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ABSTRACT 
Integer programming is a NP hard problem[1]. Genetic Algorithms is relatively newer field, which has proven 
useful in function optimizations. However there has little research been done to use GA for Integer 
Programming problems. We have tried to use GA for solving Integer Programming problems by modifying 
traditional GA. In our method simplex method is used to find some vertex of feasible region and most of initial 
population is  chosen with help of these vertex coordinates. We have also used a variable mutation probability.   
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1. Introduction 

A Linear Programming (LP) is a problem that can be 
expressed as follows (the so-called Standard Form): [7] 

    minimize or maximize   cx 
    subject to Ax  = b 
                x >= 0 
Where x is the vector of variables to be solved for, A is a 
matrix of known coefficients, and c and b are vectors of 
known coefficients. The expression "cx" is called the 
objective function, and the equations "Ax=b" are called the 
constraints.  
 
LP problem in which all variables are required to be integer is 
called integer-programming [IP] problem . The case where 
the integer variables are restricted to be 0 or 1 is called 0-1 
knapsack  problems .  
 

There are two common approaches to solving Integer 
programming problems. Historically, the first method 
developed was based on cutting planes (adding constraints to 
force integrality). However, the most effective technique is 
branch and bound.[2]. Over the last decade, genetic 
algorithms (GAs) have been extensively used as search and 

optimization  tools in various problem domains, including 
sciences, commerce, and engineering. The primary reasons 
for their success are their broad applicability, ease of use, and 
global perspective. John Holland of the University of 
Michigan, Ann Arbor, first conceived the concept of a 
genetic algorithms [3].  

 
 
Holland's genetic algorithm attempts to simulate nature in the 
following manner. The first step is to represent a legal 
solution to the problem you are solving by a string of genes 
that can take on some value from a specified finite range or 
alphabet. This string of genes, which represents a solution, is 
known as a chromosome. Then an initial population of legal 
chromosomes is constructed at random. At each generation, 
the fitness of each chromosome in the population is 
measured. The fitter chromosomes are then selected to 
produce offspring for the next generation, which inherit the 
best characteristics of both the parents. After many 
generations of selection for the fit ter chromosomes, the result 
is hopefully a population that is substantially fitter than the 
original.  

 

2. Related work: 
GA are often considered for search problems in which the 
solution space is described by non continuous or multimodal 
functions [4]. Some research have been done on IP using GA 
but It has been on use of some specific real world problem. 
Moreover GA has been modified to suit on particular 
problem and is not generic. Jaffrey et al. [4] used GA to solve 
IP problem for cell designing manufacturing industry. They 

used  modified chromosome representation for Integer 
variables and also used new GA operators such as swap 
crossover and multipoint crossover to improve the results. 
This was successfully implemented in the field of cell 
designing manufacturing industry.  
 
Deb et al [5]used binary coded and real coded GA to solve 
Mixed Integer Programming (MIP) problem for scheduling of 
casting industry. This problem involved a large numbers of 
variables . However results were not comparable to other 



 

Linear programming (LP) methods. Deb et al. then modified 
the GA to a problem specific approach and results obtained 
were much better. Key feature used here was new problem 
specific recombination operator. However this problem is of 
MIP problem. 
 
Andrea Toniolo [6] used a hybrid approach thus by 
combining LP and GA by which a set of solution is first 
obtained by LP and an optimized solution is searched using 
GA. Above approach is also relate to particular Industry and 
is of MIP type. 
 
Another approach as suggested by Gunther [7] for 
multiconstrained problem is similar to our approach where 
pre optimization of initial population is suggested. Further a 
local improvement and a  repair operator is suggested. This 
algorithm claims to work better with Knapsack problems but 
can not be used for  IP which contain variable values other 
than 0 and 1. 
 
In his paper Yury Potroinu [8] mentioned that GA can be 
used for solving IP problems but has no details as how this 
can be achieved except applying traditional approach.  
 
For many years principal technique used in practice to solve 
MIP problems remains unchanged. Linear Programming 
based Branch and bound (LPBB) method has been most 
popular which was introduced by Land and Doig in 1960 [2]. 
Many computational experiments in the past twenty years 
have revealed that LPBB algorithms with cuts added are 
currently the most successful tool for attacking combinatorial 
and IP without any given structure. Such algorithms are 
known as branch-and-cut and may be interpreted as dual type 
methods. 
 
Current implementations of branch-and-cut algorithms 
heavily rely on the polyhedral theory for designing the 
cutting phase of such an algorithm [9]. Utz-Uwe Haus[9] 
used a technique which involves lattice operations only and, 
hence, explicitly relies on the discrete structure of the feasible 
set. There are many publications and papers which show 
various methods to solve IP. The one which was found most 
comprehensive and useful is book by Robert J. Vanderbei 
[10]. 
 

3. Proposed Algorithms 
Our proposed algorithm have been a combination of simplex 
method and genetic algorithm. Range for initial population is 
calculated with simplex algorithm. Binary representation of 
genes have been choosen so Integer results can obtained 
easily. In our approach constraints are handled using 
parameter less approach as defined by Deb[11]. 
 
 

• Initial Population 
We have used Simplex method to find the some vertices  of 
feasible region . With help of these few vertices, range for 
initial population is computed. This method helps us to find a 
better range for each variable. After applying simplex method 
to get some hints about the ranges of each variable we choose 
75% of initial population within this ranges and rest 25% of 
population is generated randomly. 
 
• Selection 
 The modified Tournament selection method, which works as 
follows: 
 

- Shuffle the population. 
- Pickup two genes at random 
- If both are feasible genes one with higher 

fitness is selected 
- If both are non feasible then one with lower 

penalty is selected 
- If one is feasible and one is not then feasible 

one is selected 
- Second parent is also selected same way. 

 
Further if both selected parents are not feasible then one with 
higher penalty is dropped and instead one with best fitness is 
selected. Best gene is always carried to next generation. 
 
• Crossover 
We used the single point crossover on whole chromosome 
string for knapsack problems and single point crossover on 
each variable for IP problems. Reason for using crossover on 
each variable for IP problem is that if we only use crosso ver 
on whole string then each variable may not come to optimal 
value as in many cases it may never get a chance to reach to 
optimal value.  While generating new population best of two 
parents and best of two children produced is included in the 
new generation.  
 
• Mutation 
Bitwise mutation is done. Since bitwise mutation can change 
many chromosome in a gene hence a mutation probability is 
very low say 0.001 was used initially. But this low mutation 
probability had one disadvantage of forming local cluster and 
no improvements in objective functions were noticed if GA 
get stuck in local optima. 
 
Following mutation approach was adopted which proved 
good. In this case evolution is started with a low mutation 
probability which increases after each generation till first one 
forth of total generations are reached. After this mutation 
probability starts reducing and becomes original at end of 
first half of run. During second half of evolution same pattern 
is followed by mutation probability. This ensures that in case 
when local optimal is reached or about to be reached then 



 

slightly high mutation probability diversifies the population 
hence breaking apart from a local optimal solution. 
  
•   New population 
Best fitness gene(of course one which is feasible) is always 
carried to next generation. 
 
• Termination 
The GA is terminated when specified number of generations 
are completed.  
 
 
 
 

4. Experimental Results 
Using above approaches we have tested our algorithm on 
Integer programming problems obtained from public 
domain[12]. These test data files are for which are for multi 
constrained Knapsack problems. For IP problems no other 
test data files were available hence above data files are used 
for IP problems as well. Results obtained were compared 
with LP_SOLVE[13] program which solves LP, Integer 
programming and knapsack problems. Due to limitation of 
randomness of GA our algorithm was used three times and 
best of these three results are chosen as results.  
Some of results obtained are listed below in tables. 
 

 
• Integer Programming Results: 
 

Table1: Variables: 30 Constraints:5, Generations: 100, population Size: 1000 
File Results 

Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE 

Variation Average 
Variation 

weish01.dat 9 8836 8836 0.0%  
weish02.dat 10 10228 10356 1.2%  
weish03.dat 11 11034 11034 0.0% 0.24% 
weish04.dat 21 7350 7350 0.0%  
weish05.dat 20 7083 7085 0.0%  

 
Table2: Variables: 40 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish06.dat 7 12936 13206 2.0%  
weish07.dat 15 12524 12524 0.0%  
weish08.dat 14 13688 13972 2.0% 1.02%
weish09.dat 27 12590 12590 0.0%  

 
Table3: Variables: 50 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish10.dat     NR    
weish11.dat 12 17180 17230 0.3%  
weish12.dat     NR  0.15%
weish13.dat 16 20008 20008 0.0%  

 
NR: No results found by LP_SOLVE in 12 hours on Intel PII 300 Mhz with 192MB RAM & Windows 98. 
 
 
 
 
 



 

Table4: Variables: 60 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish14.dat 20 24020 24158 0.6%  
weish15.dat 30 17312 17312 0.0%  
weish16.dat 33 20589 20945 1.7% 0.65%
weish17.dat 20 36924 37024 0.3%  

 
Table5: Variables: 70 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish18.dat 29 32186 32384 0.6%  
weish19.dat 23 27456 28022 2.0%  
weish20.dat 22 25612 26262 2.5% 2.20%
weish21.dat 31 24406 25340 3.7%  

 
Table6: Variables: 80 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish22.dat 25 33956 33956 0.0%  
weish23.dat 38 32294 32294 0.0%  
weish24.dat 37 36460 37232 2.1% 1.31%
weish25.dat 27 29220 30174 3.2%  

 
 
 

Table7: Variables: 90 Constraints:5, Generations: 100, population Size: 1000 

File 

Results 
Found in 
Gen # 

Best Results 
out of 3 runs 

Results by 
LP_SOLVE Variation 

Average 
Variation 

weish26.dat 10 37338 37546 0.6%  
weish27.dat 20 37786 38164 1.0%  
weish28.dat 23 36910 37114 0.5% 0.91%
weish29.dat 33 37444 37444 0.0%  
weish30.dat 41 46841 48024 2.5%  

 
 
We grouped test problems according to number of variables  
best results were obtained by running our method 3 times 
with varying populations of 100, 200, 500 and 1000. 
Optimal results were obtained using LP_SOLVE program. 

Average errors are compared for all test problems and 
plotted on graph. Following figures show average variations 
from optimal values for some test cases. 

 
  



 

Average variations from optimal values for test data IP problems
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Fig 1: Average variations from optimal values for test data IP problems 

 
As can be seen from Fig 1 that average error is getting 
smaller when the population size  is increased. On the other 
hand error is generally more in case number of variables are 
increased in the problem. Again due to randomness of GA 
this phenomena can not be guaranteed. 
 
 
Average variation from optimal values for knapsack 
problems is very lower than that of IP problems because for 
knapsack problems each variable can have only two possible 
values i.e. 0 or 1. In other words we exactly know the 
variable range. Even for knapsack problems crossover is 
performed on whole chromosome strings and not on each 
variable due to only two values involved for each variable, 
which makes solving knapsack problem faster than IP 
problems. 
 

5. Limitations 
As no system can be considered perfect our proposed GA 
method also have limitations. Among these some are 
inherited from GA itself. These are  briefly summarized as 
follows: 
 
Working of GA depends on system generated random 
numbers hence results obtained for a problem on two 
different occasions may not be same. Best results can not be 
guaranteed by running our method at single time hence best 
results need to be chosen by running our GA for more than 

one time on same problem. Other known methods for 
solving IP problems may produce better results. Results 
obtained greatly depend on choosing right values of 
population size, maximum number of generations, and 
Crossover and mutation probability along with right value of 
mutation variable constant. 
 

6. Conclusion 
Genetic Algorithms is relatively newer field, which has 
proven useful in function optimizations. However there has 
little research been done to use GA for Integer Programming 
problems. We have tried to use GA for solving Integer 
Programming problems as discussed above. 
 
To conclude it is necessary to emphasize that good results 
are obtained by our research , although accurate and 
consistent results can not be guaranteed by our me thod due 
to limitations of randomness of GA. Nevertheless IP with 
GA can be very useful in obtaining results where no results 
can be obtained by other known methods in given frame of 
time. This has been demonstrated that in our test data 
weish10.dat and weish12.dat each with  only 50 variables 
could not be solved in 12 hours on Intel PII 300 Mhz with 
192MB RAM & Windows 98 by LP_SOLVE program. But 
with GA results can be found using same amount of time as 
with other 50 variable test problems. Hence IP with GA can 
be very useful in areas where accuracy is not needed and 
approximate results are useful.  



 

 

Hence there is a clear advantage of using GA for IP 
problems where results can not be obtained in polynomial 
time with other known methods. 

 
We have used different approaches to solve IP with GA. It 
has been observed that better results still can be obtained if 
we can initialize all initial population with in  feasible 
region. We have used simplex method to find few co-
ordinates of feasible region and generate initial population 
somewhat within feasible region. There is a clear scope for 
research where one can initialize the population with in 
feasible region so that better and faster results can be 
obtained.  
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