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Abstract—The belief propagation (BP) algorithm is a tool networks with loops is equivalent to the one on corresponding
with which one can calculate beliefs, marginal probabilities, of infinite trees called unwrapped networks.
stochastic networks without loops (e.g., Bayesian networks) in Tatikonda and Jordan [9] pursued his idea and formulated

a time proportional to the number of nodes. For networks with th bl th f Mark d field
loops, it may not converge and, even if it converges, beliefs may € convergence problem as the one ot Markov random felds

not be equal to exact marginal probabilities although its appli- - On unwrapped networks. Surprisingly enough, an essentially
cation is known to give remarkably good results such as in the equivalent (finer in a sense) problem is already discussed

coding theory. Tatikonda and Jord_an show a theoretical result in the theory of Markov random fields on trees in order to
on the convergence of the algorithm for stochastic networks study their phase transition property, see [3]. They showed

with loops in terms of the theory of Markov random fields on |ati bet th f BP aldorith d
trees and give a sufficient condition of the convergence of the & €lation between the convergence o algorithm an

algorithm. In this paper, we show a new aspect of convergence Phase transition phenomena on unwrapped networks in a
property of BP algorithm. We discuss the “impatient” update proceeding paper.
rule as well as the “lazy” update rule discussed in Tatikonda In this paper, we show that the convergence of BP algo-
and Jordan. Then we show for simple models that the impatient .. for networks with loops depends on update rules and
upda_te rule converges fast_er than _the Iazy_ one and if the di the “i tient” updat | hich i di )
algorithm converge, the beliefs obtained by impatient update .'SCUSS € impauent” up aq rules, Wi IC |§ use 'n, prac
rule give good approximations of exact marginal probabilities. ~ tice, as well as the “lazy” one discussed in Weiss or Tatikonda
and Jordan. We give numerical experiments to check the
|. INTRODUCTION difference between the convergence of both algorithms for
simple models. It is shown that the convergence with the
The belief propagation (BP) algorithm is a tool with whichmpatient update rule is faster than the one with the lazy
one can calculate beliefs, marginal probabilities, of stochastigdate rule. We also show some other results concerning the
networks without loops (e.g., Bayesian networks) in a timgroperty of BP algorithm with impatient update rule.
proportional to the number of nodes. It has the origin in Models used in numerical experiments are known to show
the probabilistic expert system theory proposed by Pe@rlphase transitions and a fairly complete condition on the
al., see [7]. Similar algorithms appear in several applicatiogsistence and the absence of phase transitions is known. For
such as Viterbi algorithm in hidden Markov models, iterativBarameters corresponding to the absence of phase transitions,
algorithms for Gallager codes and turbocodes, Kalman filtgfe BP algorithm converges as theoretical result shows for
and the transfer-matrix approach in physics. both update rules. In the ferromagnetic phase transition
Lauritzen [1] formulated it as an algorithm on derived netegion, the BP algorithm still converges. However, in the anti-
works called junction trees. On the other hand, Yedidia [12¢rromagnetic phase transition region, while the BP algorithm
showed that it can be formulated as the algorithm of minjyith the lazy update rule did not converge for all parameters,
mizing Bethe free energy of Gibbs distributions with pairwisghe one with the impatient update rule did converge around
potentials on trees. the boundary. It is also shown that, if messages converge, the
As such, it can be formally applicable to networks withbeliefs give good approximations of marginal probabilities.
loops. However, if networks have loops, the algorithm mayhe present result suggests that the BP algorithm is valid in
not converge and, even if it converges, beliefs may not equabader region , as suggested in the literature.
to exact marginal probabilities. Nevertheless, applicationswe give a review of BP algorithm and introduce the theory
of the BP algorithm for networks with loops have beeaf Markov random fields in Section Il and Ill. In Section
reported to be remarkably useful such as in the coding theaxy, we state the relation between unwrapped networks and
[2] [5][6]. We call BP algorithm for networks with loops update rules. In Section V, results of numerical experiments
loopy belief propagation algorithm. are shown. In Section VI, we give a conclusion and a remark.
Weiss [10] discussed the BP algorithm on networks with
a single loop and Weiss and Freeman [11] discussed the BP !I- BP ALGORITHM AND UNWRAPPED NETWORKS
algorithm on Gaussian networks with loops. A basic idea There are several existing formulations of the BP algo-
of Weiss is the fact that the calculation of BP algorithm forithm. The one used in this paper is as follows. Détbe a



connected and undirected finite network. A random variabtetworks(computation treesn [9]), which are associating
X, is associated with eache X andy; is its observation. infinite treesT}, k € X. T} is the limit of increasing finite

The state spacg; of X; is finite. Somey; may be missing. trees{T(”)} n=1,2,..., defined as follows, see Fig. 1.
We consider a probability function oX of the form 1) L((at N, =0,i # k, and N, = 1. For convenience, let
0 1) 1)
p(z|y) H¢zj i, ) H bi(wi, i), (1) 2) {et {i {J]i; ) }} Wh:el’egk I?Va Czpy](\)[fjk = ... =
i ex 1 and i@, ;M .. be copies ofi,j,... respec-
where~ denotes the neigh.borhoed relationship, and the first tively. The first unwrapped networlT,f:l) consists
product extends over all neighboring nodesj). We call X a of nodesk® i ;1 . and corresponding edges

stochastic network with the joint distributionp. Throughout (kMW (W, 5Dy,
this paper,Z stands for normalizing constants and are not 5
always the same. Usually, the existence of a gateestricts

the state spacd’; to {y;} effectively. We will adopt this
convention and, further, suppress the dependencies; sf

on {y;}. Therefore, it takes the form

) If the n-th unwrapped networkT,E”) is defined, the
next unwrapped network" ™) is defined to ber™
augmented by new nodes and edges repeating the
following steps:

a) For each edgér(®,s(™) of T,E”) with r(©) ¢

1 _ .
=7 Hq&ij(xi,xj) H oi(x;). 2 T,E" D et i,7,... be the node®r\{s} (if non-
i~ icX empty).
It is the basic assumption of this paper tiat(-, -) and;(-) b) '—?Vt Ni e Ni +1,N; «— N; +1,... and
are all positive. itNo) (N3) " be new copies of, j, ... respec-
For each neighboring nodg, j) and each state; € E;, tively. Add new O(CJJS?S((Z))J( '(J]\)[,i)- : .(?)nd corre-
we consider themessagem|!(z;), n = 1,2,.... These seg)ndmg edgegi' ™, r), (74, r1Y), .. to
messages obey the following update rule called Badief T,
Propagation(BP)'
ml(-?ﬂ) i Z @ij (i, ) pi(x;) H m m, Tl(o) 1 1 X
z,€EE; kedi\{j} / ‘ \ / ‘ \
@ 7o (1) 3(1) 4D 2—3—4—5
wheredi denotes the set of all neighboring nodes of nade | N N\
We call this update relation “lazy”, which is easier to analyzeT 3(2) 9(2) 42) 5(1) 33
In practice, one use the update rule which always utilizes the'
“most recently updated messages”, that is, sommjgt)( i) 73 2)/ \4(3) \1(3) 5(2)\1(4) o \ .®
aremfg’“) in the right side of 3. We call this update relation I ‘ \ ‘ \ ‘ \ ‘ \ \ ‘ \
is “impatient” .

. . L (4)
In the following, | A| for a setA means its cardinality. All Z1~ 2% 44 10 56 310 46) 26) 36) 1(1) 26 4(©)

messages are initialized mgg) (xz;) = 1/|E}|. If messages

oo i i i i n)
mE;)(xj) converges, its limit is denoted by.;;(z;). They E:t?toltheAfQS:\tﬁo(Tgt() with loops (right) and its unwrapped networky
satisfy the relation: '

Z by (r)bitas) T[] i) @) The state space; is associated with each nod&) < T,
i3 (@i, ) B and letg; ) jon = ¢i; ande;y = ¢;. If X has no loops]}
) ] is the same ax except labeling of nodes. It is easily seen
For these messages, thelieffor each node is the normal- hat the message.; (n) (z;) which is the result of thex-th
ized product BP update W|th the lazy update rule on starting from#k
bi(x;) = l@(mi) H mei(x:), i € B (5) s equal tom <1>k<1>(ivk) the result of the:-th BP update of
kedi messages performed d?é"), that is, onT}, starting fromk (%),
If the stochastic network has no loops, i.e., tree-like, it iEherefore, the limiting message heading foif exists, is the
known that all the message{gn >(xj)} converge after a same for bothX' and7},. Tatikonda and Jordan [9] formulated
finite number of BP updates and that the beligf) is equal the convergence of messages for unwrapped networks as the
to the marginal probability?{X; = -} for eachi € X, see ©One of Markov random fields introduced in the next section.
[4]. On the other hand, for stochastic networks with loop
messages may hot converge and, if they do converge, bel
may not be equal to marginal probabilities. An example
for Cayley trees will be given later. In order to study the Let T" be a finite or infinite tree. A finite state spaég
BP algorithm with the lazy update rule for a netwolk is associated with each e T. A configurationz = {z;}
with loops, Weiss [10] introduced the conceptufwrapped is an element ofE” = [I;cr Es. Its restriction to a subset

mi;(x;)
zi€E; kedi\ {5}

IHS M ARKOV RANDOM FIELDS AND MARKOV CHAINS ON
A TREE



A is denoted byxr,. Let B be the set obonds (i, j), that {Q;; : ij € E)} if, for eachij € §, there is a number
is, pairs of neighboring nodes: is the set of non-empty ¢;; > 0 such that
finite subtrees ofI". For each(i,j) € B, let ij denote

the associated oriented edge which points fromo j and bij(zi) = ey H ‘ CriQui(s)

B denote the set of all oriented edges. Ay € T is kedi\{j}

combined by a (unique) patlfi, k1), (k1, k2), ..., (kn,j)) Of = ci I D thi(en)Quilae, z:).

bonds where, k1, ..., k,,j are all different. The associated k€di\{j} Tk

sequencgiks, k1ks, ..., knj) is called an oriented path from , e theory of Markov random fields, it is known that there

¢ to j. For each bondb = (i,5), a two-body potential
function ®, = ®;; is a finite-valued function ol; x E;. It
is symmetric®;;(z;, ;) = ®;;(x;,z;). One-body potential
functions®;, 7 € T, is a finite-valued function 0|EZ-._F>or
eachA € F, let By = {b € B : b C A} and B,
be the corresponding oriented edges. [t = [Lica Ei

exist multiple Markov random fields for a Gibbs specification
in some cases. In that case, it is said th@hase transition
occurs. When a phase transition occurs, it is also shown that
there exist multiple boundary laws.

Tatikonda and Jordan [9] showed a relation between
_ i ieA boundary laws and messages for unwrapped networks. There-
_and 8A_ = (UigAaz)\A. _The space of conﬂguratlonE_ fore, they related the convergence of the BP algorithm to the
is equipped with the discrete topology and Bt be its |5ck of phase transitions for models on the corresponding un-
(standard) Boreb-algebs\a.BA, A € 3, is the (standard) \yranped networks. In addition, if message updates converge,
Borel subs-algebra on£™. they showed the beliefs give the marginal probabilities of

7’,6‘ Gibbs specifications a system{yia(- | ) : A € 5, € the Markov random fields on the corresponding unwrapped
E7} of probability measures defined by networks, which are not original networks.

1 IV. UPDATE RULES AND EXPANSION OF UNWRAPPED
M/\(Jj | 5) = Zexp - Z (I)ij('riaxj) NETWORKS
(b)€Ba So far, only the lazy update rule is discussed. However,
the formulation as in [9] can be also applied to the impatient
_Z‘I)i(xi) B Z Dy (s, &5) update rule almost without modifications. For example, let
i€A i€EAN,jEDA

consider the simplest network with a loop in Fig. 2. In
for all A € F, wherez € E*» and Z = Z,. is the this example, the impatient update rule becomes as follows:

normalizing constant called thartition function ¢ is called (n+1)(x2) x Z Ora (1 azg)mg{)(m)

a boundary condition. Since u(x | £€) is dependent on 12 -
¢ only through &y, it is, in particular, called aMarkov (1) ! )
specification We also need following specifications without My (1) Z Q@21(w2, 11)mgy’ (z2)
boundary condition: (1) vz (1)
mis ) (x3) o< > Qualwr, wg)myy " (1)
1 x1
pa(z) = —expq — Z D (xi, xj) — Z(bl(xl) . . N
o (i,§)€Ba ieA mi " (1) o ) Qs (s, w1)ms ()
3
A probability measureu on (ET,B) is called aGibbs (n+1), (D)
random fieldwith potentials® = {®,;, ®;} if it satisfies the may " (@3) o 3 Qas(wz, wa)may” (w2)

x2

following DLR (Dobrushin-Lanford-Ruelleequations: n n
oA miG ) (22) o 3 Qan(ws, wa)my ™ (ws).
.u(x | BT\/\)(é.) = ,LLA(I ‘ f)a §e L, z3

for all A € &, wherez € E* is canonically embedded into The unwrapped networks starting from the node 1 associated
ET asz x ET\A, Sincep(z | Brya) = p(z | Boa), suchp with both update rules are shown in Fig. 2.

is called aMarkov random fieldLet G4 denote the set of all It is seen that the tree associated with the impatient update
Markov random fields for potential$. Transition matrices rule is essentially the same with the one associated with the

P;; are defined as lazy update rule and therefore the results in [9] are also valid.
Actually, the expansion pattern of unwrapped networks
Pij(&,&5) = ploj = &loi = &) p-as. is dependent on update rules. An expansion pat{@ti’}

corresponds to a subsequence{pfy} of the Gibbs spec-
ification. Note that there is a possibility that subsequences
may converge even though a phase transition occurs and
Qij (&, &5) = Qji(&5, &) = Qu(&p) then the convergence property may depend on the update
— i3 (0,6) =101 T @ (43 (€0) =105 1 D 5y (&5) rule. Moreover, if messages converge, from Tatikonda and
Jordan [9] and the theory of Markov random fields, beliefs
fgr b= (i,j) € B, (&,&5) € E; x E;. Afamily {£;; : ij € are the marginal probability of an “extremal” Markov random
B} of vectors/;; € (0,1)F is called aboundary lawfor field.

forij € B, (&, &) € E; x E;. Transfer matricesire defined
as



Let E; = {—1,1} for i € CT(d). We consider following
Ising potentialson CT'(d)

/\\ —inxj |f A:{Z,]}7

P o ’ o () =4 —hx, if A={i},
! 0 otherwise
/ \ /\ and let u;;, be a corresponding Markov random field. If
1 & & s 2 J > 0 (resp.J < 0), it is called ferromagnetic (resp.
antiferromagniti¢. These models are exceptional in the sense
/ / / \ that the nearly complete condition whether phase transitions
I G @ 2 3 occur or not is known, see [3]. Fig. 4 shows two phase

/ / / \ transition regions.
3 1

Fig. 2. A network X with a loop (top) and its unwrapped networks I
corresponding to the impatient update rule (left) and to the lazy update o T
rule (right).

On the other hand, the spread speed of unwrapped net- ; ‘ ‘ ‘ ‘ ‘ ‘
works with the impatient update rule is generally faster oo e
than the one with the lazy update. According to the fact
that under the sufficient condition introduced in Tatikonda Fig-4. The phase transition region for the Ising model on CT(2).
and Jordan [9], the convergence rate depends on the spread

speed of unwrapped networks. Therefore, it is expected thatrhe regionAF is open. The regiot includes its boundary

convergence rate of algorithm with the impatient update ruécept for the singular point af = J(d) = llog%.

is likely faster than the one with the lazy update. Note that Ising models are symmetric with respect to the

transform(z, h) — (—xz,—h). In particular, if h = 0, they

are symmetric with respect to the transform— —z and all
We reviewed convergence of the calculation of BP athe one-node marginal probabilities are unifors ¥/2).

gorithm is related to the phase transition phenomenon forLet X be a finite graph with loops and let its unwrapped

unwrapped networks corresponding to the original stochastietwork be the Cayley tre€7'(2). The probability onX is

network. Nevertheless, when there exists a phase transitidafined by

its convergence is still unclear.

In this section, We checked numerically the convergence (z) = 1 exp Z {inl.j + <§) (z; + :cj)}

h

V. NUMERICAL EXPERIMENTS

and accuracy of beliefs between the impatient update rule and Z
the lazy update rule for Ising models on a Cayley tree, which
is known to show phase transitions for certain parametersFor each(J,h) = (%, %), a,b = 0,+1,..., 430, iteration
An infinite tree is called th€ayley treeC'T(d) of degreed  times till convergence up to 10000 were calculated. We used
if |9i| = d+ 1 for every nodei. It is the unwrapped network 1/2 for initial messages. Message were assumed to converge
of some complete graph. Fig. 3 shows a complete graph withmax,c(_11} > |m§?+1)(m) - m,E;’) ()] < 1076 for
4 nodes and the corresponding unwrapped netwdrK2).  somen.
Fig. 5 shows the common logarithm of the iteration num-
ber. Forh = 0, two iterations were enough. Faf > 0,
all calculations with both update rules stopped within 50
times. In particular, it includeg’ and shows that the absence
of phase transitions are by no means necessary for the BP
convergence. It is seen that the number of iteration increases
as (J,h) come close to the singular poirft/(2),0). All
calculations with both update rules for < 0 outside AF
also stopped. Again the iteration number increase&/ak)
come close to the boundary ofF. It is shown that for
the lazy update rule, the iteration numbers exceeded 1500
Fig. 3. Complete graph of 4 nodes (left) and Cayley tree of degree 2 (righfpr some parameters nearF’ but for the impatient update

i~vj

i~g



rule, iterations up to 30 were sufficient. InsideF except
for h = 0, all calculations for the lazy update rule exceeded
10000 and did not seem to converge. However, it is shown
that, for some parameters around the boundanA6f the
calculation with the impatient update rule did converge within®

. ) - = DE!-N"'ﬁomﬁ | //‘001 \ (001
100 iterations, while the lazy update rules never converged. - | e = | I

It is said that the convergence with the impatient update rule - v
is always faster than the one with the lazy update rule. . .

Fig. 7. Absolute errors (left) and relative errors (right) between true
marginal probabilities and corresponding beliefs. BoundarieE ehd AF’
are imposed.

to some critical point and as in the critical region, the
calculations never seem to stop. It is interesting to note that
there are convergent, chaotic and periodic behaviors appeared

as parameters varied.
Fig. 5. Common logarithms of numbers of iterations till convergence up to
10000. Images and contours. The impatient update rule case (left) and the

lazy update rule case (right). Boundariesfofind AF" are shown by white.

(@Im=(2.,-097.1) @Im=(2.-099.1)

We also examined the accuracy of beliefs. We dealt only
with the case of the impatient update rule. Let, be the
correct marginal probability forr; = 1 and by, be the
corresponding belief for each/, h). Fig. 6 showsp; for
each(J, h).

@Ih=(2,-12,1)

2 \ﬁ%\& §%~‘%¢q&\ S ;
:—s 3 D;‘”;Q N

Fig. 6. True marginal probabilities s, (z1 = 1).

Fig. 7 shows absolute and relative errors. In both figures,
the white part in AF is the region where the iteration
exceeded 10000 times. It is seen that, beliefs are close to
true marginals if the BP algorithm converge. Also, it is seen
that relative errors increase &% h) come close to and into e
AF and F' and are large i’............. =

In the literature, it is sometimes stressed that, although
beliefs may differ from true marginals, states with the highesig. 8.
value coincide. In fact, this is true in the present experimenf-97, —0.99, -0,993, =1, —1.2 and —1.4 with (d,h) = (2,

top Ieft to bottom rlght)
for all cases where BP iterations converged.

What is a difference between convergent and non-
convergent case? To see this, we examined the behawVe finally show a result about the influence of initial
ior of the value of belief as message updates perfornnessages. We used an uniformly distributed number on the
Fig. 8 shows the behavior of beliefs for parametdrs= interval (0,1) to each initial message and check the iteration
—0.97,-0.99,—-0.993,—1,—1.2and—1.4 withh =1,d =2 time up to 100 for eacliJ, h). Fig. 9 shows the variance of
up to 1000 iterations. Fo < -1, the calculation did 100 samples. It shows the convergence depends on initial
not converge within 10000 iterations. It is shown that thenessages especially for the parameters which have large
convergence rate increases as the parameter come cltm@ation time in Fig. 5.

Behavior of beliefs till 1000 iteration for parametdr =
1) (from



(5]

(6]

(7]
(8]
(9]

Fig. 9. Common logarithm of variances of iteration up to 100.
[10]
VI. CONCLUDING REMARK [11]

We review the convergence of BP algorithm and show the
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convergence depends on update rules and check differenc&l gf Yedidia, J.S., Freeman, W.T. and Weiss, Y. (2002). Constructing Free

convergence between the lazy update rule and the impatient

update rule for simple models.

Numerical experiments suggests that calculations with the
impatient update rule converge faster than the one with the
lazy update rule and that the former has a wider region of
convergence, even in phase transition regions. It is shown

that when message updates converge, the beliefs are good

approximations of the true marginal probabilities. We also
show the failure to converge shows the existence of phase
transitions and the dependency of initial message for iteration
time.

In the rest of this section, we give a remark about a
sufficient condition.

Tatikonda and Jordan [9] referred a well-known sufficient
condition for the lack of phase transitions

(@) =sup Y (1] - 1o(@4) <2
€S Alica

(6)

whered(f) = sup |f(€)—f(n)]. In the case of Ising models
9]

on CT(d),c(@g)L 2(d + 1)|J| and the condition is satisfied
for |J] < 1/(d+ 1). Since|A| —1 = 0 for |4| = 1, the
condition does not have the influence of one-body potentials.
It is easily checked in the case of Ising models on
Cayley trees. Let/(d) defined in Section V and(z) =

%logiJri — ﬁ Since f'(z) < 0 forz > 1, f(2) >0

and lim f(x) =0, J(d) >1/(d+1), d=2,3,---. Hence

the fe_éoi%n where the uniqueness condition is satisfied is a
broad horizontal band betwedn and AF. Compared with

the region where no phase transition occurs the condition is
seen fairly restrictive.
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