
Abstract – This study attempts to apply an agent-based 
approach to modelling a transportation system. Utilizing the 
advantage of agent-based model of being validated at an 
individual level, a social dilemma situation of travel mode choice 
is modeled and viewed as a complex system. Inductive-learning’s 
capability of travelers is used and combined with an evolutionary 
approach in order to simulate travelers’ learning process. A 
user-equilibrium point as predicted by conventional equilibrium 
analysis could be reached and stabilized. The stable situation is 
produced by interaction process among agents and by behavioral 
change process of each agent, without a central or external rule 
that organizes objective function of the system. The study also 
revealed some conditions that may produce other stable situations 
in addition to the user equilibrium point. An emergent situation 
combined with travelers’ sensitivity to payoff differences is 
observed to be influential. 

Keywords: travel mode choice, social dilemma, agent-based 
approach, inductive learning machine. 

I. INTRODUCTION 

In transportation modelling, equation-based approaches 
dominate most of models. But they have some disadvantages 
that may be covered by another approach named as 
‘agent-based approach’. An agent-based approach, of being 
validated at an individual level by comparing model output 
with real system behavior to study effects of a policy in 
transportation, gives the benefit of understanding individual’s 
way of thinking, making decision, and learning  

Shalizi [10] defines an agent-based model as a 
computational model, which represents individual agents and 
their collective behavior. An agent-based model steers us 
toward representing individuals, their behaviors and their 
interactions, rather than aggregates and their dynamics. 
Axelrod [1] also stated the importance of agent-based 
modelling to build simulation model in social sciences.  

Deadman [3] implemented agent-based modeling to model 
individual behavior and group performance in the tragedy of 
the commons. The work introduced and illustrated the potential 
of intelligent agent-based modeling and simulation as a tool for 
understanding individual action and group performance in 
common-pool resource (CPR) dilemmas. Yamashita et al.[11] 
also simulated a CPR dilemma by extending “The Lake Game” 
into a distributed social dilemma game called as 
“Multiple-Lake Game”. His work is one of models that utilized 
a kind of inductive learning machine as a decision making rule. 

Nakayama et al’s [8] and Nakayama and Kitamura’s [9] 
works on route choice behavior are the examples of 
agent-based approach in transportation modeling. Travelers 
were modeled to have bounded rationality, limited information 
and also capability to do cognitive learning. Klugl and Bazzan 
[6] also studied route choice behavior by using a simple 

heuristic model. In travel mode choice, the agent-based 
approach is not so widely studied by researchers. One of the 
inspiring works by Kitamura et al. [5] is on travel mode choice 
by using a simple bi-modal transportation system and cellular 
automata. Agent-based approach made possible many things 
that could not be observed in conventional approach. 

Our study focuses on travel mode choice behavior. Most 
modal-split models rest on the presence of equilibrium. 
Conventional analysis assumes rational choice and complete 
information. Many studies assumed that a traveler predicts 
costs of transport modes and chooses mode with the smallest 
cost. Actually, they do not necessarily minimize cost but may 
adopt a strategy, such as continuing to take the same mode or 
change to other modes periodically.  

We model a social dilemma [2] situation of travel mode 
choice by using a simple bi-modal transportation system, 
which consist of car and bus as choices of mode. Selfish 
behavior of people, who use cars based on personal interest of 
minimizing travel cost, creates traffic congestion, and 
furthermore increases travel cost for both users of car and 
public transport.  

Utilizing a behavioural model based on the inductive 
learning capability of commuters, we aim to provide an 
agent-based simulation model of travel mode choice in order to 
understand behavioral process of commuters. We attempt to 
observe complex dynamical processes of commuters’ behavior 
by considering interaction among travelers influential. New 
findings are expected in order to gain an insight into the way of 
solving the social dilemma. 

II. SIMULATION MODEL 

Behavior of autonomous agents may represent behavior of 
travelers who choose mode of commuting. A multiagent 
simulation is utilized to model and to show a complex 
decision-making process of travelers. An agent behaves based 
on a behavioral rule embedded in a kind of inductive learning 
machine named as a finite-state machine (FSM).  

Our simulation model consists of two submodels, 
transportation model and traveler model (see Figure 1). In the 
traveler model, travelers decide the choice of mode guided by 
decision making rules. After all travelers decide the mode of 
commuting, then travel time is calculated in the transportation 
model. Generalized travel cost for each mode can be calculated 
and it returns to travelers as payoffs. Amount of payoff for 
each traveler depends on the mode he has chosen. Day-by-day, 
the generalized travel cost of car and bus may vary 
dynamically, depend on the changes of travelers’ choice. These 
processes are repeated for 10 iterations, counted as one 
generation. After that, an evolutionary process is utilized to 
update travelers’ FSM by using genetic algorithm. The 
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objective for each traveler is to acquire a FSM that gives high 
payoffs. The updated FSM is then being used for the next 
generation.  
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Figure 1: Multiagent simulation model 

A. Transportation Model 

In order to understand basic travel mode choice that 
represents a social dilemma situation, we use a simple bi-modal 
transportation system that comprises private car and bus as 
choices of commuting. The two modes are assumed to be 
operated in the same lane, where there would be more 
interactions than being operated in exclusive lanes.  

All travelers own cars so that they can easily change modes 
and they only know the payoff of mode they choose. Payoff 
received by a traveler is just a constant minus travel cost. 
Private car users are assumed to be solo drivers who drive alone. 
For public transport, bus operating frequencies and fare are 
adjusted so that bus passengers can pay the full cost of 
operating buses. We derive equations and their parameters of 
generalized travel costs based on the work of Kitamura et al.[5] 
as follows, for car (A)and bus (B)respectively: 
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where VA, VB are the generalized cost of one-way travel, TA, TB 
are the one-way travel times, FRB is the round-trip bus fare, and 
Kmi is the constant coefficient.  
B. Traveler Model 

We use a routine-based learning with a genetic algorithm to 
model a traveler’s decision making and learning processes. The 
routine or rule is represented as a finite-state machine, which is 
evolved to change the mode choice strategy embedded on it. 
Evolving a FSM changes its structure into a more adaptive 
structure that gives better strategy on choosing mode.  

A finite-state machine (FSM) or finite state automaton 
(FSA) is an abstract machine that has only a finite, constant 
amount of memory (the states). FSM looks like a mathematical 
logic that represents a sequence of instructions to be executed, 
depending on a current state of the machine and a current input. 

Formally, a FSM is a 5-tuple: M=(Q,τ,ρ,s,o) [4]. Where Q is 
a set of states, τ is a set of input symbols, ρ is a set of output 
symbols, s:Qxτ Q is the next state function, and o:Qxτ ρ is 

the output function. A 5-tuple is to be interpreted as a machine 
that, if given an input symbol x while it is in the state q, will 
give output o(q,x) and transition to state s(q,x). Only the 
information contained in the current state describes the 
behavior of the machine for a given stimulus, while the entire 
set of states serves as the ‘memory’ of the machine.  

Figure 2 illustrates a finite-state machine with 4 finite states, 
3 input symbols and 2 output symbols. A FSM can also be 
represented by a kind of table as Table 1. A pair of values in 
each cell is a pair of next state function and output function 
(s,o). For example, (A,1) means that next state will be A and 
current output is 1. The number of states, input symbols and 
output symbols can be varied according to modeling needs. 

In our simulation, each agent has a FSM which functions as 
a decision rule to choose mode of traveling. Each agent has a 
FSM with 4 states, 5 input symbols and 2 output symbols. 
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Figure 2: An illustration of a finite-state machine 

Table 1: A representation of a FSM in a table form 

A B C D

a

b
c

(A,1) (D,0)

(D,1) (A,1)

(C,0) (C,0)

current state
input

(A,0) (D,1)

(A,0) (B,0)

(D,0) (D,1)
 

Past payoffs that are memorized as expected payoffs, are 
used to decide the input symbols for the next step. Expected 
payoffs of a traveler are calculated and updated based on a 
work of McFadzean [7]. A traveler received payoff Pt

j of using 
mode j at time t. This payoff is then recorded and used to 
update its expected payoff. The expected payoff Ut

j is updated 
according to Equation (1). 
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where A means automobile or car and B means bus. Only 
expected payoff of the chosen mode is updated. When a 
traveler choose car, his expected payoff of car is then updated. 
But expected payoff of bus will not be updated until the 
traveler chooses bus. 

Weight factor w ranges from 0 to 1. It depends on a 
traveler’s perception of the influence of his payoff Pt

j on the 
expected payoff Ut

j. A traveler with high weight factor is 
resilient to his current payoff. On the other side, a traveler with 
low weight factor is easily affected by his current payoff. 

There are 5 input symbols that are used in the agent’s FSM 
(see Table 2). They represent choices of strategy for a traveler 



to decide which mode they will use for next trip. Each choice of 
strategy has a range of value to differentiate it to other choices 
of strategy. How much is the difference can be categorized into 
several levels, depending on the value of d. Parameter d 
represents the sensitivity of a traveler the difference between 
payoff of car and bus. A larger value of d implies that a traveler 
does not consider so much about payoff differences when 
choosing mode. For example, for a traveler who has a low value 
of d, if he observes that the expected payoff of car is much 
higher than bus, then the input symbol will be 1. But for a 
traveler with high value of d, he might behave differently. 

Initially, for input symbol 1, choices of mode in its set of 
strategy are only car, and for input symbol 5 are only bus. Input 
symbol 2 has 75% choices of car and input symbol 4 has 75% 
choices of bus. Input 3 has 50-50 proportions of car and bus. In 
the beginning, all commuters received a random initial value of 
expected payoff of car and bus ranged from 1 to 2. The first 
choice would determine all the following choices without any 
variation, if an initial value were not assigned. 

Decision making processes of a commuter starts with input 
symbol 3 and state 1. For example, a commuter, say commuter 
C, has a FSM as in Table 2. Let us assume that initial values of 
UA and UB are 1.1 and 1.2, and w=0.9. Initial pair of state and 
output is (3,0), which means that the decision is to choose car, 
coded as 0, and next state will be state 3. After all commuters 
had chosen a mode based on their FSM, they received a payoff 
of their decision. PA is given to commuters who chose car and 
PB is given to commuters who chose bus. Commuter C received 
PA and then he updated his expected payoff of car using 
Equation (1) ( AAA PPU 1.099.0)9.01(1.19.0 +=−+⋅= ). He 
observed that dPd A 22.1)1.099.0( ≤−+< , so that for next 
iteration, the input symbol is 2. Based on input symbol 2, and 
next state 3, Commuter C got new pair of state and output from 
his FSM. The pair is (4,0), so that the decision is to choose car, 
coded as 0, and next state will be state 4. These processes 
continue until the end of iterations (10 trips).  

Table 2: An example of agent’s FSM in table form 

1 2 3 4

(3,0) (2,0)

(2,0) (3,1)
(3,0) (1,1)

current state
input

(3,0) (4,0)

(4,0) (1,0)
(4,0) (2,1)

(4,1) (1,0)
(2,1) (1,1)

(2,1) (3,1)
(3,1) (2,1)

dUU BA 2>−

dUUd BA 2≤−<

dUU BA <−

dUUd AB 2≤−<

dUU AB 2>−

(1)

(2)

(5)
(4)
(3)

 
In order to acquire an adaptive strategy, a genetic algorithm 

(GA) is applied to the FSM of each agent. A chromosome in 
GA encodes the transition function and the output function of 
FSM in each agent with bit strings. A chromosome with length 
60 bit strings encodes a FSM, which consists of 5x4 pairs of 
state and output. Figure 3 illustrates the process. 

For a state, it requires 2-bit strings. The value of 2-bit 
strings ranges from 0 (for binary code 00, the value is 
0.21+0.20) to 3 (for binary code 11, the value is 1.21+1.20). A 
value of 0 represents State 1, a value of 1 represents State 2, a 
value of 2 represents State 3, and a value of 3 represents State 4. 
A choice of mode is represented by a single bit string, since the 
choices of mode are only two, car and bus. A value of 0 

represents car and a value of 1 represents bus. 
Genetic operators, such as selection and two-point 

crossover, are used. Mutation is not implemented in order to 
avoid capricious changes of output value for input symbol 1 
and 5. We still maintain variation of chromosomes by 
crossover among travelers, since travelers are interrelated with 
each other. 

Travelers learn socially through interaction among them, so 
that we arrange agents in a kind of plane without border, 
known as a torus plane, which were used in Yamashita et al 
[11], so that each agent has 8 surrounding neighbors. It makes 
possible for them to interact each other. Each agent updates his 
rules (FSM) based on the fitness (sum of payoffs) of his own 
rules and also his neighbors’ rules. Each agent only knows 
rules owned by his neighbors only and also payoffs gained by 
those rules, so that agents are assumed to operate with 
incomplete information regarding with other agents’ behavior. 
The learning process of users is in the process of evolution of 
rules. Figure 4 illustrates the rules-updating process of each 
agent. 
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Figure 3: Decoding process of a chromosome into a FSM 
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Figure 4: Rules-updating process of an agent 



III. SIMULATION RESULTS AND DISCUSSIONS 

We run simulations with 4,096 travelers, who are arranged 
in a torus plane. Each traveler has a finite-state machine as a 
decision making rule. Memory weights w of travelers are 
assumed to be 0.9. To study the influence of the sensitivity 
parameter d, we vary the value from 0.05 to 0.15 with 
increment 0.025. Simulation is run up to 500 generations with 
10 iterations in a generation. 

Four simulation runs were made for each value of d. After 
observing the results, we decided to discuss the details for 
d=0.1 and d=0.05, since the former case resulted in a more 
stable situation than the cases of d > 0.1 and the latter case gave 
interesting results. 

A. Dynamic Equilibrium Situation at d=0.1 

We run four runs for this case. Statistics for last 100 
generation is summarized in Table 3. Similar to conventional 
analysis, a user equilibrium point is reached when the cost of 
car equals to the cost of bus. For all these runs, the average cost 
of car is almost equal to the cost of bus. But statistically with 
95% confidence interval, only for Run 1 and Run 4, the cost of 
car is significantly equal to cost of bus. The number of bus 
users in Run 1 and Run 4 are significantly the same, as well as 
the equality between Run 2 and Run3. We will discuss in more 
details for Run 1 in this section up to Section D.  

Figure 5 shows the day-to-day dynamics of number of bus 
users. The fluctuation reduced to a small value after Iteration 
2,000’s (Generation 200’s) and maintained until the end of 
simulation, with only a few fluctuations around Iteration 
4,000’s (Generation 400’s). The system is stabilized at the user 
equilibrium point. 

Table 3: Averages and std. deviations (Gen.401-500) 
Run Bus users Car cost Bus cost 

 Avg Std. Dev. Avg Std. Dev. Avg Std. Dev. 
1 1161.85 55.17 2.1667 0.0976 2.1652 0.0536 
2 1168.71 53.33 2.1543 0.0940 2.1584 0.0516 
3 1169.90 52.81 2.1523 0.0931 2.1572 0.0511 
4 1163.92 55.94 2.1630 0.0994 2.1632 0.0545 

 

Figure 5: Dynamics of number of bus users 

B. Travelers’ Expectation 

All agents started the simulation with a random value of 
expected payoffs for both car and bus. Day-by-day, they 
updated the values of expected payoff based on payoff of the 
mode they chose. Since the weight factor w is 0.9, a current 
payoff contributes its 10 percent to the updated value of 
expected payoff.  

A traveler decides a mode of commuting based on rules in 
a FSM and differences of expected payoffs. If the difference of 
car payoff and bus payoff is observed to be very high for a 
traveler ( dUU BA 2>−  or dUU AB 2>− ), then the traveler 
will make a decision to use either car or bus without 
considering using both modes. But, if he observes that the 
difference is small to medium, which depends on the value of d, 
then he has a wide range of probabilities of choosing car or bus 
based on the state and the output of his FSM.  

Figure 6 shows the change of expected payoff of car and 
bus. One dot represents a pair of expected payoff of car and bus 
for a traveler, so that in a small column in the figure we plot 
4,096 travelers’ pair of expected payoffs. In the first 50 
generations, the scatter plot spreads in around a 3x3 column. 
The column size is 0.1x0.1. At that time, there exist some 
travelers who experience the high difference of expected 
payoffs, so that they use either input symbol 1 (always choose 
car) or input symbol 5 (always choose bus). Some travelers 
experience medium differences, so that they use either input 2 
(higher probability to car) or input symbol 4 (higher 
probability to bus). Generation-by-generation, the spread of 
scatter plot became smaller, which means travelers 
experienced only small differences of expected payoffs so that 
they decided solely based on the rule of FSM. At the end of 
generation (Generation 500), the average value of expected PA 
is 0.8699 with variance 0.0014 and the average value of PB is 
0.8521 with variance 0.0005. This means that most of travelers 
experienced only slight differences between expected payoff 
of car and bus. 

  

  
Figure 6: Scatter plots of travelers’ expected payoffs at d=0.1 

C. Travelers’ Specialization 

Figure 7 shows the specialization of travelers based on 
their choices of mode in every 10-iterations. All-times car 
users always chose car in 10 iterations and all-times bus users 
always chose bus. There are also many mixed users who chose 
both car and bus during 10 iterations. At the equilibrium point, 
the number of bus users is around 1,200, with 1,000 all-times 



bus users. The number of car users is about 2,900, with 2,750 
all-times car users. It can be inferred that travelers are mostly 
specialized in either a car user or a bus user, leaving a small 
number of mixed users. 

D. Emergence of Choice Stability 

Traveler’s specialization of mode changes usually from a 
car user to a mixed user and then to a bus user, or reversely from 
a bus user to a mixed user and then to a car user. Even though a 
traveler has a tendency to become a car user or a bus user in 
every generation, sometimes an interaction with other travelers 
make him change into a mixed user, following the change of his 
FSM due to crossover of chromosomes with neighbors. Figure 
8 illustrates the change of a traveler’s choices of mode from 
generation to generation, which have finally resulted in an 
all-times bus user or car user. 

Figure 7: Number of travelers in each level of chosen mode 

 

 
Figure 8: A traveler’s changes of choice: (a) finally became a 

bus user and (b) finally became a car user 
E. Effect of Travelers’ Sensitivity at d=0.05 

We found an interesting phenomenon when the value of 
parameter d is at 0.05, which means travelers are 2 times more 
sensitive to payoff difference than d=0.1. In all four runs, the 
system converged to other equilibrium points (see Figure 9), 
where the number of bus users in all runs is higher than the user 
equilibrium point (dashed line in the figure).  

Further discussions will be focused on Run 2. An 
emergent process started from an outbreak of number of bus 
users at iteration 8 in generation 31 (see Figure 10). The 
outbreak started with decreasing bus users to a lower level than 
the user equilibrium point, so that travel time increased and 
payoff for all users decreased, but payoff of bus was slightly 

higher than car. Some travelers observed this situation and at 
the same time they chose bus, resulting in a sudden increase of 
bus users. 

 Figure 9: Dynamic of number of bus users at d=0.05 

Figure 10: Dynamics of number of bus users at gen. 29-33 

Figure 11: (a) Car payoff PA and (b) bus payoff PB at gen. 29-33 

The huge increase of bus users increased the payoff of car 
and bus (see Figure 11), with higher level of increase for car 
payoff than bus payoff, since car cost has stiffer curve than bus 
cost. At that time, travelers who had car as their choice 
received high increase of expected payoff as well as travelers 
with bus as their choice. They observed that the payoff of the 
chosen mode was much higher than the other one, so that they 
used input symbol 1 or 5 in their FSMs and continued to use 
car or bus. If majority of travelers experienced those processes, 
then the system converged to another equilibrium point. 

Figure 12 shows changes of expected payoffs of a traveler 
before and after the outbreak of cooperation. From the 
beginning of generation 29 until beginning of generation 31, 
the traveler mostly chose car, so that the changes of expected 
payoffs are mostly on car. But during three iterations before the 
outbreak, he chose bus and the outbreak pushed his choice into 
bus only.  

The changes of expected payoffs of all travelers can be 

(a) (b) 

(a) 

(b) 



seen in Figure 13. Fundamental changes happened during 
generation 30-40’s as a result of the cooperation outbreak. 
Starting from generation 31, travelers split off into two groups, 
a group of car users and a group of bus users. 

Figure 12: Expected payoffs (UA,UB) of a traveler at gen. 29-33  

 

 

 

 
Figure 13: Scatter plots of travelers’ expected payoffs at d=0.05 

The kind of equilibrium found at d=0.05 is called as 
‘deluded equilibrium’ [8][9]. If travelers expect that the payoff 
of a mode is much higher than another one, then they will 
continue to choose the mode again. A deluded traveler cannot 
acquire information about the choice of another mode anymore, 
so that the delusion cannot be dissolved. Even though the 
actual payoff of car is higher than payoff of bus, travelers 
continue to use car, because in their perception the expected 
payoff of bus is much higher than car.  

If delusion continues, travelers form a habitual behavior 
and they totally exclude other choice of mode from 
consideration. When all of them are frozen to their choices, the 
equilibrium becomes a ‘frozen equilibrium’ [9]. 

IV. CONCLUSION 

A simulation model of commuters’ learning on choosing 
mode was built by using a finite-state machine as behavioral 
rules. A user equilibrium point as predicted by conventional 
analysis can be reached and stabilized, by interaction process 
among travelers and by behavioral change process of each 
traveler, without any central or external rule that organizes the 
objective function of the system. The equilibrium is a result of 
self-organization and complex process among travelers.  

At the equilibrium point, there exist car users, bus users and 
mixed users. Most of travelers are specialized in either a car 
user or bus user, leaving a small number of mixed users.  

When travelers are very sensitive to payoff differences, an 
outbreak situation may produce another equilibrium point, 
instead of the user equilibrium. The outbreak, as an emergent 
process of the system, make travelers perceive an excessive 
increase of payoffs and form a habit of choosing only either car 
or bus until the end of the simulation. 
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