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Abstract— Methods based on rough sets to
data containing incomplete information are ex-
amined for whether strong correctness criterion
is satisfied or not. It is clarified that the methods
proposed so far do not satisfy the strong correct-
ness criterion. Therefore, we show a new method
that satisfies the strong correctness criterion.

1 Introduction

Rough sets, proposed by Pawlak[10], give suitable meth-
ods to knowledge discovery from data. Usually, ap-
proaches based on rough sets are applied to complete
data not containing uncertainty and imprecision. How-
ever, there ubiquitously exists uncertainty and impreci-
sion in the real world[9].

Researches handling uncertainty and imprecision are
actively done on the field of databases[9], but are not
so much on the field of knowledge discovery. Recently,
some methods directly handling incomplete information
by rough sets have been proposed[6, 7, 8, 14, 15, 16].
On the other hand, a method based on possible worlds
is proposed[11, 12]. This method is to apply the con-
ventional methods based on rough sets to possible data
obtained from dividing incomplete data into possible
worlds, and then to aggregate the obtained results.

The former methods have to give the same results as
the latter. This is called strong correctness criterion.
Therefore, we examine whether methods proposed so
far to directly handle incomplete information by rough
sets satisfy the strong correctness criterion or not.

2 Approaches based on rough
sets

In a table t consisting of a set A(= {A1, . . . , An}) of at-
tributes, an indiscernibility relation IND(X) for a sub-
set X of attributes is

IND(X) = {(o, o′)|∀Ai ∈ X o[Ai] = o′[Ai]},
where o[Ai] and o′[Ai] are attribute values of ob-
jects o and o′, respectively. Suppose that the fam-
ily of all equivalence classes obtained from the indis-
cernibility relation IND(X) is denoted by E(X) (=
{E(X)1 , . . . , E(X)m}), where E(X)i is an equivalence
class. When every value of attributes consisting of X
is exact, E(X)i ∩ E(X)j = ∅ with i �= j. Thus, the
objects are uniquely partitioned. An indiscernible set
S(X)o ∈ E(X) of objects for an attribute value o[X] of
an object o is

S(X)o = {o′|∀Ai ∈ X o[Ai] = o′[Ai]}.
When two objects contain incomplete information for

some attributes, they does not always take the same

actual value, even if they have the same expression. To
what degree the two objects take the same actual value
is obtained. The degree is an indiscernibility degree of
the two objects. The above expression is replaced as
follows:

IND(X) = {(o, o′)(EQ(o[X], o′[X]))|
∀Ai ∈ X EQ(o[Ai], o′[Ai]) �= 0} ∪o∈t {(o, o)(1)},

S(X)o = {o′(EQ(o[X], o′[X]))|
∀Ai ∈ X EQ(o[Ai], o′[Ai]) �= 0} ∪ {o(1)},

where EQ(o[X], o′[X]) is an indiscernibility degree of
o[X] with o′[X], which is contained in the interval [0, 1],
and

EQ(o[X], o′[X]) =
⊗

Ai∈X

EQ(o[Ai], o′[Ai]).

where the operator
⊗

depends on the properties of im-
precise attribute values. When the imprecise attribute
values are expressed with probability distributions, the
operator is product. On the other hand, when the im-
precise attribute values are expressed with possibility
distributions, the operator is min.

The lower approximation and the upper approxima-
tion of IND(Y ) by IND(X) are

IND(Y, X) = ∪i,j{E(X)i|E(X)i ⊆ E(Y )j},
IND(Y, X) = ∪i,j{E(X)i|E(X)i ∩ E(Y )j �= ∅}.

The lower approximation IND(Y, X, o) and the upper
approximation IND(Y, X, o) of S(Y )o by IND(X) are
expressed by means of using S(X)o′ as follows:

IND(Y, X, o) = ∪o′{S(X)o′ |S(X)o′ ⊆ S(Y )o},
IND(Y, X, o) = ∪o′{S(X)o′ |S(X)o′ ∩ S(Y )o �= ∅}.

By using them,

IND(Y, X) = ∪oIND(Y, X, o),

IND(Y, X) = ∪oIND(Y, X, o).

A measure called quality of approximation to estimate
to what extent the approximation is correct is used.
This measure means to what degree a dependency of
attributes Y to attributes X holds[10]; namely, to what
degree a table t satisfies a dependency X ⇒ Y . The
degree is

κ(X ⇒ Y )t = |IND(Y, X)|/|t|,
where |t| is the cardinality of a table t; namely, the total
number of objects in the table t. This degree can be
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also calculated by means of summing a degree to which
each object o in the table t satisfies X ⇒ Y . The degree
κ(X ⇒ Y )o to which an object o satisfies X ⇒ Y is

κ(X ⇒ Y )o = κ(S(X)o ⊆ S(Y )o).

where κ(S(X)o ⊆ S(Y )o) is a inclusion degree of S(X)o

to S(Y )o.
When all the values of the attributes in X and Y are
exact, this degree is 0 or 1; namely,

κ(X ⇒ Y )o =
{

1 S(X)o ⊆ S(Y )o,
0 otherwise.

When an attribute takes an imprecise value, some
authors propose to calculate the inclusion degree
κ(S(X)o ⊆ S(Y )o) by using implications[14, 15, 16].
Anyway, when this degree is obtained,

κ(X ⇒ Y )t = Σo∈tκ(X ⇒ Y )o/|t|.

3 Methods handling incomplete
information

Some pioneering work is done by Slowiński and
Stefanowski[13] and Grzymala[3] to handle incomplete
information by using rough sets. When we handle a ta-
ble containing incomplete information, obtained equiv-
alence classes overlap each other; namely, E(X)i ∩
E(X)j �= ∅ with i �= j. Recently, several investigations
have been made on this topic.

Kryszkiewicz applies rough sets to data containing
incomplete information by interpreting a missing value
expressing unknown as indiscernible with an arbitrary
value[6, 7, 8]. An indiscernibility relation under the
viewpoint is called a tolerance relation. In this approach
an object in which some attribute values are missing val-
ues is indiscernible with every object for the attributes.
The tolerance relation is reflexive, symmetric, and tran-
sitive. Slowiński and Tsoukiàs apply rough sets to a
table containing incomplete information by making an
indescernibility relation from the viewpoint that an ob-
ject with an exact attribute value is similar to another
object with the attribute value being missing, but the
converse is not so[14, 16]. They call the indiscernibility
relation a similarity relation. The similarity relation is
reflexive and transitive, but not symmetric. The above
two approaches handle incomplete information by de-
riving an indiscernibility relation from giving a missing
value an interpretation and then by applying the con-
ventional method of rough sets to the indiscernibility
relation.

Furthermore, Stefanowski and Tsoukiás make an in-
discernibility relation by introducing the probabilistic
degree that two objects cannot be discerned under the
premise that an attribute can equally take an arbitrary
value included in the corresponding domain when the
attribute value is a missing value[14, 15, 16]. The indis-
cernibility relation is called a valued tolerance relation
and each element is a value in the interval [0, 1]. In the
approach, they use Reichenbach implication in calculat-
ing a inclusion degree of two indiscernible sets.

Active researches are made into imperfect informa-
tion in the field of databases[9]. Some extensions have
to be made to operators in order to directly deal with
imperferct information. In order to check whether
the extended operators create correct results in query
processing or not, the strong correctness criterion are
used[1, 4, 5, 17]. In rough-set-based approaches the
strong correctness criterion is checked as follows:

• To derive a set of possible tables from a table con-
taining incomplete information.

• To aggregate the results obtained from applying the
conventional operators to each possible table.

• To compare the aggregated results with ones ob-
tained from directly applying the extended opera-
tor to the table.

Here, a possible table derived from a table is that of
each missing value in the table being replaced by an
element containing in the corresponding domain. When
two results coincide, the strong correctness criterion is
satisfied. This is formulated as follows:
Suppose that rep(t) is a set of possible tables derived
from a table t containing incomplete information. Let
q′ be the conventional operator applied to rep(t), which
corresponds to an extended operator q directly applied
to a table t. The two results is the same; namely,

q(t) = q′(rep(t)).

When this is valid, the extended operator q gives correct
results. In the next section, we examine the correctness
of methods proposed so far according to this criterion
through calculating a degree of dependency.

4 Comparative studies on meth-
ods handling incomplete infor-
mation

4.1 Tables and possible tables

We suppose that table t containing incomplete informa-
tion is given as follows:

t
O A B
1 x a
2 x a
3 @ b
4 @ a

Here, attribute O denotes the object identity and @ de-
notes a missing value that means unknown. Possible
tables obtained from table t are those that the miss-
ing value @ is replaced by an element consisting of the
corresponding domain. Suppose that domains dom(A)
and dom(B) of attributes A and B are {x, y} and {a, b},
respectively. The following four possible tables are de-
rived:

Poss(t)1
O A B
1 x a
2 x a
3 x b
4 x a

Poss(t)2
O A B
1 x a
2 x a
3 x b
4 y a

Poss(t)3
O A B
1 x a
2 x a
3 y b
4 x a

Poss(t)4
O A B
1 x a
2 x a
3 y b
4 y a

We calculate a degree κ(A ⇒ B) of a dependency
A ⇒ B in these possible tables. There exists no ob-
ject that contributes to A ⇒ B in Poss(t)1. Only the
fourth object contributes to A ⇒ B in Poss(t)2. All
the objects contribute to A ⇒ B in Poss(t)3 . The first
and second objects contribute to A ⇒ B in Poss(t)4 .
Thus, the contributions of the objects to A ⇒ B are as
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follows:
κ(A ⇒ B)Poss(t)1 = 0,

κ(A ⇒ B)Poss(t)2 = 1/4,

κ(A ⇒ B)Poss(t)3 = 1,

κ(A ⇒ B)Poss(t)4 = 1/2.

One of the possible tables is the actual table, but it is
unknown which table is the actual one. In this point,
they can be regarded as probabilistically equal. There-
fore, a degree κ(A ⇒ B)t of a dependency A ⇒ B is the
average of the degrees in each possible table; namely,

κ(A ⇒ B)t =
∑

i=1,4

κ(A ⇒ B)Poss(t)i
/4

= (0 + 1/4 + 1 + 1/2)/4 = 7/16.

Contributions of each object oi to this value of A ⇒ B
are as follows:

κ(A ⇒ B)o1 = 1/2,

κ(A ⇒ B)o2 = 1/2,

κ(A ⇒ B)o3 = 1/4,

κ(A ⇒ B)o4 = 1/2.

We examine whether the same value κ(A ⇒ B)oi for
each object oi is obtained or not by means of using the
methods proposed so far in the following subsections.

4.2 Methods by tolerance relations

Kryszkiewicz[6, 7, 8] regards a missing value as indis-
cernible with an arbitrary value contained in the corre-
sponding domain. This corresponds to that two objects
are indiscernible when there is the probability that an
object is equal to another object. An indiscernibility
relation is symmetric under the semantics. Indiscerni-
bility relations IND(A) and IND(B) for attributes A
and B in table t are, respectively,

IND(A) =

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
,

IND(B) =

(
1 1 0 1
1 1 0 0
0 0 1 0
1 0 0 1

)
.

Indiscernible sets of the objects for attribute A are,

S(A)o1 = {o1, o2, o3, o4},
S(A)o2 = {o1, o2, o3, o4},
S(A)o3 = {o1, o2, o3, o4},
S(A)o4 = {o1, o2, o3, o4}.

Indiscernible sets of the objects for attribute B are,

S(B)o1 = {o1, o2, o4},
S(B)t2 = {o1, o2, o4},
S(B)t3 = {o3},
S(B)t4 = {o1, o2, o4}.

The contributions of the objects are,

κ(A ⇒ B)o1 = κ(S(A)o1 ⊆ S(B)o1 ) = 0,

κ(A ⇒ B)o2 = κ(S(A)o2 ⊆ S(B)o2 ) = 0,

κ(A ⇒ B)o3 = κ(S(A)o3 ⊆ S(B)o3 ) = 0,

κ(A ⇒ B)o4 = κ(S(A)o4 ⊆ S(B)o4 ) = 0.

Thus, the degree of a dependency A ⇒ B is,

κ(A ⇒ B)t = (0 + 0 + 0 + 0)/4 = 0.

4.3 Methods by similarity relations

Stefanowski and Tsoukiàs[14, 16] make an indiscernibil-
ity relation under the interpretation that an exact value
is similar to a missing value, but the missing value is not
similar to every exact value, and the missing values are
similar to each other. The interpretation corresponds
to that the probability from exact values is absolutely
accepted, but the probability from missing values is not
so at all. Under this interpretation obtained indiscerni-
bility relations are not symmetric. An indiscernibility
relation IND(A) for an attribute A in table t is

IND(A) =

(
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1

)
.

IND(B) is unchanged. Indiscernible sets of the objects
for attribute A are,

S(A)o1 = {o1, o2, o3, o4},
S(A)o2 = {o1, o2, o3, o4},
S(A)o3 = {o3, o4},
S(A)o4 = {o3, o4}.

The indiscernible sets of the objects for attribute B are
unchanged. The contributions of the objects are,

κ(A ⇒ B)o1 = κ(S(A)o1 ⊆ S(B)o1 ) = 0,

κ(A ⇒ B)o2 = κ(S(A)o2 ⊆ S(B)o2 ) = 0,

κ(A ⇒ B)o3 = κ(S(A)o3 ⊆ S(B)o3 ) = 0,

κ(A ⇒ B)o4 = κ(S(A)o4 ⊆ S(B)o4 ) = 0.

Thus, the degree of a dependency A ⇒ B is,

κ(A ⇒ B)t = (0 + 0 + 0 + 0)/4 = 0.

4.4 Methods by valued tolerance rela-
tions

Stefanowski and Tsoukiàs[14, 15, 16] take the interpre-
tation that when an attribute value is a missing value,
the actual value is one of elements in the domain of the
attribute and which element is the actual value does not
depend on an specified element; namely, each element
has the same probability for that the element is the ac-
tual value. Under this interpretation an obtained indis-
cernibility relation is symmetric, but consists of values in
the interval [0, 1]. An indiscernibility relation IND(A)
for attribute A in table t is

IND(A) =




1 1 1/2 1/2
1 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1


 .

IND(B) is unchanged. The indiscernible sets of the
objects for attribute A are,

S(A)o1 = {o1(1), o2(1), o3(1/2), o4(1/2)},
S(A)o2 = {o1(1), o2(1), o3(1/2), o4(1/2)},
S(A)o3 = {o1(1/2), o2(1/2), o3(1), o4(1/2)},
S(A)o4 = {o1(1/2), o2(1/2), o3(1/2), o4(1)}.
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An indiscernible set of the objects for attribute B is
unchanged.

Suppose that an object o belongs to sets S and S′ with
probabilistic degrees Pt,S and Pt,S′ , respectively. The
degree κ(S ⊆ S′) that the set S is included in another
set S′ is,

κ(S ⊆ S′) =
∏
o∈S

κ(o ∈ S → o ∈ S′)

=
∏
o∈S

(1 − Po,S + Po,S × Po,S′).

In this formula, the inclusion degree of two sets is
calculated by means of using Reichenbach implication
(u → v = 1 − u + u × v). Now, S and S′ are S(A)oi

and S(B)oi , respectively, and Poi,S(A)oi
and Poi,S(B)oi

are EQ(oi[A], oj[A]) and EQ(oi[B], oj[B]), respectively.
Thus, the contributions of the objects are as follows:

κ(A ⇒ B)o1 = κ(S(A)o1 ⊆ S(B)o1 )
= 1 × 1 × (1 − 1/2 + 1/2 × 0)

×(1 − 1/2 + 1/2 × 1) = 1/2.

Similarly,

κ(A ⇒ B)o2 = κ(S(A)o2 ⊆ S(B)o2 ) = 1/2,

κ(A ⇒ B)o3 = κ(S(A)o3 ⊆ S(B)o3 )
= (1 − 1/2 + 1/2 × 0)

×(1 − 1/2 + 1/2 × 0)
×1 × (1 − 1/2 + 1/2 × 0) = 1/8,

κ(A ⇒ B)o4 = κ(S(A)o4 ⊆ S(B)o4 )
= (1 − 1/2 + 1/2 × 1)

×(1 − 1/2 + 1/2 × 1)
×(1 − 1/2 + 1/2 × 0) × 1 = 1/2.

Thus, the degree of dependency A ⇒ B is

κ(A ⇒ B)t = (1/2 + 1/2 + 1/8 + 1/2)/4 = 13/32.

The obtained values κ(A ⇒ B)o3 and κ(A ⇒ B)t are
not equal to ones obtained from possible tables.

5 Methods satisfying strong cor-
rectness criterion

Why cannot the methods proposed so far satisfy the
strong correctness criterion? The methods by toler-
ance relations and similarity relations deal with incom-
plete information not strictly, but approximately un-
der some interpretations of missing values. Thus, these
methods cannot satisfy the strong correctness crite-
rion. On the other hand, the method by valued tol-
erance relations, which is proposed by Stefanowski and
Tsoukiàs[14, 15, 16], strictly handles incomplete infor-
mation. Why cannot this method by Stefanowski and
Tsoukiàs satisfy the strong correctness criterion? Ste-
fanowski and Tsoukiàs calculates the inclusion degree
of two sets to which each element belongs with a prob-
abilistic degree as follows:

• To calculate to what probabilistic degree every ele-
ment belonging to a set also belongs to another set
by using Reichenbach implication.

• To multiply the obtained degrees together.

The process shows that the total inclusion degree is ob-
tained through aggregating the inclusion degrees for ev-
ery element. This is valid under the condition that an
inclusion degree for an element is determined indepen-
dently of another element. Is this valid in the present
situation?

In the previous section, the degree κ(A ⇒ B)o3 of
a dependency A ⇒ B for the third object o3 does not
coincide with the degree obtained from using possible
tables. This is due to not taking into account the fact
that when the third object is indiscernible with the first
for attribute A, simultaneously it is indiscernible with
the second; namely, the first and the second objects have
to be dealt with together. This strongly suggests that
the condition described above is not valid in the present
situation.

Furthermore in order to examine this, we go into is-
sues for using implication operators. In Reichenbach
implication, a probability Prob(a → b) of a sentence
a → b is equal to 1 − Prob(a) + Prob(a) × Prob(b),
when probabilities that a sentence a is valid and a sen-
tence b is valid are given with Prob(a) and Prob(b),
respectively. This comes from the followings: when the
sentence a is valid with a probability Prob(a), a → b is
valid with Prob(a) × Prob(b); when a is invalid, a → b
is valid regardlessly of b; namely, a → b is valid with
1 − Prob(a) when a is invalid. Thus, Prob(a → b) is
1 −Prob(a) + Prob(a)×Prob(b) generally. Is it correct
that a → b is valid regardlessly of b, when a is invalid in
the present situation?

The fact that an object oi belongs to S(X)oj with
a probabilistic degree EQ(oj [X], oi[X]) means that oj

is equal to oi for a set X of attributes with the de-
gree EQ(oj[X], oi[X]). In the method by Stefanowski
and Tsoukiàs using an implication, Reichenbach impli-
cation, The degree that oi ∈ S(X)oj → oi ∈ S(Y )oj

is valid is 1 − EQ(oj [X], oi[X]) + EQ(oj [X], oi[X]) ×
EQ(oj [Y ], oi[Y ]), when oj is equal to oi for a set X of
attributes with a probabilistic degree EQ(oj[X], oi[X])
and oj is equal to oi for a set Y of attributes with
a probabilistic degree EQ(oj [Y ], oi[Y ]). This calcula-
tion means that the dependency is valid regardlessly
of a set Y of attributes when oj is not equal to oi

for a set X of attributes with a probabilistic degree
1 − EQ(oj [X], oi[X]). However, this is not correct if
there exists another object ok that is equal to oj with a
probabilistic degree for a set X of attributes, but that
is not to oi at all for X, as is shown in the following
example.

We suppose that table t′ containing incomplete infor-
mation is given as follows:

t′
O A B
1 x a
2 y a
3 @ b
4 @ a

In table t′ only the attribute value o2[A] is different from
table t in the previous example. Notice there exists an-
other object o2 that is equal to o3 for an attribute A,
but that is not equal to o1 for A. Results obtained from
using possible tables are:

κ(A ⇒ B)o1 = 1/2,

κ(A ⇒ B)o2 = 1/2,

κ(A ⇒ B)o3 = 0,
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κ(A ⇒ B)o4 = 1/2.

An indiscernibility relations IND(A) for an attribute A
in table t′ is as follows:

IND(A) =




1 0 1/2 1/2
0 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1


 .

IND(B) is the same as in table t. The indiscernible sets
of the objects for attribute A are,

S(A)o1 = {o1(1), o3(1/2), o4(1/2)},
S(A)o2 = {o2(1), o3(1/2), o4(1/2)},
S(A)o3 = {o1(1/2), o2(1/2), o3(1), o4(1/2)},
S(A)o4 = {o1(1/2), o2(1/2), o3(1/2), o4(1)}.

The indiscernible sets of the objects for attribute B are
the same as in table t. We focus on the contribution of
the third object o3.

κ(A ⇒ B)o3 = κ(S(A)o3 ⊆ S(B)o3 )
= (1 − 1/2 + 1/2 × 0)

×(1 − 1/2 + 1/2 × 0) × 1
×(1 − 1/2 + 1/2 × 0) = 1/8.

In the example, the contribution of the fact that o3
is equal to o1 for an attribute A with a probabilistic
degree EQ(o3[A], o1[A]) is calculated by means of 1 −
EQ(o3[A], o1[A]) + EQ(o3[A], o1[A])×EQ(o3[B], o1[B].
However, the fact that o3 is not equal to o1 for an
attribute A means that o3 is equal to another object
o2 for an attribute A. Thus, when o3 is not equal
to o1 for an attribute A with a probabilistic degree
1−EQ(o3 [A], o1[A]), o3 has to be unconditionally equal
to o2 for an attribute B. However, this is not valid in
table t′. In other words, we cannot separate the two
facts that o3 is equal to o1 for an attribute A with a
probabilistic degree EQ(o3[A], o1[A]) and o3 is equal
to o2 for an attribute A with a probabilistic degree
EQ(o3[A], o2[A]). These two facts link with each other
disjunctively. We simultaneously have to deal with the
two facts.

From considering the above viewpoint, we propose a
new method for calculating κ(X ⇒ Y )oi .
Let ps(X)oi ,l be an element of the power set PS(X)oi

of S(X)oi\oi.

κ(X ⇒ Y )oi =
∑

l

κ(∧o′∈ps(X)oi,l
(oi[X] = o′[X])

∧o′ �∈ps(X)oi,l
(oi[X] �= o′[X]))

×κ(∧o′∈ps(X)oi,l
(oi[Y ] = o′[Y ]))),

where κ(f) is the probabilistic degree that a formula f
is valid and κ(f) = 1 when there is no f .
In this formula, all the elements in an equivalence class
are simultaneously handled. We recalculate the degree
of dependency A ⇒ B in table t. For the object o1,

S(A)o1\o1 = {o2(1), o3(1/2), o4(1/2)}.
For the power set PS(X)o1 of S(A)o1\o1,

PS(X)o1 = {∅, o2(1), o3(1/2), o4(1/2), {o2(1), o3(1/2)},
{o2(1), o4(1/2)}, {o3(1/2), o4(1/2)},
{o2(1), o3(1/2), o4(1/2)}}.

We omit the case of elements containing o3 for the power
set SP (X)o1 , because κ(o1[B] = o3[B]) = 0. For the
element ∅,

κ(o1[A] �= o2[A] ∧ o1[A] �= o3[A] ∧ o1[A] �= o4[A]) = 0.

For the element o2(1),

κ(o1[A] = o2[A] ∧ o1[A] �= o3[A] ∧ o1[A] �= o4[A]) = 1/4,

κ(o1[B] = o2[B]) = 1.

For the element o4(1/2),

κ(o1[A] �= o2[A] ∧ o1[A] �= o3[A] ∧ o1[A] = o4[A]) = 0.

For the element {o2(1), o4(1/2)},

κ(o1[A] = o2[A] ∧ o1[A] �= o3[A] ∧ o1[A] = o4[A]) = 1/4,

κ(o1[B] = o2[B] ∧ o1[B] = o4[B]) = 1.

Thus,

κ(X ⇒ Y )o1 =
0 + 1/4 × 1 + 0 + 0 + 0 + 1/4 × 1 + 0 + 0 = 1/2.

Similarly,

κ(X ⇒ Y )o2 = 1/2.

For the object o3,

S(A)o3\o3 = {o1(1/2), o2(1/2), o4(1/2)}.
For the power set PS(X)o3 of S(A)o3\o3,

PS(X)o3 =
{∅, o1(1/2), o2(1/2), o4(1/2), {o1(1/2), o2(1/2)},

{o1(1/2), o4(1/2)}, {o2(1/2), o4(1/2)},
{o1(1/2), o2(1/2), o4(1/2)}}.

We calculate only for the element ∅, because κ(o3[B] =
oi[B]) = 0 for i = 1, 2, and 4. For the element ∅,

κ(o3[A] �= o1[A] ∧ o3[A] �= o2[A] ∧ o3[A] �= o4[A]) = 1/4.

Thus,

κ(X ⇒ Y )o3 = 1/4 × 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0
= 1/4.

For the object o4,

S(A)o4\o4 = {o1(1/2), o2(1/2), o3(1/2)}.
For the power set PS(X)o4 of S(A)o4\o4,

PS(X)o4 =
{∅, o1(1/2), o2(1/2), o3(1/2), {o1(1/2), o2(1/2)},

{o1(1/2), o3(1/2)}, {o2(1/2), o3(1/2)},
{o1(1/2), o2(1/2), o3(1/2)}}.

We omit the case of elements containing o3 for the power
set SP (X)o1 , because κ(o4[B] = o3[B]) = 0. For the
element ∅,

κ(o4[A] �= o1[A] ∧ o4[A] �= o2[A] ∧ o4[A] �= o3[A]) = 1/4.
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For the element o1(1/2),

κ(o4[A] = o1[A] ∧ o4[A] �= o2[A] ∧ o4[A] �= o3[A]) = 0.

For the element o2(1/2),

κ(o4[A] �= o1[A] ∧ o4[A] = o2[A] ∧ o4[A] �= o3[A]) = 0.

For the element {o1(1/2), o2(1/2)},

κ(o4[A] = o1[A] ∧ o4[A] = o2[A] ∧ o4[A] �= o3[A]) = 1/4,

κ(o4[B] = o1[B] ∧ o4[B] = o2[B]) = 1.

Thus,

κ(X ⇒ Y )o4 =
1/4 × 1 + 0 + 0 + 0 + 1/4 × 1 + 0 + 0 + 0 = 1/2.

The obtained results coincide with ones from possible
tables.
Proposition
This method satisfies the strong correctness criterion.

6 Conclusions
We examine methods by tolerance relations, by similar-
ity relations, and by valued tolerance relations for cal-
culating a degree of dependency, a measure of quality
of approximation, in tables containing incomplete infor-
mation for whether they satisfy the strong correctness
criterion. The methods by tolerance relations and by
similarity relations do not strictly, but approximately
handle incomplete information. The method by valued
tolerance relations strictly handles incomplete informa-
tion, but does not simultaneously handle all the ele-
ments in an equivalence class. By the example, it is
shown that these methods do not satisfy the strong cor-
rectness criterion. Therefore, we have proposed a new
method in which all the elements in an equivalence class
are simultaneously dealt with. This method satisfies the
strong correctness criterion.
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