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Abstract—In rough-set-based data analysis, the so-called of a numerical evaluation of the dependency properties
approximation quality is the traditional measure to evaluate generated by these attributes. To deal with practical sit-
the classification success of attributes in terms of a numerical | ations where a fuzzy classification must be approximated

evaluation of the dependency properties generated by these . . ,
attributes. To deal with practical situations where a fuzzy PY @vailable knowledge expressed in terms of a Pawlak's

classification must be approximated by available knowledge approximation space, we introduce in this paper an exten-
expressed in terms of a Pawlak’s approximation space, we sion of approximation quality measure aimed at providing
introduce in this paper an extension of this measure aimed a numerical characteristic for such situations. Furthermore,
at providing a numerical characteristic for such situations.  gytensions of related coefficients such as the precision
Other related coefficients asprecision and significance are S .
also discussed correspondingly. A simple example is given to Measure and the significance measure are also discussed.
illustrate the proposed notions. The rest of this paper is organized as follows. Section I
briefly introduces necessary notions of rough sets and fuzzy
sets, the mass assignment of a fuzzy set. In Section lll,
After nearly twenty years of introducing fuzzy sets [19],after recalling the notion of a rough fuzzy set [7] roughness
the notion of a rough set [12] has been introduced as measures of a fuzzy set are briefly reviewed. Section IV
new mathematical tool to deal with the approximation of aliscusses an extension of the approximation quality mea-
concept in the context of incomplete information. Basicallysure to deal with situations where a fuzzy classification
while a fuzzy set introduced by Zadeh models the illmust be approximated by available knowledge expressed in
definition of the boundary of a concept often describeterms of an approximation space. An illustration example is
linguistically, a rough set introduced by Pawlak characpresented in Section V. Finally, some concluding remarks
terizes a concept by its lower and upper approximationsre presented in Section VI.
due to indiscernibility between objects arose because of

I. INTRODUCTION

incompleteness of available knowledge. Both the theories [l. PRELIMINARIES
have been proving to be of substantial importance in many ) . i . , ,
areas of application [10], [11], [13], [15], [20]. In this section we recall basic notions in the theories

Since the introduction of rough set theory, many attempf@f rough sets and fuzzy sets. Throughout this paper, we
to establish the relationships between the two theories, &PPose thal/ is a finite non-empty set.
compare each to the other, and to simultaneously hybridize
them have been made (e.g. [7], [11], [14], [16], [17],A- Pawlak’s Approximation Quality
[18]). As an attempt in the line of integration between the Tpe rough set theory begins with the notion of an
two theories, Banerjee and Pal [3] have rec_ently prOposeéf)proximation space, which is a paiv, R), whereU be
a roughness measure for fuzzy sets, making use of thgs yniverse of discourse anil an equivalence relation
concept of a rough fuzzy set [7]. However, as pointedy, ;7 je. R is reflexive, symmetric, and transitive. The
out in [9], Banerjee and Pal's roughness measure exhibifg|ation R decomposes the séf into disjoint classes in
some undesired properties. Very recently, the authors i,ch a way that two elementsy are in the same class iff

[9] have introduced an alternative roughness measure f@; y) € R. Let denote byU/R the quotient set of/ by
fuzzy sets based on the notions of the mass assignmqﬂé relationR. and

of a fuzzy set and itsv-cuts. It has been shown that this
new measure of roughness satisfies interesting properties U/R=1{X1,Xo,....,Xm}
and simultaneously avoids these undesired properties.

As is well-known, in rough-set-based data analysis, thehere X; is an equivalence class ét,i =1,2,...,m.
so-called approximation quality measure is often used to Given an arbitrary sefX € 2V, in general it may not
evaluate the classification success of attributes in terne possible to describ& precisely in(U, R). One may



characterizeX by a pair of lower and upper approximationswhere for eache € U we call ur(x) the membership

defined as follows [12]: degree ofr in F. Practically, we may considdr as a set
_ of objects of concern, and a crisp subsetlbfrepresent
R(X) = U Xi; R(X) = U X a “non-vague” concept imposed on objectslin Then a

XX XinX#0 fuzzy setF of U is thought of as a mathematical repre-

The pair(R(X), R(X)) is the representation of an ordinary Séntation of a “vague” concept described linguistically.
set X in the approximation spaci/, R) or simply called ~_ Given a number < (0, 1], the a-cut, ora-level set, of
the rough set ofX. F is defined as follows

. In [13]., Pawlaltk. introduces two n.umerical chagractgriza- Fy = {z € Ulpr(z) > a}

tions of imprecision of a subseX in the approximation o

space (U, R): accuracy and roughness Accuracy of X, Whichis a sgbset ob. _

denoted byar(X), is simply the ratio of the number In connection to the evidence theory, a fuzzy sets
of objects in its lower approximation to that in its upperd consonant random set; the family of iscuts forms

approximation; namely a nested family of focal elements [6]. Note that in this
case the normalization assumption Bfis imposed due

r(X) = |§(X)‘ (1) to the body of evidence does not contain the empty

|R(X)| set. Interestingly, this view of fuzzy sets has been used

where| - | denotes the cardinality of a set. Then the roughY Baldwin in [1], [2] to introduce the so-called mass

ness of X, denoted bypr(X), is defined by subtracting assignment.of a fuzzy s'e.t with relaxing th.e assumption,

the accuracy from 1: and to provide a probability based semantics for a fuzzy
concept defined as a family of possible definitions of the

|R(X)| (2) concept. The mass assignment of a fuzzy set is defined as
follows.

R
Note that the lower the roughness of a subset, the betterthsl‘tetthF rbﬁ a ﬂﬁﬁy ;Ubns]ﬁt rthia Pnr:tet' “n"(’jerfétsgcg‘
its approximation. at the range of the membership functiop, denoted by

pr(X) =1—ar(X)=1

_ mo(ur), is myur) = {aq,...,an}, wherea; > a;4q1 >
1) As R(X) € X CR(X), 0 < pp(X) < 1 0,70 i=1,....n — 1. Let
2) By convention, whenX = ), R(X) = R(X) = 0
and pr(X) = 0. Fy={z € Ulpr(z) = i}
8) pr(X) =0ifand only if X'is definable in(U, ). for i = 1,...,n. Then the mass assignment Bf denoted

In the rough set theory, the approximation quaktys  py 1, .. is a probability distribution o2V definded by
often used to describe the degree of partial dependency

between attributes. mp(0) = l-o '
Assume now there is another equivalence relatidn mp(F) = a;—ag, fori=1,....n,
defined onU, which forms a partition (or, classification) with «a,,,; = 0 by convention. Thea-level sets F},

U/P ot U, sayU/P = {Y1,...,Yn}. Note thatR and P —= 1 ... n, (or {F}?, U {0} if F is a subnormal
may be induced respectively by sets of attributes appliefhzzy set, i.emax,cy{ur(z)} < 1) are referred to as the
to objects inU. Then the approximation quality a? by  focal elements ofnp. The mass assignment of a fuzzy

R, also called thelegree of dependencis defined by concept is then considered as providing a probabilistic
S |R(Y))| based semantics for the membership function of the fuzzy
R(P) = === (3) concept.

U
which is represented in terms of accuracy as follows lll. ROUGHNESSMEASURES OF AFUZZY SET
n A. Rough Fuzzy Sets
RO . - |
vr(P) = Z i ar(Y;) (4) Let a finite approximation spac/, R) be given. LetF
i=1 U] be a fuzzy set iV with the membership functiopr. The

In this case the measurez(P) can be regarded as the UPPer and lower gpproxima@ior}*%(F) and B(F) of I by
weighted mean of the accuracies of approximationof 1t @re fuzzy sets in the quotient séf R with membership

by R [8]. functions defined [7] by

B. Fuzzy Sets and Mass Assignment H(r) (Xi) = fé%{“‘?(m)} ®)
I__et U b_e a finite and non-empty set. A fuz_zy_ setof pr(r)(Xi) = nen)?{up(;z:)} (6)

U is nothing but a mapping frory into the unit interval reii

[0, 1]: fori =1,...,m. (R(F),R(F)) is called a rough fuzzy

pr U —[0,1] set.



The rough fuzzy se{R(F), R(F)) then induces two That is, the roughness of a fuzzy deis the weighted sum
fuzzy setsF* and F, in U with membership functions of the roughness measures of nested focal subsets which

defined respectively as follows are considered as its possible definitions.
Observation 1: « Clearly,0 < pr(F) < 1.
pr-(2) = pgpy(Xi) and up, (¢) = pper) (Xi) « pr(+) is a natural extension of Pawlak’s roughness
if + € X;, fori = 1,...,m. That is, '* and F, measure for fuzzy sets, i.e. if is a crisp subset of
are fuzzy sets with constant membership degree on the U _thenﬁRgF) = pr(F). ) _
equivalence classes bf by R, and for anyz € U, jup- () « ['is a definable fuzzy set if and only jfr(F) = 0.

(respectivelyur () can be viewed as the degree to which Let F* and F, be fuzzy sets induced from the rough

x possibly (respectively, definitely) belongs to the fuzzy sefuzzy set(R(F), R(F)) as above. Denote
F [3]. _

Under such a view, we now define the notion of a MO ) UG- ) = {wrs s wpl
definable fuzzy sein (U, R). A fuzzy set I is called such thatw; > w;; > 0 fori =1,...,p — 1. Obviously,
definableif R(F') = R(F), i.e. there exists a fuzzy sétin ~ {w,...,w,} C rg(ur), andw; = a; andw, > a,,. With
U/R such thatup(z) = pr(X;) if x € X;,i=1...,m. this notation, we have

Further, as defined in [3], fuzzy sefs and G in U are Proposition 1: For any 1 < j < p, if there exists

said to beroughly equal denoted byl ~r G, if and only  «;, ;s € rg(ur) such thatw; 1 < a; < ay < w; then
if B B we havel; ~r Fy,' and sopr(F;) = pr(Fy).

R(F) = R(G) and R(F) = R(G). Further, we can represent the roughngg§F) in terms

of level sets of fuzzy setd, and F'* in the following

B. Roughness Measures of Fuzzy Sets proposition.

In [3], Banerjee and Pal have proposed a roughnessprgposition 2: We have
measure for fuzzy sets in a given approximation space. »
Essentially, their measure of roughness of a fuzzy set 50 (F . ' |(F)w, |
: PrIF) = (wj —wis)(1 = =5 )
depends on parameters that are designed as thresholds of [(F*)w; |

definiteness and possibility in membership of the objects = .
in U to the fuzzy set. wherew,;; = 0, by convention.
Consider parameters, 3 such that) < 3 < o < 1. The More ir_1t_eresting|y, we obtain the foI_Iowing.
a-cut (F,), and S-cut (F*)z of fuzzy setsF, and F*, Proposition 3: If fuzzy setsF andG in U are roughly

respectively, are called to be thelower approximation €dual in{U, R), then we have)r(F) = pr(G).
the B-upper approximationof F in (U, R), respectively.
Then a roughness measure of the fuzzyBetith respect
to parametersa, 8 with 0 < 8 < a < 1, and the

IV. ROUGH APPROXIMATION QUALITY OF A Fuzzy
CLASSIFICATION

approximation spacéU, R) is defined by Recall that roug.hnes_s of a crisp set is defiped as oppqsed
to its accuracy. First, in the following we will see that it
p%ﬁ(p) —1_ |(F2)a (7) s possible to make a similar correspondency between the
|(F*)gl roughness and accuracy of a fuzzy set.
It is obvious that this definition of roughness measure It should be noticed that if” is a subnormal fuzzy set,
paRﬁ(.) strongly depends on parametersand 3. we havemg(0) > 0, and then the empty set may be also

As pointed out in [9], this measure of roughness hagonsidered as a pOSSible definition Bf In this case, we
several undesirable properties. Simultaneously, the authgigould define the roughness measure’ohs

also introduce a parameter-free measure of roughness of a n
fuzzy set as follows. pr(F) =Y _mp(F)pr(F) +me0)pr®)  (9)

Let F" be a normal fuzzy set ity. Assume that the range i=1
of the membership functiopr is {ai,...,an}, Where which trivially turns back to the normal case above as, by
@ > @iy >0, fori=1,...,n—1 anday; = 1. Let  convention,pr () = 0. However, we should take the case
us denotenr the mass assignment &f defined as in the into account when once we want to consider the accuracy
preceding section. Let measure instead of roughness, with the convention that

F,={x € Ulpp(x) > a;}, fori=1,...,n. ar(0) =1.

Under such an observation, it is eligible to define the
With these notations, the roughness measuré afith  accuracy measure for a fuzzy s€tby
respect to the approximation spa{é R) is defined by

X N N B
pR(F) - ZmF(Fz)(l |R(FZ)|

i=1

ar(F) = ZmF(Fi)aR(Fi) (10)

) = Z mp(F;)pr(F;)

(8) INote thatF; stands forFy,



if F'is a normal fuzzy set, or However, we will not consider this extension in the rest of

n the paper.
ar(F) = ZmF(Fi)aR(Fi) +mp(0)ar(®)  (11) Furthermore, similar as mentioned in [13], the measure
i=1 of rough dependencyr does not capture how this partial

if Fis a subnormal fuzzy set. With this definition we havedependency is actually distributed among fuzzy classes of
FC. To capture this information we need also the so-called

ar(EF) =1—pr(F) (12) precision measureég(Y;), fori = 1,...,k, defined by
for any fuzzy sett’ in U. n;
Before extending the.the measure of rough dependency #r(Y;) = Zin (Yi,j)% (18)
defined by (3) (or equivalently, (4)) for the case where = Vil

P is a fuzzy classification ol/ instead of a crisp one,

let us define the cardinality of a fuzzy set in the spirit o ; )

its probabilistic based semantics. That is{f,}, could ©f €lements inY; approximated byR. Clearly, we have
Y;) > agr(Y;), foranyi = 1,... k. As such the two

be interpreted as a family of possible definitions of théTR( [ k ;
conceptF”, thenm - (F}) is the probability of the event “the measuregr and7@ g give us enough information about the

concept isF,", for eachi. Under such an interpretation, “classification power” of the knowledg® with respect to

the cardinality ofF, also denoted byF|, is defined as the the linguistic classificatioC. _ )
expected cardinality by In rough-set-based data analysigjs naturally induced

N by a subset, sayB, of the set of attributes imposed on
IF| = ZmF(F-)IF-I (13) objects being considered. Then as suggested in [13], we
p v can also measure the significance of the subset of attributes

Quite interestingly, the following proposition shows thaﬁe%iﬁe\r’\g;hcé%ped to the linguistic classificatiohC by

the expected cardinality (13) is nothing but thecount of ) )
the fuzzy setF” as introduced by De Luca and Termini [5]. R(FC) =R (FC)
Proposition 4: We have

which may be considered as the expected relative number

where R’ denotes the equivalence relation induced by

n the subset of attribute® \ B’. This measure expresses
|F| = ZmF(Fi)|Fi| = Z pr(z) (14)  how influence on the quality of approximation if we drop
=1 ocl attributes inB’ from B.
Let us return to an approximation spa¢®, R) and _For the_ sake of illustration, in the foll_owing s_ection we
assume further a fuzzy partition, s&C = {Y1,..., Y%}, will consider a simple example depicting the introduced

defined onl/. This situation may come up in a natural way"otions.

when a linguistic classification is defined @hand must

be approximated in terms of already existing knowledge

R. Let us consider a relation in a relational database as
In such a situation, quite naturally with the spirit of theshown in Table | (this database is a variant of that found

proposal described in the preceding section, one may defiire[4]). Then by the attribute®egreeand Experience we

V. AN EXAMPLE

the approximation quality ofFC by R as obtain an approximation space

. 1 - U, ind({Degree Experience

I(FC) = (7 20D mr (Vi) [BY,)l (9) {0 Indl({Degres Experience}))

i=1j=1 whereU = {1,...,16}, and the corresponding partition
where fori = 1,...,k, my, and {Y;;}jL, respectively as shown at the top of the page. Further, consider now for
stand for the mass assignmentigfand the family of its example a linguistic classification
focal elements. Straightforwardly, it follows from Proposi- ) _
tion 4 that {Low, Medium, High}
k
Ar(FC) = 1 Z [(Y3)s] (16) defined on the domain of attribugalary, say [20K,70K],
U] = with membership functions of linguistic classes depicted

where (Y;)., i = 1 k, are fuzzy sets with constant graphically as in Fig. 1. Then the linguistic classification
1)%1 — Ly iy .

membership degree on the equivalence classés by R mduces a fuzzy partition oty .WhOSE' membership func-
as defined in Section IIl. It is also interesting to note thations ©f fuzzy classes shown in Table II.

the approximation quality oF C by R can be also extended Then approximations of the fuzzy partition induced by
via (4) as follows Salary in the approximation space defined Bggreeand

Experienceare given in Table lll. Using (16) we obtain

k
S (FC) = | Ar(Y; 17 R 13.46
VR( ) Z |U| aR( ) (17) "Y{DegregExperience} (Salary) = 16 =0.84




U/ind({Degree Experience}) = {{1,15},{2,6},{3,11,13,14}, {4, 12}, {5,7},{8,9},{10,16}}

TABLE Il
THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

X; (1,15} [ {2,6} | {3,11,13,14} | {4,12} | {5,7} | {8,9} | {10, 16}
[High. 1 0.13 0.33 0 0 0 1
[iHigh 1 0.33 0.67 0 0 0 1

(LM edium. 0 0.67 0.33 0 0 | 067 0

[0 edinm® 0 0.87 0.67 0 0.33 | 0.73 0

[ Low. 0 0 0 1 0.67 | 0.27 0

Low- 0 0 0 1 1 | 033 0
TABLE |

RELATION IN A RELATIONAL DATABASE

ID | Degree | Experience(n) | Salary |

1 | Ph.D. 6<n<8 63K
2 | Ph.D. 0<n<2 47K
3 | MS. 6<n<8 53K
4 | B.S. 0<n<2 26K
5 | BS. 2<n<4 29K
6 | Ph.D. 0<n<2 50K
7 | BS. 2<n<4 35K
8 | M.S. 2<n<4 40K
9 | M.S. 2<n<4 41K
10 | M.S. 8<n <10 68K
11 | M.S. 6<n<8 50K
12 | B.S. 0<n<2 23K
13 | M.S. 6<n<38 55K
14 | M.S. 6<n<8 51K
15 | Ph.D. 6<n<8 65K
16 | M.S. 8<n <10 64K
TABLE Il

INDUCED FUzzY PARTITION OF U BASED ON Salary

|

U ‘ M Low ‘ KM edium ‘ HHigh ‘

110 0 1
210 0.87 0.13
3|0 0.47 0.53
4 11 0 0
5|1 0 0

6 |0 0.67 0.33
7 | 0.67 0.33 0

8 | 0.33 0.67 0

9 | 0.27 0.73 0

10| 0 0 1
11| 0 0.67 0.33
12 |1 0 0
13| 0 0.33 0.67
1410 0.6 0.4
15|10 0 1
16 | O 0 1

& o o o o
2l 25K 3K 35K 4K 45K 5K 55K 6K 65K 7

Fig. 1. A Linguistic Partition ofSalary Attribute

That is we have the following partial dependency in the
database

{Degree Experience} = g4 Salary (19)

To calculate the precision measure of fuzzy classes we
need to obtain the mass assignment for each fuzzy class and
approximations of its focal sets respectively. For example,
the mass assignment dfow and approximations of its
focal sets are shown in Table IV. Then we have

7Ar{DegreeExperience} (LOU)) = 0.878
Similarly, we also obtain

fr{ DegreeExperience} (]Wedium) = 0.646
7?l'{ DegreeExperience} (High) = 0.876

Now in order to show how the influence of, for example,
attribute Experience on the quality of approximation, let
us consider the partition induced by the attribltegree
as shown on the next page.

Then we obtain approximations of the fuzzy partition
induced bySalary in the approximation space defined by
Degreegiven in Table V. Thus we have

S 3.2
“Y{Degree} (Salary) = E =0.2



TABLE IV
MASS ASSIGNMENT FORU T,y AND APPROXIMATIONS OF ITS FOCAL SETS

o 1 0.67 0.33 0.27
Low, {4,512} | {4,5,12,7} | {4,5,12,7.8} | {4,5,12,7,8,9}

M Low(LoWwe) 0.33 0.34 0.06 0.27
R(Low,) {412} | {4,5,12,7} | {4,5,12,7} | {4,5,12,7,8,9}
R(Low,) | {4,5,12,7} | {4,5,12,7} | {4,5,12,7,8,9} | {4,5,12,7,8,9}

U/ind({Degred) = {{1,2,6,15},{3,8,9,10, 11,13, 14, 16}, {4, 5,7, 12}}

TABLE V
THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

X, {1,2,6,15} | {3,8,9,10,11,13,14,16} | {4,5,7, 12}
KHigh. 0.13 0 0
Hitigh* 1 1 0

MM edium., 0 0 0

LM edivm* 0.87 0.73 0.33
liLow. 0 0 0.67
K Low* o 033 1

Similarly, we also easily obtain [4] S. M. Chen, C. M. Huang, “Generating weighted fuzzy rules from
relational database systems for estimating null values using genetic
algorithms,” IEEE Trans. Fuzzy Systvol. TFS-11, pp. 495-506,
2003.
A. De Luca, S. Termini, “A definition of a nonprobabilistic entropy
in the setting of fuzzy set theorylhformation and Contrglvol. 20,
pp. 301-312, 1972.
D. Dubois, H. Prade, “Properties of measures of information in
evidence and possibility theoriediuzzy Sets Syswol. 24, pp. 161
182, 1987.
D. Dubois, H. Prade, “Rough fuzzy sets and fuzzy rough séts,”
J. General SystV17, pp. 191-209, 1990.
E] G. Gediga, |. Mintsch, “Rough approximation quality revisited,”
Y Artificial Intelligence vol. 132, pp. 219-234, 2001.
[9] V.N.Huynh, Y. Nakamori, “An approach to roughness of fuzzy sets,”
Proceedings of the FUZZ-IEEE 200t appear.
[10] R. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Appli-
cations Upper Saddle River: Prentice-Hall PTR, 1995.
In this paper we have extended the measure of rougii] S. K. Pal, A. Skowron, Eds.Rough Fuzzy Hybridization: New
dependency for fuzzy classification for dealing with prac-__ Trends in Decision MakingSingapore: Springer Verlag, 1999.

. . . e 12] Z. Pawlak, “Rough setsjnt. J. Comp. Infor. Scj.vol. 11, pp. 341—
tical situations where a fuzzy classification must be ap- ]35& 1982. 9 P PP

proximated by available knowledge expressed in terms @f3] z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
a classical approximation space. Such situations may coTe Data Boston, MA: Kluwer Academic Publishers, 1991.

. . [14] Z. Pawlak, “Rough sets and fuzzy setf{izzy Sets Syswol. 17,
up naturally for example when we want to realize partial "5 99-102, 1985.

dependency between attributes which is infered based @3] L. Polkowski, Rough Sets: Mathematical Foundatiotéeidelberg-
background knowledge; while such a dependency can n[%é] New York: Physica-Verlag, 2002.
a

. L. . M. ralak, “Rough sets and fuzzy sets: some remarks on inter-
be expressed in terms of traditional data dependencies relatmsg;y,:uzzy Setg Sysol. 29, pp_y241_243' 1989.
described in Example.

[17] Y. Y. Yao, “Combination of rough and fuzzy sets based on alpha-
level sets,” inRough Sets and Data Mining: Analysis of Imprecise
Data, T. Y. Lin, N. Cercone, Eds., Boston/London/Dordrecht: Kluwer
Academic Publishers, 1997, pp. 301-321.

[1] J. F. Baldwin, “The management of fuzzy and probabilistic uncer{18] V. Y. Yao, “A comparative study of fuzzy sets and rough selisf’

. 5.06
Y{Experience} (Salary) = 16 =0.316

As we can see, both attribut&egree and Experience
are highly significant as without each of them the measure
of approximation quality changes considerably. It would®
be worth noting that based on background knowledge one
may infer a dependency betweédegree Experience  [7]
andSalary which is often expressed linguistically, however,
such a dependency in general can not be described
traditional data dependencies.
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