaceEi to {yi} effectively. We will adopt this
convention and, further, suppress the dependencies ofφi’s
on {yi}. Therefore, it takes the form

p(x) =
1
Z

∏

i∼j

φij(xi, xj)
∏

i∈X

φi(xi). (2)

It is the basic assumption of this paper thatφij(·, ·) andφi(·)
are all positive.

For each neighboring node(i, j) and each statexj ∈ Ej ,
we consider themessagem(n)

ij (xj), n = 1, 2, . . .. These
messages obey the following update rule called theBelief
Propagation(BP):

m
(n+1)
ij (xj) =

1
Z

∑

xi∈Ei

φij(xi, xj)φi(xi)
∏

k∈∂i\{j}
m

(n)
ki (xi),

(3)

where∂i denotes the set of all neighboring nodes of nodei.
We call this update relation “lazy”, which is easier to analyze.
In practice, one use the update rule which always utilizes the
“most recently updated messages”, that is, some ofm

(n)
ki (xi)

arem
(n+1)
ki in the right side of 3. We call this update relation

is “impatient” .
In the following, |A| for a setA means its cardinality. All

messages are initialized asm(0)
ij (xj) ≡ 1/|Ej |. If messages

m
(n)
ij (xj) converges, its limit is denoted bymij(xj). They

satisfy the relation:

mij(xj) =
1
Z

∑

xi∈Ei

φij(xi, xj)φi(xi)
∏

k∈∂i\{j}
mki(xi). (4)

For these messages, thebelief for each nodei is the normal-
ized product

bi(xi) =
1
Z

φi(xi)
∏

k∈∂i

mki(xi), xi ∈ Ei. (5)

If the stochastic network has no loops, i.e., tree-like, it is
known that all the messages{m(n)

ij (xj)} converge after a
finite number of BP updates and that the beliefbi(·) is equal
to the marginal probabilityP {Xi = ·} for eachi ∈ X, see
[4]. On the other hand, for stochastic networks with loops,
messages may not converge and, if they do converge, beliefs
may not be equal to marginal probabilities. An example
for Cayley trees will be given later. In order to study the
BP algorithm with the lazy update rule for a networkX
with loops, Weiss [10] introduced the concept ofunwrapped

networks(computation treesin [9]), which are associating
infinite treesTk, k ∈ X. Tk is the limit of increasing finite
trees{T (n)

k }, n = 1, 2, . . ., defined as follows, see Fig. 1.

1) Let Ni = 0, i 6= k, andNk = 1. For convenience, let
T

(0)
k = {k(1)} wherek(1) is a copy ofk.

2) Let {i, j, . . .} = ∂k, Ni = Nj = · · · =
1 and i(1), j(1), . . . be copies of i, j, . . . respec-
tively. The first unwrapped networkT (1)

k consists
of nodesk(1), i(1), j(1), . . . and corresponding edges
(k(1), i(1)), (k(1), j(1)), . . ..

3) If the n-th unwrapped networkT (n)
k is defined, the

next unwrapped networkT (n+1)
k is defined to beT (n)

k

augmented by new nodes and edges repeating the
following steps:

a) For each edge(r(`), s(m)) of T
(n)
k with r(`) /∈

T
(n−1)
k , let i, j, . . . be the nodes∂r\{s} (if non-

empty).
b) Let Ni ← Ni + 1, Nj ← Nj + 1, . . . and

i(Ni), j(Nj), . . . be new copies ofi, j, . . . respec-
tively. Add new nodesi(Ni), j(Nj), . . . and corre-
sponding edges(i(Ni), r(`)), (j(Nj), r(`)), . . . to
T

(n)
k .
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Fig. 1. A networkX with loops (right) and its unwrapped networksT
(n)
1

up to the fourth (left).

The state spaceEi is associated with each nodei(n) ∈ Tk

and letφi(n)j(m) = φij andφi(n) = φi. If X has no loops,Tk

is the same asX except labeling of nodes. It is easily seen
that the messagem(n)

jk (xk) which is the result of then-th
BP update with the lazy update rule onX starting fromk

is equal tom
T

(n)
k

j(1)k(1)(xk), the result of then-th BP update of

messages performed onT
(n)
k , that is, onTk starting fromk(1).

Therefore, the limiting message heading fork, if exists, is the
same for bothX andTk. Tatikonda and Jordan [9] formulated
the convergence of messages for unwrapped networks as the
one of Markov random fields introduced in the next section.

III. M ARKOV RANDOM FIELDS AND MARKOV CHAINS ON

A TREE

Let T be a finite or infinite tree. A finite state spaceEi

is associated with eachi ∈ T . A configurationx = {xi}
is an element ofET =

∏
i∈T Ei. Its restriction to a subset



Λ is denoted byxΛ. Let B be the set ofbonds(i, j), that
is, pairs of neighboring nodes.F is the set of non-empty
finite subtrees ofT . For each(i, j) ∈ B, let ij denote
the associated oriented edge which points fromi to j and−→
B denote the set of all oriented edges. Anyi, j ∈ T is
combined by a (unique) path((i, k1), (k1, k2), . . . , (kn, j)) of
bonds wherei, k1, . . . , kn, j are all different. The associated
sequence(ik1, k1k2, . . . , knj) is called an oriented path from
i to j. For each bondb = (i, j), a two-body potential
function Φb = Φij is a finite-valued function onEi ×Ej . It
is symmetricΦij(xi, xj) = Φji(xj , xi). One-body potential
functionsΦi, i ∈ T , is a finite-valued function onEi. For
each Λ ∈ F, let BΛ = {b ∈ B : b ⊂ Λ} and

−→
BΛ

be the corresponding oriented edges. LetEΛ =
∏

i∈Λ Ei

and ∂Λ = (∪i∈Λ∂i)\Λ. The space of configurationsET

is equipped with the discrete topology and letB be its
(standard) Borelσ-algebra.BΛ, Λ ∈ F, is the (standard)
Borel sub-σ-algebra onEΛ.

A Gibbs specificationis a system{µΛ(· | ξ) : Λ ∈ F, ξ ∈
ET } of probability measures defined by

µΛ(x | ξ) =
1
Z

exp



−

∑

(i,j)∈BΛ

Φij(xi, xj)

−
∑

i∈Λ

Φi(xi) −
∑

i∈Λ,j∈∂Λ

Φij(xi, ξj)





for all Λ ∈ F, where x ∈ EΛ and Z = ZΛ,ξ is the
normalizing constant called thepartition function. ξ is called
a boundary condition. Since µΛ(x | ξ) is dependent on
ξ only through ξ∂Λ, it is, in particular, called aMarkov
specification. We also need following specifications without
boundary condition:

µΛ(x) =
1
Z

exp



−

∑

(i,j)∈BΛ

Φij(xi, xj)−
∑

i∈Λ

Φi(xi)



 .

A probability measureµ on (ET , B) is called aGibbs
random fieldwith potentialsΦ = {Φij , Φi} if it satisfies the
following DLR (Dobrushin-Lanford-Ruelle) equations:

µ(x | BT\Λ)(ξ) = µΛ(x | ξ), ξ ∈ E∂Λ,

for all Λ ∈ F, wherex ∈ EΛ is canonically embedded into
ET asx×ET\Λ. Sinceµ(x | BT\Λ) = µ(x | B∂Λ), suchµ
is called aMarkov random field. Let GΦ denote the set of all
Markov random fields for potentialsΦ. Transition matrices
Pij are defined as

Pij(ξi, ξj) = µ(σj = ξj |σi = ξi) µ-a.s.

for ij ∈ −→B , (ξi, ξj) ∈ Ei×Ej . Transfer matricesare defined
as

Qij(ξi, ξj) = Qji(ξj , ξi) = Qb(ξb)

= e−Φij(ξi,ξj)−|∂i|−1Φ{i}(ξi)−|∂j|−1Φ{j}(ξj)

for b = (i, j) ∈ B, (ξi, ξj) ∈ Ei × Ej . A family {`ij : ij ∈−→
B} of vectors`ij ∈ (0, 1)Ei is called aboundary lawfor

{Qij : ij ∈ −→
B} if, for each ij ∈ −→

B , there is a number
cij > 0 such that

`ij(xi) = cij

∏

k∈∂i\{j}
`kiQki(xi)

= cij

∏

k∈∂i\{j}

∑
xk

`ki(xk)Qki(xk, xi).

In the theory of Markov random fields, it is known that there
exist multiple Markov random fields for a Gibbs specification
in some cases. In that case, it is said that aphase transition
occurs. When a phase transition occurs, it is also shown that
there exist multiple boundary laws.

Tatikonda and Jordan [9] showed a relation between
boundary laws and messages for unwrapped networks. There-
fore, they related the convergence of the BP algorithm to the
lack of phase transitions for models on the corresponding un-
wrapped networks. In addition, if message updates converge,
they showed the beliefs give the marginal probabilities of
the Markov random fields on the corresponding unwrapped
networks, which are not original networks.

IV. U PDATE RULES AND EXPANSION OF UNWRAPPED

NETWORKS

So far, only the lazy update rule is discussed. However,
the formulation as in [9] can be also applied to the impatient
update rule almost without modifications. For example, let
consider the simplest networkX with a loop in Fig. 2. In
this example, the impatient update rule becomes as follows:

m
(n+1)
12 (x2) ∝

∑
x1

Q12(x1, x2)m
(n)
31 (x1)

m
(n+1)
21 (x1) ∝

∑
x2

Q21(x2, x1)m
(n)
32 (x2)

m
(n+1)
13 (x3) ∝

∑
x1

Q13(x1, x3)m
(n+1)
21 (x1)

m
(n+1)
31 (x1) ∝

∑
x3

Q31(x3, x1)m
(n)
23 (x3)

m
(n+1)
23 (x3) ∝

∑
x2

Q23(x2, x3)m
(n+1)
12 (x2)

m
(n+1)
32 (x2) ∝

∑
x3

Q32(x3, x2)m
(n+1)
13 (x3).

The unwrapped networks starting from the node 1 associated
with both update rules are shown in Fig. 2.

It is seen that the tree associated with the impatient update
rule is essentially the same with the one associated with the
lazy update rule and therefore the results in [9] are also valid.

Actually, the expansion pattern of unwrapped networks
is dependent on update rules. An expansion pattern{T (n)

· }
corresponds to a subsequence of{µΛ} of the Gibbs spec-
ification. Note that there is a possibility that subsequences
may converge even though a phase transition occurs and
then the convergence property may depend on the update
rule. Moreover, if messages converge, from Tatikonda and
Jordan [9] and the theory of Markov random fields, beliefs
are the marginal probability of an “extremal” Markov random
field.
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Fig. 2. A network X with a loop (top) and its unwrapped networks
corresponding to the impatient update rule (left) and to the lazy update
rule (right).

On the other hand, the spread speed of unwrapped net-
works with the impatient update rule is generally faster
than the one with the lazy update. According to the fact
that under the sufficient condition introduced in Tatikonda
and Jordan [9], the convergence rate depends on the spread
speed of unwrapped networks. Therefore, it is expected that
convergence rate of algorithm with the impatient update rule
is likely faster than the one with the lazy update.

V. NUMERICAL EXPERIMENTS

We reviewed convergence of the calculation of BP al-
gorithm is related to the phase transition phenomenon for
unwrapped networks corresponding to the original stochastic
network. Nevertheless, when there exists a phase transition,
its convergence is still unclear.

In this section, We checked numerically the convergence
and accuracy of beliefs between the impatient update rule and
the lazy update rule for Ising models on a Cayley tree, which
is known to show phase transitions for certain parameters.

An infinite tree is called theCayley treeCT (d) of degreed
if |∂i| = d+1 for every nodei. It is the unwrapped network
of some complete graph. Fig. 3 shows a complete graph with
4 nodes and the corresponding unwrapped networkCT (2).

Fig. 3. Complete graph of 4 nodes (left) and Cayley tree of degree 2 (right).

Let Ei = {−1, 1} for i ∈ CT (d). We consider following
Ising potentialson CT (d)

ΦJ,h
A (x) =




−Jxixj if A = {i, j},
−hxi if A = {i},
0 otherwise

and let µJh be a corresponding Markov random field. If
J > 0 (resp. J < 0), it is called ferromagnetic (resp.
antiferromagnitic). These models are exceptional in the sense
that the nearly complete condition whether phase transitions
occur or not is known, see [3]. Fig. 4 shows two phase
transition regions.
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Fig. 4. The phase transition region for the Ising model on CT(2).

The regionAF is open. The regionF includes its boundary
except for the singular point atJ = J(d) ≡ 1

2 log d+1
d−1 .

Note that Ising models are symmetric with respect to the
transform(x, h) 7→ (−x,−h). In particular, if h = 0, they
are symmetric with respect to the transformx 7→ −x and all
the one-node marginal probabilities are uniform (= 1/2).

Let X be a finite graph with loops and let its unwrapped
network be the Cayley treeCT (2). The probability onX is
defined by

p(x) =
1
Z

exp


∑

i∼j

{
Jxixj +

(
h

3

)
(xi + xj)

}
 .

For each(J, h) = ( a
10 , b

10 ), a, b = 0,±1, . . . ,±30, iteration
times till convergence up to 10000 were calculated. We used
1/2 for initial messages. Message were assumed to converge
if maxx∈{−1,1}

∑
i∼j |m(n+1)

ij (x) − m
(n)
ij (x)| ≤ 10−6 for

somen.
Fig. 5 shows the common logarithm of the iteration num-

ber. For h = 0, two iterations were enough. ForJ ≥ 0,
all calculations with both update rules stopped within 50
times. In particular, it includesF and shows that the absence
of phase transitions are by no means necessary for the BP
convergence. It is seen that the number of iteration increases
as (J, h) come close to the singular point(J(2), 0). All
calculations with both update rules forJ < 0 outsideAF
also stopped. Again the iteration number increases as(J, h)
come close to the boundary ofAF . It is shown that for
the lazy update rule, the iteration numbers exceeded 1500
for some parameters nearAF but for the impatient update



rule, iterations up to 30 were sufficient. InsideAF except
for h = 0, all calculations for the lazy update rule exceeded
10000 and did not seem to converge. However, it is shown
that, for some parameters around the boundary ofAF , the
calculation with the impatient update rule did converge within
100 iterations, while the lazy update rules never converged.
It is said that the convergence with the impatient update rule
is always faster than the one with the lazy update rule.
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Fig. 5. Common logarithms of numbers of iterations till convergence up to
10000. Images and contours. The impatient update rule case (left) and the
lazy update rule case (right). Boundaries ofF andAF are shown by white.

We also examined the accuracy of beliefs. We dealt only
with the case of the impatient update rule. LetpJh be the
correct marginal probability forxi = 1 and bJh be the
corresponding belief for each(J, h). Fig. 6 showspJh for
each(J, h).
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Fig. 6. True marginal probabilitiespJh(x1 = 1).

Fig. 7 shows absolute and relative errors. In both figures,
the white part inAF is the region where the iteration
exceeded 10000 times. It is seen that, beliefs are close to
true marginals if the BP algorithm converge. Also, it is seen
that relative errors increase as(J, h) come close to and into
AF andF and are large inF .

In the literature, it is sometimes stressed that, although
beliefs may differ from true marginals, states with the highest
value coincide. In fact, this is true in the present experiment
for all cases where BP iterations converged.

What is a difference between convergent and non-
convergent case? To see this, we examined the behav-
ior of the value of belief as message updates perform.
Fig. 8 shows the behavior of beliefs for parametersJ =
−0.97,−0.99,−0.993,−1,−1.2 and−1.4 with h = 1, d = 2
up to 1000 iterations. ForJ ≤ −1, the calculation did
not converge within 10000 iterations. It is shown that the
convergence rate increases as the parameter come close
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Fig. 7. Absolute errors (left) and relative errors (right) between true
marginal probabilities and corresponding beliefs. Boundaries ofF andAF
are imposed.

to some critical point and as in the critical region, the
calculations never seem to stop. It is interesting to note that
there are convergent, chaotic and periodic behaviors appeared
as parameters varied.
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Fig. 8. Behavior of beliefs till 1000 iteration for parameterJ =
−0.97,−0.99,−0, 993,−1,−1.2 and−1.4 with (d, h) = (2, 1) (from
top left to bottom right).

We finally show a result about the influence of initial
messages. We used an uniformly distributed number on the
interval (0, 1) to each initial message and check the iteration
time up to 100 for each(J, h). Fig. 9 shows the variance of
100 samples. It shows the convergence depends on initial
messages especially for the parameters which have large
iteration time in Fig. 5.
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VI. CONCLUDING REMARK

We review the convergence of BP algorithm and show the
convergence depends on update rules and check difference of
convergence between the lazy update rule and the impatient
update rule for simple models.

Numerical experiments suggests that calculations with the
impatient update rule converge faster than the one with the
lazy update rule and that the former has a wider region of
convergence, even in phase transition regions. It is shown
that when message updates converge, the beliefs are good
approximations of the true marginal probabilities. We also
show the failure to converge shows the existence of phase
transitions and the dependency of initial message for iteration
time.

In the rest of this section, we give a remark about a
sufficient condition.

Tatikonda and Jordan [9] referred a well-known sufficient
condition for the lack of phase transitions

c(Φ) ≡ sup
i∈S

∑

A:i∈A

(|A| − 1)δ(ΦA) < 2, (6)

whereδ(f) ≡ sup
ξ,η∈Ω

|f(ξ)−f(η)|. In the case of Ising models

on CT(d),c(Φ) = 2(d + 1)|J | and the condition is satisfied
for |J | < 1/(d + 1). Since |A| − 1 = 0 for |A| = 1, the
condition does not have the influence of one-body potentials.

It is easily checked in the case of Ising models on
Cayley trees. LetJ(d) defined in Section V andf(x) =
1
2

log
x + 1
x− 1

− 1
x + 1

. Sincef ′(x) < 0 for x > 1, f(2) > 0
and lim

x→∞
f(x) = 0, J(d) > 1/(d + 1), d = 2, 3, · · · . Hence

the region where the uniqueness condition is satisfied is a
broad horizontal band betweenF and AF . Compared with
the region where no phase transition occurs the condition is
seen fairly restrictive.
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