

Integer Programming With Genetic Algorithms

Dr. Tang Van To (tvto@s-t.au.ac.th)
Kamal Kumar Dua (kkd@preciousshipping.com)

Faculty of Science & Technology
Assumption University Bangkok, Thailand

ABSTRACT
Integer programming is a NP hard problem[1]. Genetic Algorithms is relatively newer field, which has proven
useful in function optimizations. However there has little research been done to use GA for Integer
Programming problems. We have tried to use GA for solving Integer Programming problems by modifying
traditional GA. In our method simplex method is used to find some vertex of feasible region and most of initial
population is chosen with help of these vertex coordinates. We have also used a variable mutation probability.

KEYWORDS: Genetic Algorithms, Integer Programming, Linear Programming, and Knapsack problem

1. Introduction

A Linear Programming (LP) is a problem that can be
expressed as follows (the so-called Standard Form): [7]

 minimize or maximize cx
 subject to Ax = b
 x >= 0
Where x is the vector of variables to be solved for, A is a
matrix of known coefficients, and c and b are vectors of
known coefficients. The expression "cx" is called the
objective function, and the equations "Ax=b" are called the
constraints.

LP problem in which all variables are required to be integer is
called integer-programming [IP] problem . The case where
the integer variables are restricted to be 0 or 1 is called 0-1
knapsack problems .

There are two common approaches to solving Integer
programming problems. Historically, the first method
developed was based on cutting planes (adding constraints to
force integrality). However, the most effective technique is
branch and bound.[2]. Over the last decade, genetic
algorithms (GAs) have been extensively used as search and

optimization tools in various problem domains, including
sciences, commerce, and engineering. The primary reasons
for their success are their broad applicability, ease of use, and
global perspective. John Holland of the University of
Michigan, Ann Arbor, first conceived the concept of a
genetic algorithms [3].

Holland's genetic algorithm attempts to simulate nature in the
following manner. The first step is to represent a legal
solution to the problem you are solving by a string of genes
that can take on some value from a specified finite range or
alphabet. This string of genes, which represents a solution, is
known as a chromosome. Then an initial population of legal
chromosomes is constructed at random. At each generation,
the fitness of each chromosome in the population is
measured. The fitter chromosomes are then selected to
produce offspring for the next generation, which inherit the
best characteristics of both the parents. After many
generations of selection for the fit ter chromosomes, the result
is hopefully a population that is substantially fitter than the
original.

2. Related work:
GA are often considered for search problems in which the
solution space is described by non continuous or multimodal
functions [4]. Some research have been done on IP using GA
but It has been on use of some specific real world problem.
Moreover GA has been modified to suit on particular
problem and is not generic. Jaffrey et al. [4] used GA to solve
IP problem for cell designing manufacturing industry. They

used modified chromosome representation for Integer
variables and also used new GA operators such as swap
crossover and multipoint crossover to improve the results.
This was successfully implemented in the field of cell
designing manufacturing industry.

Deb et al [5]used binary coded and real coded GA to solve
Mixed Integer Programming (MIP) problem for scheduling of
casting industry. This problem involved a large numbers of
variables . However results were not comparable to other

Linear programming (LP) methods. Deb et al. then modified
the GA to a problem specific approach and results obtained
were much better. Key feature used here was new problem
specific recombination operator. However this problem is of
MIP problem.

Andrea Toniolo [6] used a hybrid approach thus by
combining LP and GA by which a set of solution is first
obtained by LP and an optimized solution is searched using
GA. Above approach is also relate to particular Industry and
is of MIP type.

Another approach as suggested by Gunther [7] for
multiconstrained problem is similar to our approach where
pre optimization of initial population is suggested. Further a
local improvement and a repair operator is suggested. This
algorithm claims to work better with Knapsack problems but
can not be used for IP which contain variable values other
than 0 and 1.

In his paper Yury Potroinu [8] mentioned that GA can be
used for solving IP problems but has no details as how this
can be achieved except applying traditional approach.

For many years principal technique used in practice to solve
MIP problems remains unchanged. Linear Programming
based Branch and bound (LPBB) method has been most
popular which was introduced by Land and Doig in 1960 [2].
Many computational experiments in the past twenty years
have revealed that LPBB algorithms with cuts added are
currently the most successful tool for attacking combinatorial
and IP without any given structure. Such algorithms are
known as branch-and-cut and may be interpreted as dual type
methods.

Current implementations of branch-and-cut algorithms
heavily rely on the polyhedral theory for designing the
cutting phase of such an algorithm [9]. Utz-Uwe Haus[9]
used a technique which involves lattice operations only and,
hence, explicitly relies on the discrete structure of the feasible
set. There are many publications and papers which show
various methods to solve IP. The one which was found most
comprehensive and useful is book by Robert J. Vanderbei
[10].

3. Proposed Algorithms
Our proposed algorithm have been a combination of simplex
method and genetic algorithm. Range for initial population is
calculated with simplex algorithm. Binary representation of
genes have been choosen so Integer results can obtained
easily. In our approach constraints are handled using
parameter less approach as defined by Deb[11].

• Initial Population
We have used Simplex method to find the some vertices of
feasible region . With help of these few vertices, range for
initial population is computed. This method helps us to find a
better range for each variable. After applying simplex method
to get some hints about the ranges of each variable we choose
75% of initial population within this ranges and rest 25% of
population is generated randomly.

• Selection
 The modified Tournament selection method, which works as
follows:

- Shuffle the population.
- Pickup two genes at random
- If both are feasible genes one with higher

fitness is selected
- If both are non feasible then one with lower

penalty is selected
- If one is feasible and one is not then feasible

one is selected
- Second parent is also selected same way.

Further if both selected parents are not feasible then one with
higher penalty is dropped and instead one with best fitness is
selected. Best gene is always carried to next generation.

• Crossover
We used the single point crossover on whole chromosome
string for knapsack problems and single point crossover on
each variable for IP problems. Reason for using crossover on
each variable for IP problem is that if we only use crosso ver
on whole string then each variable may not come to optimal
value as in many cases it may never get a chance to reach to
optimal value. While generating new population best of two
parents and best of two children produced is included in the
new generation.

• Mutation
Bitwise mutation is done. Since bitwise mutation can change
many chromosome in a gene hence a mutation probability is
very low say 0.001 was used initially. But this low mutation
probability had one disadvantage of forming local cluster and
no improvements in objective functions were noticed if GA
get stuck in local optima.

Following mutation approach was adopted which proved
good. In this case evolution is started with a low mutation
probability which increases after each generation till first one
forth of total generations are reached. After this mutation
probability starts reducing and becomes original at end of
first half of run. During second half of evolution same pattern
is followed by mutation probability. This ensures that in case
when local optimal is reached or about to be reached then

slightly high mutation probability diversifies the population
hence breaking apart from a local optimal solution.

• New population
Best fitness gene(of course one which is feasible) is always
carried to next generation.

• Termination
The GA is terminated when specified number of generations
are completed.

4. Experimental Results
Using above approaches we have tested our algorithm on
Integer programming problems obtained from public
domain[12]. These test data files are for which are for multi
constrained Knapsack problems. For IP problems no other
test data files were available hence above data files are used
for IP problems as well. Results obtained were compared
with LP_SOLVE[13] program which solves LP, Integer
programming and knapsack problems. Due to limitation of
randomness of GA our algorithm was used three times and
best of these three results are chosen as results.
Some of results obtained are listed below in tables.

• Integer Programming Results:

Table1: Variables: 30 Constraints:5, Generations: 100, population Size: 1000
File Results

Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE

Variation Average
Variation

weish01.dat 9 8836 8836 0.0%
weish02.dat 10 10228 10356 1.2%
weish03.dat 11 11034 11034 0.0% 0.24%
weish04.dat 21 7350 7350 0.0%
weish05.dat 20 7083 7085 0.0%

Table2: Variables: 40 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish06.dat 7 12936 13206 2.0%
weish07.dat 15 12524 12524 0.0%
weish08.dat 14 13688 13972 2.0% 1.02%
weish09.dat 27 12590 12590 0.0%

Table3: Variables: 50 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish10.dat NR
weish11.dat 12 17180 17230 0.3%
weish12.dat NR 0.15%
weish13.dat 16 20008 20008 0.0%

NR: No results found by LP_SOLVE in 12 hours on Intel PII 300 Mhz with 192MB RAM & Windows 98.

Table4: Variables: 60 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish14.dat 20 24020 24158 0.6%
weish15.dat 30 17312 17312 0.0%
weish16.dat 33 20589 20945 1.7% 0.65%
weish17.dat 20 36924 37024 0.3%

Table5: Variables: 70 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish18.dat 29 32186 32384 0.6%
weish19.dat 23 27456 28022 2.0%
weish20.dat 22 25612 26262 2.5% 2.20%
weish21.dat 31 24406 25340 3.7%

Table6: Variables: 80 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish22.dat 25 33956 33956 0.0%
weish23.dat 38 32294 32294 0.0%
weish24.dat 37 36460 37232 2.1% 1.31%
weish25.dat 27 29220 30174 3.2%

Table7: Variables: 90 Constraints:5, Generations: 100, population Size: 1000

File

Results
Found in
Gen #

Best Results
out of 3 runs

Results by
LP_SOLVE Variation

Average
Variation

weish26.dat 10 37338 37546 0.6%
weish27.dat 20 37786 38164 1.0%
weish28.dat 23 36910 37114 0.5% 0.91%
weish29.dat 33 37444 37444 0.0%
weish30.dat 41 46841 48024 2.5%

We grouped test problems according to number of variables
best results were obtained by running our method 3 times
with varying populations of 100, 200, 500 and 1000.
Optimal results were obtained using LP_SOLVE program.

Average errors are compared for all test problems and
plotted on graph. Following figures show average variations
from optimal values for some test cases.

Average variations from optimal values for test data IP problems

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

100 200 500 1000

Population Size

A
ve

ra
ge

 V
ar

ia
tio

n

30-variables 60-variables 90-variables

Fig 1: Average variations from optimal values for test data IP problems

As can be seen from Fig 1 that average error is getting
smaller when the population size is increased. On the other
hand error is generally more in case number of variables are
increased in the problem. Again due to randomness of GA
this phenomena can not be guaranteed.

Average variation from optimal values for knapsack
problems is very lower than that of IP problems because for
knapsack problems each variable can have only two possible
values i.e. 0 or 1. In other words we exactly know the
variable range. Even for knapsack problems crossover is
performed on whole chromosome strings and not on each
variable due to only two values involved for each variable,
which makes solving knapsack problem faster than IP
problems.

5. Limitations
As no system can be considered perfect our proposed GA
method also have limitations. Among these some are
inherited from GA itself. These are briefly summarized as
follows:

Working of GA depends on system generated random
numbers hence results obtained for a problem on two
different occasions may not be same. Best results can not be
guaranteed by running our method at single time hence best
results need to be chosen by running our GA for more than

one time on same problem. Other known methods for
solving IP problems may produce better results. Results
obtained greatly depend on choosing right values of
population size, maximum number of generations, and
Crossover and mutation probability along with right value of
mutation variable constant.

6. Conclusion
Genetic Algorithms is relatively newer field, which has
proven useful in function optimizations. However there has
little research been done to use GA for Integer Programming
problems. We have tried to use GA for solving Integer
Programming problems as discussed above.

To conclude it is necessary to emphasize that good results
are obtained by our research , although accurate and
consistent results can not be guaranteed by our me thod due
to limitations of randomness of GA. Nevertheless IP with
GA can be very useful in obtaining results where no results
can be obtained by other known methods in given frame of
time. This has been demonstrated that in our test data
weish10.dat and weish12.dat each with only 50 variables
could not be solved in 12 hours on Intel PII 300 Mhz with
192MB RAM & Windows 98 by LP_SOLVE program. But
with GA results can be found using same amount of time as
with other 50 variable test problems. Hence IP with GA can
be very useful in areas where accuracy is not needed and
approximate results are useful.

Hence there is a clear advantage of using GA for IP
problems where results can not be obtained in polynomial
time with other known methods.

We have used different approaches to solve IP with GA. It
has been observed that better results still can be obtained if
we can initialize all initial population with in feasible
region. We have used simplex method to find few co-
ordinates of feasible region and generate initial population
somewhat within feasible region. There is a clear scope for
research where one can initialize the population with in
feasible region so that better and faster results can be
obtained.

7. References:
[1] Yuh-Chyun Luo et al., [2001] An Efficient Approach
Integrating Genetic Algorithm, Linear Programming, and
Ordinal Optimization for Linear Mixed Integer
Programming Problems, Smart Engineering System Design,
vol. 00, pp1-12.

[2] Robert E. Bixby et al.,[2000] MIP Theory and practice
closing the Gap.Department of Computational and Applied
Mathametics, Rice University , TX.

[3] Kalyanmoy Deb,[1999] An Introduction to Genetic
Algorithms , Technical Paper, Kanpur Genetic Algorithms
Laboratory (KanGAL).

[4] Jeffrey A. Joines et al.,[1996] Manufacturing Cell
Design; An Integer Programming Model Employing Genetic
Algorithms , , Department of Industrial Engineering, North
Carolina State University.

[5] Deb Kalyanmoy et al.,[2002] Optimal Scheduling of
Casting Sequence Using Genetic Algorithms , KanGal report
No. 2002002 , IIT Kanpur.

[6] Andrea Toniolo Staggemeir,[2002] A hybrid genetic
algorithm to solve a lot-sizing and scheduling problem,
Internal Research Report MS-2002-4, Intelligent Computer
Systems Centre Group, School of Mathematical Sciences
University of West of England.

[7] Gunther R. Raidl, [1998] An Improved Genetic
Algorithm for the Multiconstrained 0-1 Knapsack Problem.
Proceedings of the 5th IEEE International Conference on
Evolutionary Computation, pages 207-211. IEEE Press.

[8] Yuri Potroinu,[2001] Usage of genetic Algorithms in
Solving tasks of Integer programming, Department of
Information Technologies, State Economic University,
Belarus.

[9] Utz-Uwe Haus, et al.,[2001] The Integral Basis Method
for Integer Programming, Otto-von-Guericke-Universit.at
Magdeburg, Department of Mathematics/IMO,
Universit.atsplatz 2, 39106 Magdeburg, Germany.

[10] Robert J. Vanderbei,[1998] Linear Programming:
Foundations and Extensions Second Edition, Kluwer
Academic Publishers.

[11] Deb, K. [2000]. An Efficient Constraint Handling
Method for Genetic Algorithms . Computer Methods in
Applied Mechanics and Engineering.

[12] http://ftp.zib.de/mp-testdata/ip/sac94-suite/index.html

[13]
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/impl
ement.shtml

