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Abstract-This paper proposes a new algorithm for finding 
disaggregate user equilibria on a congested network where a 
driver is assumed to be an agent who performs reinforcement 
learning to get maximal payoff (minimum loss) under limited 
route information. A reinforcement learning with endogenously 
determined leaning- efficiency parameters is presented and its 
relation to the user equilibrium is also explored. 
Key words: reinforcement learning, user equilibrium, route choice 
behavior, ITS, bounded rationality 
 

I. INTRODUCTION 
 

To design and provide an efficient Intelligent Transportation 
Systems (ITS) or optimal route guidance strategies in transport 
networks requires reliable traffic forecast. For this problem, one of the 
fundamental problems not yet solved is driver’s response to travel 
information. Without ITS technology, a driver would try to select his 
best route under limited travel information. Such human 
decision-making on route choice can be seen as a sort of leaning 
behavior under iterated tasks. 

Until then, route choice behavior in congested networks has been 
modeled as mathematical optimization programs [1,2] or variational 
inequality problems [3,4]. Those models have been built upon the 
assumptions of rational behavior of drivers, of aggregated 
decision-makers and of mathematically tractable performance 
functions of roads. In those approaches, it is assumed that individual 
driver has complete information on all routes and can make an 
optimal decision on his or her route choice. 

Recent approaches [5-7] are directing toward to modeling drivers’ 
learning behavior based on bounded rationality under limited travel 
information. To examine the route choice behavior, Selton, et al. [5] 
have carried out a psychologically designed decision-experiment, 
where all players had to repeatedly decide between two alternative 
roads with different road capacities and should try to maximize their 
resultant payoffs. Two treatments had been repeatedly tested for N test 
persons: while in treatment 1 all player are known only their own 
payoffs (previously experienced), treatment 2 is designed for players 
to be informed about payoffs of two alternatives after each trial. They 
found that the experiments showed test persons’ behavior well suited 

to the user equilibrium and that a simulation model based on 
reinforcement learning could trace the behavior of tested persons. The 
reinforcement leaning model they adopted is a similar one with those 
that have been used in cognition science [8,9], machine learning [10] 
and an economic agent model [11]. 

Helbing et al. [6] has added further experiment to explore the 
volatile decision dynamics observed in the experiment by Selton, et 
al.[5]. They found out through the experiment that decision guidance 
by means of user-specific recommendations can increase the 
adaptation of players and reduce the deviation from the 
time-dependent user equilibrium, thereby enhancing the average and 
individual payoffs. 

Independently of those works, Miyagi [7] developed the 
reinforcement model for studying interactions between traveler 
information and individual driver’s route choice behavior. In his 
reinforcement model, it is assumed that the reference cost, which is a 
dynamic route information indicating the level of network congestion, 
is provided by a network administrator and that drivers’ 
decision-makings are mutually influenced by congestion effect of 
overlapping routes. He reported that in calculation of the disaggregate 
user equilibrium the reinforcement model has the full adaptability for 
ill-defined performance functions such as asymmetric link cost and 
discontinuous link cost functions. 

The object of this paper is two-fold. The first, we propose a new 
reinforcement learning model in which individual-specific stepsize 
parameter that combines ex-ante propensities to choice with obtained 
payoffs is endogenously determined, thereby describing autonomous 
route choice behavior of individual driver. The second is to examine 
the behavioral assumptions under which the volatile user-equilibrium 
or more stable user-equilibrium occurs. 

 
II. MODEL FORMULATION 

A. Notation on Network and Value function  
Consider a single origin-destination (O-D) pair connected by paths 

(or routes) denoted by positive integers, , in which  

denotes a set of paths,{1 . Path flows are denoted by 

. Each driver is identified by 

p ∈ P P
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{1, , , }i i∈ =I N . Thus, N represents the number of O-D 

trips as well. Let  and iC iC  denote a set of paths used and a set of 

unused paths by driver i. Cleary, it holds 

that i i for all i= ∪ ∈P C C I . Let denotes a 

choice probability of path p of driver i. Then, we have the following 
relations: 

( ,ipx i p∈ ∈I P)
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From (1a) we observe that each driver’s choice probabilities are 
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The number of O-D trips and link flows are related with path flows by 
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where  denotes a set of links,  and  are respectively flow 

on link  and an element of link-path incidence matrix. 

Denoting link travel time on , be , we have path travel 

time of  as: 
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Unfortunately, however, even if we assume that each of link cost 
functions is convex, we encounter the difficulty that the value function 
is neither convex nor differentiable. Therefore, the ordinary 
optimization procedures can not be applied to this problem. The 
optimality condition for the problem with non-smooth functions like 
(8), which is described in terms of the generalized gradients, has been 
studied by Clarke[12] in the locally Lipscheitz case. 

We assume that link travel time functions is nondecreasing of . 
Each driver appreciates path travel time in a different way because of 
the variation of value of time. To reflect this, we put the perceived cost 
of path p for driver i to 

f

( ) ( )ip i pu h w u h= , 

where  represents the value of time of driver i. iw

We introduce the reference cost which is a sort of travel 
information provided by a network administrator and, is referred by 
all drivers like a market price. The reference cost is not information 
for the sake of route guidance of drivers, but a sign indicating the 
congestion level of the current network state. Drivers know their 
present states by getting this information. We assume a maximum 
path cost as the reference cost:  

  (5) ( ) max ( )i
p

h uλ
∈

=
P

The reference cost is also considered as the perceived cost for each 
driver because of the difference of value of time. A driver knows his 
present state by comparing with the reference cost: 

 . (6) ( ) ( ) ( )ip i ipr λ= −X X

We call (6) a payoff function of driver i. If a driver chooses a 
minimum cost route, then he receives a payoff (or a reward) as long 
as the route he selected is not the maximum-cost route. If no driver 
can get any payoff whenever changing his or her route, it implies that 
the system is in equilibrium in the sense that no one can get any 
benefit by unilaterally changing his or her route. 

While a driver can know his travel cost at the current day through 
his experience, he cannot recognize the travel costs of routes that he 
didn’t select. Under the assumption of the conplete information, every 
drivers are informed of payoffs on all routes, however, some drivers 
may not have communication tools to get the travel information on 
routes or they don’t take care about the travel information of rarely 
used routes.  We can consider of  a variety of contexts where the 
assumption of the incomplete information has validity. 

Let me introduce a value function of driver i directly defined by the 
expected payoff function: 
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p i
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Note that the expectation is measured over only used paths. Then, to 
find the user equilibrium it may be appropriate to consider the 
following minimization problem of the value function for each driver: 

1
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B. Reinforcement Learning Model with Endogenously Determined 
Learning-Efficiency Parameters   

We are interesting in day-to-day variation of drivers’ path choice 

behavior. Let t be time describing a certain day. Let be an ex-ante 

propencity to choose path p of driver i  at time t. According to the 
propensities, a choice is then selected from the choice set, , which 
contains all the available paths at time t. The probability of choosing a 

path by individual i

t

ipQ

tP

tp ∈ P ∈ I is given as: 
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Let  be a prior propencity to choice for path p of driver i. After 

experiencing a trip, he can observe the partially available state of its 
environment and may change his choice on the next day.  It depends 
on whether the driver has obtained payoff or not. If there is a payoff, 
the driver reinforces the ex-ante propensity for path p using the 
following updating formula: 

0
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where is a stepsize parameter or a learning-efficiency 

parameter. Such feedback-typed tasks are continued until no payoff is 
generated. Equation (10) can be rewritten as: 
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In case of a constant  regardless of time sequence, it reduces to α
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For a large t, the sum of leaning-efficiency parameters equals one. 

This implies a path-propensity is a weighted average of the 

expected payoffs { obtained at each trip. For this reason, the 

reinforcement rule expressed by (11) is called a recency weighted 
method. We may call the reinforcement rule, (10), the 
knowledge-base rule in the sense that the propensities to choice are 
determined depending on the learning process and the obtained travel 
information.  

t
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We define individual-specific learning-efficiency parameter by: 
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where is a random number drown from an uniform 

distribution, , and  is the value function at time t defined 

by 
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We call the reinforcement learning model with endogenously 
determined learning-efficiency parameters, a set of equations consists 
of (9),(10),(12) and (13), RL-EDLE for a short. 
 
 

III. CHARCTERIZATION OF EQUILIBRIA 
A. Algorithm 

RL-EDLE is implemented as follows: 

Step 1. Set t=0. Generate the initial payoff matrix  and  the prior 

propencity distribution, , according to unform 

distribution 

0r

0 0=Q r
Uρ , where ρ  is a arbitarary positive constant. 

Then, the initial choice probability . 0X

Step 2. Set t=t+1. A learning-efficiency parameter for each driver 

is determined by (12), then the ex-post propensity 

distribution at time t is calculated. The choice probability 

matrix  is given, then, updated payoff matrix is obtained. 
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Step 3. If the stop rule, 1

,
max

i

t t

ip ip
p i

x x ε+
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C I
(ε is a positive small 

constant), is satisfied, then stop. Otherwise, return to Step 2. 
The above algorithm consisits of a simple iterartion procedure. In 

spite of its simple strucure, it can apply to a complex route choice 
problem in congested networks.  
 
B. Characterization of Equilibria 
 Analytically, the algorithm terminates if the following conditions 
are satisufied: 

 1 0, ,t t
ip ipQ Q for all p i+ − = ∈P ∈ I

∈ I

 (14) 

because that if the above conditions are achieved, then the stop rule 
in RL-EDLE is also satisfied. 

The next three propositions characterize the equilibrium achieved 
by the algorithm. 

Proposition 1. For , the equilibirum conditions 

(14) are satisfied if and only if the following conditions hold: 
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if we assume the following conditions 
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then (14) is satisfied.  
Inversely, in order to satisfy the conditions (14), it should be either 
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conditons i) in the proposition is derived in a straightfoward way. 

Furthermore, from the expression, ( )t t t t t t
ip ip i ip ip iQ Q x r Vα− = − =

I
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it follows that if , then it should be . This means 

that regardless of path selected, payoffs take the same 

value: .  On the other hand, since there exisits 

the most expensive path among avairable paths, from the definition of 
payoff function, (6), there exists at least one of the paths whose payoff 
should vanish. Without loss of generality, we degignate the most 
expensive path  for driver i. Then it follows that  
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Putting 0iβ = leads to . This contradicts the assumption of 

positive choice probabilities, so it should be

0t
ipx =

0iβ > . 

Proposition 2. For , the equilibirum conditions (14) 

are satisfied if and only if it does hold that 

,ip i∈ ∈C I

I

=

( ) 0, ,t t

ip ir p i= ∈ ∈X C . 

This propostion says that if a set of paths does not contain 
unused paths, then only the first conditions, i) , in proposition 1 hold. 
Proof is parallel to the one as shown in proposition 1. So we omit it. 
Proposition 2 ensures that the value function defined by (13) is 
minimized ultimately and that RL-EDLE will solve the non-smooth 
problem (8) if it converges. 

P

Proposition 3. The equilibrium state described by proposition 1 or 
2 is the user equlibrium.  

The conditions i) in proposition 1 represent the well-known 
complementarity conditions for the user equilibrium. Similarly, the 
conditions ii) in proposition 1 lead to  the expressions (15), implying 
that all used paths must have equal travel costs and travel costs of 
unused paths are at most equal to those of used paths. In addition, the 

conditions ii) lead to the expressions , which 

derive another definition of the equilibrium that at the equilibrium 
payoff obtained from each route is the same and equal the expected 
payoff over used paths. 
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C. Behavioral Assumptions on Incomplete Information 

In this paper, we will conduct simulation under the assumption that 
while drivers have exact information on the route he selected, they 

have no information or have uncertainty in travel times on routes that 
they rarely use. In case of no information, we further assume that 
drivers evaluate unused paths with their prior belief, but, at the same 
time it is assumed that oblivion effect of past memory works. Those 
behavioral assumptions (Assumption I ) are expressed as follows: 
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(0,1), tan .

, max

, , (0,1)

ip

t t
ip ipt

ip t
ip

R U where is a given positive cons t

r x if p is the path with imum choice probability
R

R otherwise where N

ρ ρ

γ γ−

=

⎧⎪= ⎨
∈⎪⎩

 
If path p is rarely used path, then at each iteration the propensity to 
choose that path is gradually fading away at the rate of γ , a random 
number drown from a normal distribution.  

The next behavioral assumption that we want to examine is 
mathematically expressed as follows (Assumption II): 
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The expressions reflect the assumption that a driver is informed of 

the travel times of paths available, but he does not take care about 
some routes because of rarely used paths for him. 

Note that updating rules mentioned above is carefully designed to 
guarantee the convergence conditions stated in proposition 1 or 2 to 
realize the user equilibrium. It is not difficult task to put assumptions 
leading to non user-equilibrium states. For example, if we assume 
that drivers are persistent in their initial propensities, the system never 
converges to the user equilibrium.  
 

IV. NUMERICAL EXAMPLES 
 

A. Network and Link Cost Function for Simulation 
A network for simulations is quoted from Braess [11] is depicted in 

Fig. 1. It is assumed that eight trips between origin-destination pair 
have three alternative paths. Assume that the link travel cost functions 
are: 

1 1 1 2 2 2

3 3 1 4 4 4 5 5 5

( ) 50, ( ) 50
( ) 4 , ( ) 4 , ( ) 10

c f f c f f
c f f c f f c f f

= + = +
= = = +

 

The user equilibrium principle generates the flow pattern 

1 (0,0,8)′=h  with the path costs: 1 (82,82,82)u ′= . The total 

travel cost is 656.  A toll pricing policy imposing 21-unit fare on link 

5, however, changes the previous flow pattern to 2 (3,3,2)′=h  

with the path costs 2 (73,73,73)u ′= , reducing the total cost to 584.



 
 
 
 
 
 
 
 
Figure 1. A single O-D connected by three paths: Numbers in 
parentheses indicate link numbers.  
 
B. Oblivion effect 

Figure 2 shows the simulation results under the assumption I. 
First three figures show frequency distributions of realized flows 
on three paths and the final figure in the bottom-corner represents 
the flow variation with iterations of calculation. Two doted lines 
indicating in the final figure show the analytical user equilibrium 

solution: . After 60 iterations the algorithm converges 

to the user equilibrium and the first three figures show that the 
equilibrium path flow occurs at extensively high frequency. 
However, the flow patterns generated in this simulation largely 
depend on relative magnitude between the initial propensities and 
the oblivion effects. As the ρ -parameter concerning with the 
initial propensities increases, different flow patterns from Figure 2 
could occur. 

(3,3, 2)=h

 
C. Volatile User-Equilibrium 

Figure 3 shows the simulation results under the assumption II. 
Like the previous case, the user equilibrium flow pattern is 
generated at high frequency; however, this time, we can observe 
the fluctuation around the user equilibrium until a certain time 
period. After this volatile user-equilibrium, the system converges 
to the user equilibrium in the end. This result partially accounts for 
the volatile user-equilibrium observed by Selten, et al. [5]. 

 
B. CONCLUDING REMARKS 

 
One of the remarkable characteristics of the method presented 

in this paper is that it can deal with various drivers’ route choice 
decisions based on the different behavioural assumptions. In 
addition, the method can apply to network equilibrium problems 
with ill-defined performance functions such as asymmetric and 
discontinuous cost functions. Those properties are suited with 
simulating of drivers’ route choice behaviours. 

For forecasting flows on congested networks, it is very 
important to improve our understanding of the conditions under 
which human adaptation deviates from expected value 

maximization. For this purpose, we need to develop a model 
consistent with cognitive science. Reinforcement leaning model is 
based on the simple principle that the probability of successful 
responses tends to increase with time. Human behaviour is so 
complex and many hidden parameters may affect their 
decision-makings. Our model also suggests that various flow 
patterns can occur according to different parameter-settings. We 
also examined that oblivion effect was one the important factors 
for achieving the user equilibrium. The relationship between the 
convergence property and the oblivion effect should be confirmed 
analytically. 
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Figure 2.  Frequency Distribution and Variation of Flow on Each Route: Oblivion Effect of Prior propensities 

 
Figure 3.  Frequency Distribution and Variation of Flow on Each Route: Volatile User Equilibrium 

 


