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Abstract— In rough-set-based data analysis, the so-called
approximation quality is the traditional measure to evaluate
the classification success of attributes in terms of a numerical
evaluation of the dependency properties generated by these
attributes. To deal with practical situations where a fuzzy
classification must be approximated by available knowledge
expressed in terms of a Pawlak’s approximation space, we
introduce in this paper an extension of this measure aimed
at providing a numerical characteristic for such situations.
Other related coefficients asprecision and significance are
also discussed correspondingly. A simple example is given to
illustrate the proposed notions.

I. I NTRODUCTION

After nearly twenty years of introducing fuzzy sets [19],
the notion of a rough set [12] has been introduced as a
new mathematical tool to deal with the approximation of a
concept in the context of incomplete information. Basically,
while a fuzzy set introduced by Zadeh models the ill-
definition of the boundary of a concept often described
linguistically, a rough set introduced by Pawlak charac-
terizes a concept by its lower and upper approximations
due to indiscernibility between objects arose because of
incompleteness of available knowledge. Both the theories
have been proving to be of substantial importance in many
areas of application [10], [11], [13], [15], [20].

Since the introduction of rough set theory, many attempts
to establish the relationships between the two theories, to
compare each to the other, and to simultaneously hybridize
them have been made (e.g. [7], [11], [14], [16], [17],
[18]). As an attempt in the line of integration between the
two theories, Banerjee and Pal [3] have recently proposed
a roughness measure for fuzzy sets, making use of the
concept of a rough fuzzy set [7]. However, as pointed
out in [9], Banerjee and Pal’s roughness measure exhibits
some undesired properties. Very recently, the authors in
[9] have introduced an alternative roughness measure for
fuzzy sets based on the notions of the mass assignment
of a fuzzy set and itsα-cuts. It has been shown that this
new measure of roughness satisfies interesting properties
and simultaneously avoids these undesired properties.

As is well-known, in rough-set-based data analysis, the
so-called approximation quality measure is often used to
evaluate the classification success of attributes in terms

of a numerical evaluation of the dependency properties
generated by these attributes. To deal with practical sit-
uations where a fuzzy classification must be approximated
by available knowledge expressed in terms of a Pawlak’s
approximation space, we introduce in this paper an exten-
sion of approximation quality measure aimed at providing
a numerical characteristic for such situations. Furthermore,
extensions of related coefficients such as the precision
measure and the significance measure are also discussed.

The rest of this paper is organized as follows. Section II
briefly introduces necessary notions of rough sets and fuzzy
sets, the mass assignment of a fuzzy set. In Section III,
after recalling the notion of a rough fuzzy set [7] roughness
measures of a fuzzy set are briefly reviewed. Section IV
discusses an extension of the approximation quality mea-
sure to deal with situations where a fuzzy classification
must be approximated by available knowledge expressed in
terms of an approximation space. An illustration example is
presented in Section V. Finally, some concluding remarks
are presented in Section VI.

II. PRELIMINARIES

In this section we recall basic notions in the theories
of rough sets and fuzzy sets. Throughout this paper, we
suppose thatU is a finite non-empty set.

A. Pawlak’s Approximation Quality

The rough set theory begins with the notion of an
approximation space, which is a pair〈U,R〉, whereU be
the universe of discourse andR an equivalence relation
on U , i.e., R is reflexive, symmetric, and transitive. The
relation R decomposes the setU into disjoint classes in
such a way that two elementsx, y are in the same class iff
(x, y) ∈ R. Let denote byU/R the quotient set ofU by
the relationR, and

U/R = {X1, X2, . . . , Xm}

whereXi is an equivalence class ofR, i = 1, 2, . . . , m.

Given an arbitrary setX ∈ 2U , in general it may not
be possible to describeX precisely in〈U,R〉. One may



characterizeX by a pair of lower and upper approximations
defined as follows [12]:

R(X) =
⋃

Xi⊆X

Xi; R(X) =
⋃

Xi∩X 6=∅
Xi

The pair(R(X), R(X)) is the representation of an ordinary
setX in the approximation space〈U,R〉 or simply called
the rough set ofX.

In [13], Pawlak introduces two numerical chacracteriza-
tions of imprecision of a subsetX in the approximation
space〈U,R〉: accuracy and roughness. Accuracy of X,
denoted byαR(X), is simply the ratio of the number
of objects in its lower approximation to that in its upper
approximation; namely

αR(X) =
|R(X)|
|R(X)| (1)

where| · | denotes the cardinality of a set. Then the rough-
ness ofX, denoted byρR(X), is defined by subtracting
the accuracy from 1:

ρR(X) = 1− αR(X) = 1− |R(X)|
|R(X)| (2)

Note that the lower the roughness of a subset, the better is
its approximation.

1) As R(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1.
2) By convention, whenX = ∅, R(X) = R(X) = ∅

andρR(X) = 0.
3) ρR(X) = 0 if and only if X is definable in〈U,R〉.
In the rough set theory, the approximation qualityγ is

often used to describe the degree of partial dependency
between attributes.

Assume now there is another equivalence relationP
defined onU , which forms a partition (or, classification)
U/P of U , sayU/P = {Y1, . . . , Yn}. Note thatR andP
may be induced respectively by sets of attributes applied
to objects inU . Then the approximation quality ofP by
R, also called thedegree of dependency, is defined by

γR(P ) =
∑n

i=1 |R(Yi)|
|U | (3)

which is represented in terms of accuracy as follows

γR(P ) =
n∑

i=1

|R(Yi)|
|U | αR(Yi) (4)

In this case the measureγR(P ) can be regarded as the
weighted mean of the accuracies of approximation ofP
by R [8].

B. Fuzzy Sets and Mass Assignment

Let U be a finite and non-empty set. A fuzzy setF of
U is nothing but a mapping fromU into the unit interval
[0, 1]:

µF : U −→ [0, 1]

where for eachx ∈ U we call µF (x) the membership
degree ofx in F . Practically, we may considerU as a set
of objects of concern, and a crisp subset ofU represent
a “non-vague” concept imposed on objects inU . Then a
fuzzy setF of U is thought of as a mathematical repre-
sentation of a “vague” concept described linguistically.

Given a numberα ∈ (0, 1], theα-cut, or α-level set, of
F is defined as follows

Fα = {x ∈ U |µF (x) ≥ α}
which is a subset ofU .

In connection to the evidence theory, a fuzzy setF is
a consonant random set; the family of itsα-cuts forms
a nested family of focal elements [6]. Note that in this
case the normalization assumption ofF is imposed due
to the body of evidence does not contain the empty
set. Interestingly, this view of fuzzy sets has been used
by Baldwin in [1], [2] to introduce the so-called mass
assignment of a fuzzy set with relaxing the assumption,
and to provide a probability based semantics for a fuzzy
concept defined as a family of possible definitions of the
concept. The mass assignment of a fuzzy set is defined as
follows.

Let F be a fuzzy subset of a finite universeU such
that the range of the membership functionµF , denoted by
rng(µF ), is rng(µF ) = {α1, . . . , αn}, whereαi > αi+1 >
0, for i = 1, . . . , n− 1. Let

Fi = {x ∈ U |µF (x) ≥ αi}
for i = 1, . . . , n. Then the mass assignment ofF , denoted
by mF , is a probability distribution on2U definded by

mF (∅) = 1− α1

mF (Fi) = αi − αi+1, for i = 1, . . . , n,

with αn+1 = 0 by convention. Theα-level sets Fi,
i = 1, . . . , n, (or {Fi}n

i=1 ∪ {∅} if F is a subnormal
fuzzy set, i.e.maxx∈U{µF (x)} < 1) are referred to as the
focal elements ofmF . The mass assignment of a fuzzy
concept is then considered as providing a probabilistic
based semantics for the membership function of the fuzzy
concept.

III. ROUGHNESSMEASURES OF AFUZZY SET

A. Rough Fuzzy Sets

Let a finite approximation space〈U,R〉 be given. LetF
be a fuzzy set inU with the membership functionµF . The
upper and lower approximationsR(F ) andR(F ) of F by
R are fuzzy sets in the quotient setU/R with membership
functions defined [7] by

µR(F )(Xi) = max
x∈Xi

{µF (x)} (5)

µR(F )(Xi) = min
x∈Xi

{µF (x)} (6)

for i = 1, . . . ,m. (R(F ), R(F )) is called a rough fuzzy
set.



The rough fuzzy set(R(F ), R(F )) then induces two
fuzzy setsF ∗ and F∗ in U with membership functions
defined respectively as follows

µF∗(x) = µR(F )(Xi) andµF∗(x) = µR(F )(Xi)

if x ∈ Xi, for i = 1, . . . ,m. That is, F ∗ and F∗
are fuzzy sets with constant membership degree on the
equivalence classes ofU by R, and for anyx ∈ U , µF∗(x)
(respectively,µF∗(x)) can be viewed as the degree to which
x possibly (respectively, definitely) belongs to the fuzzy set
F [3].

Under such a view, we now define the notion of a
definable fuzzy setin 〈U,R〉. A fuzzy set F is called
definableif R(F ) = R(F ), i.e. there exists a fuzzy setF in
U/R such thatµF (x) = µF (Xi) if x ∈ Xi, i = 1 . . . ,m.
Further, as defined in [3], fuzzy setsF and G in U are
said to beroughly equal, denoted byF ≈R G, if and only
if

R(F ) = R(G) andR(F ) = R(G).

B. Roughness Measures of Fuzzy Sets

In [3], Banerjee and Pal have proposed a roughness
measure for fuzzy sets in a given approximation space.
Essentially, their measure of roughness of a fuzzy set
depends on parameters that are designed as thresholds of
definiteness and possibility in membership of the objects
in U to the fuzzy set.

Consider parametersα, β such that0 < β ≤ α ≤ 1. The
α-cut (F∗)α and β-cut (F ∗)β of fuzzy setsF∗ and F ∗,
respectively, are called to be theα-lower approximation,
the β-upper approximationof F in 〈U,R〉, respectively.
Then a roughness measure of the fuzzy setF with respect
to parametersα, β with 0 < β ≤ α ≤ 1, and the
approximation space〈U,R〉 is defined by

ρα,β
R (F ) = 1− |(F∗)α|

|(F ∗)β | (7)

It is obvious that this definition of roughness measure
ρα,β

R (·) strongly depends on parametersα andβ.
As pointed out in [9], this measure of roughness has

several undesirable properties. Simultaneously, the authors
also introduce a parameter-free measure of roughness of a
fuzzy set as follows.

Let F be a normal fuzzy set inU . Assume that the range
of the membership functionµF is {α1, . . . , αn}, where
αi > αi+1 > 0, for i = 1, . . . , n − 1, and α1 = 1. Let
us denotemF the mass assignment ofF defined as in the
preceding section. Let

Fi = {x ∈ U |µF (x) ≥ αi}, for i = 1, . . . , n.

With these notations, the roughness measure ofF with
respect to the approximation space〈U,R〉 is defined by

ρ̂R(F ) =
n∑

i=1

mF (Fi)(1− |R(Fi)|
|R(Fi)|

) ≡
n∑

i=1

mF (Fi)ρR(Fi)

(8)

That is, the roughness of a fuzzy setF is the weighted sum
of the roughness measures of nested focal subsets which
are considered as its possible definitions.

Observation 1: • Clearly, 0 ≤ ρ̂R(F ) ≤ 1.
• ρ̂R(·) is a natural extension of Pawlak’s roughness

measure for fuzzy sets, i.e. ifF is a crisp subset of
U then ρ̂R(F ) = ρR(F ).

• F is a definable fuzzy set if and only if̂ρR(F ) = 0.
Let F ∗ and F∗ be fuzzy sets induced from the rough

fuzzy set(R(F ), R(F )) as above. Denote

rng(µF∗) ∪ rng(µF∗) = {ω1, . . . , ωp}
such thatωi > ωi+1 > 0 for i = 1, . . . , p − 1. Obviously,
{ω1, . . . , ωp} ⊆ rng(µF ), andω1 = α1 andωp ≥ αn. With
this notation, we have

Proposition 1: For any 1 ≤ j ≤ p, if there exists
αi, αi′ ∈ rng(µF ) such thatωj+1 < αi < αi′ ≤ ωj then
we haveFi ≈R Fi′ ,1 and soρR(Fi) = ρR(Fi′).

Further, we can represent the roughnessρ̂R(F ) in terms
of level sets of fuzzy setsF∗ and F ∗ in the following
proposition.

Proposition 2: We have

ρ̂R(F ) =
p∑

j=1

(ωj − ωj+1)(1−
|(F∗)ωj |
|(F ∗)ωj |

)

whereωp+1 = 0, by convention.
More interestingly, we obtain the following.
Proposition 3: If fuzzy setsF andG in U are roughly

equal in〈U,R〉, then we havêρR(F ) = ρ̂R(G).

IV. ROUGH APPROXIMATION QUALITY OF A FUZZY

CLASSIFICATION

Recall that roughness of a crisp set is defined as opposed
to its accuracy. First, in the following we will see that it
is possible to make a similar correspondency between the
roughness and accuracy of a fuzzy set.

It should be noticed that ifF is a subnormal fuzzy set,
we havemF (∅) > 0, and then the empty set may be also
considered as a possible definition ofF . In this case, we
should define the roughness measure ofF as

ρ̂R(F ) =
n∑

i=1

mF (Fi)ρR(Fi) + mF (∅)ρR(∅) (9)

which trivially turns back to the normal case above as, by
convention,ρR(∅) = 0. However, we should take the case
into account when once we want to consider the accuracy
measure instead of roughness, with the convention that
αR(∅) = 1.

Under such an observation, it is eligible to define the
accuracy measure for a fuzzy setF by

α̂R(F ) =
n∑

i=1

mF (Fi)αR(Fi) (10)

1Note thatFi stands forFαi



if F is a normal fuzzy set, or

α̂R(F ) =
n∑

i=1

mF (Fi)αR(Fi) + mF (∅)αR(∅) (11)

if F is a subnormal fuzzy set. With this definition we have

α̂R(F ) = 1− ρ̂R(F ) (12)

for any fuzzy setF in U .
Before extending the the measure of rough dependency

defined by (3) (or equivalently, (4)) for the case where
P is a fuzzy classification ofU instead of a crisp one,
let us define the cardinality of a fuzzy set in the spirit of
its probabilistic based semantics. That is, if{Fi}n

=1 could
be interpreted as a family of possible definitions of the
conceptF , thenmF (Fi) is the probability of the event “the
concept isFi”, for each i. Under such an interpretation,
the cardinality ofF , also denoted by|F |, is defined as the
expected cardinality by

|F | =
n∑

i=1

mF (Fi)|Fi| (13)

Quite interestingly, the following proposition shows that
the expected cardinality (13) is nothing but theΣ-count of
the fuzzy setF as introduced by De Luca and Termini [5].

Proposition 4: We have

|F | =
n∑

i=1

mF (Fi)|Fi| =
∑

x∈U

µF (x) (14)

Let us return to an approximation space〈U,R〉 and
assume further a fuzzy partition, sayFC = {Y1, . . . , Yk},
defined onU . This situation may come up in a natural way
when a linguistic classification is defined onU and must
be approximated in terms of already existing knowledge
R.

In such a situation, quite naturally with the spirit of the
proposal described in the preceding section, one may define
the approximation quality ofFC by R as

γ̂R(FC) =
1
|U |

k∑

i=1

ni∑

j=1

mYi(Yi,j)|R(Yi,j)| (15)

where for i = 1, . . . , k, mYi and {Yi,j}ni
j=1 respectively

stand for the mass assignment ofYi and the family of its
focal elements. Straightforwardly, it follows from Proposi-
tion 4 that

γ̂R(FC) =
1
|U |

k∑

i=1

|(Yi)∗| (16)

where (Yi)∗, i = 1, . . . , k, are fuzzy sets with constant
membership degree on the equivalence classes ofU by R
as defined in Section III. It is also interesting to note that
the approximation quality ofFC by R can be also extended
via (4) as follows

γ̂′R(FC) =
k∑

i=1

|R(Yi)|
|U | α̂R(Yi) (17)

However, we will not consider this extension in the rest of
the paper.

Furthermore, similar as mentioned in [13], the measure
of rough dependencŷγR does not capture how this partial
dependency is actually distributed among fuzzy classes of
FC. To capture this information we need also the so-called
precision measurêπR(Yi), for i = 1, . . . , k, defined by

π̂R(Yi) =
ni∑

j=1

mYi
(Yi,j)

|R(Yi,j)|
|Yi,j | (18)

which may be considered as the expected relative number
of elements inYi approximated byR. Clearly, we have
π̂R(Yi) ≥ α̂R(Yi), for any i = 1, . . . , k. As such the two
measureŝγR andπ̂R give us enough information about the
“classification power” of the knowledgeR with respect to
the linguistic classificationFC.

In rough-set-based data analysis,R is naturally induced
by a subset, sayB, of the set of attributes imposed on
objects being considered. Then as suggested in [13], we
can also measure the significance of the subset of attributes
B′ ⊆ B with respect to the linguistic classificationFC by
the difference

γ̂R(FC)− γ̂R′(FC)
where R′ denotes the equivalence relation induced by
the subset of attributesB \ B′. This measure expresses
how influence on the quality of approximation if we drop
attributes inB′ from B.

For the sake of illustration, in the following section we
will consider a simple example depicting the introduced
notions.

V. A N EXAMPLE

Let us consider a relation in a relational database as
shown in Table I (this database is a variant of that found
in [4]). Then by the attributesDegreeandExperiencewe
obtain an approximation space

〈U, ind({Degree, Experience})〉
where U = {1, . . . , 16}, and the corresponding partition
as shown at the top of the page. Further, consider now for
example a linguistic classification

{Low, Medium, High}
defined on the domain of attributeSalary, say [20K,70K],
with membership functions of linguistic classes depicted
graphically as in Fig. 1. Then the linguistic classification
induces a fuzzy partition onU whose membership func-
tions of fuzzy classes shown in Table II.

Then approximations of the fuzzy partition induced by
Salary in the approximation space defined byDegreeand
Experienceare given in Table III. Using (16) we obtain

γ̂{Degree,Experience}(Salary) =
13.46
16

= 0.84



U/ind({Degree, Experience}) = {{1, 15}, {2, 6}, {3, 11, 13, 14}, {4, 12}, {5, 7}, {8, 9}, {10, 16}}

TABLE III

THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

Xi {1, 15} {2, 6} {3, 11, 13, 14} {4, 12} {5, 7} {8, 9} {10, 16}
µHigh∗ 1 0.13 0.33 0 0 0 1
µHigh∗ 1 0.33 0.67 0 0 0 1

µMedium∗ 0 0.67 0.33 0 0 0.67 0
µMedium∗ 0 0.87 0.67 0 0.33 0.73 0

µLow∗ 0 0 0 1 0.67 0.27 0
µLow∗ 0 0 0 1 1 0.33 0

TABLE I

RELATION IN A RELATIONAL DATABASE

ID Degree Experience (n) Salary

1 Ph.D. 6 < n ≤ 8 63K

2 Ph.D. 0 < n ≤ 2 47K

3 M.S. 6 < n ≤ 8 53K

4 B.S. 0 < n ≤ 2 26K

5 B.S. 2 < n ≤ 4 29K

6 Ph.D. 0 < n ≤ 2 50K

7 B.S. 2 < n ≤ 4 35K

8 M.S. 2 < n ≤ 4 40K

9 M.S. 2 < n ≤ 4 41K

10 M.S. 8 < n ≤ 10 68K

11 M.S. 6 < n ≤ 8 50K

12 B.S. 0 < n ≤ 2 23K

13 M.S. 6 < n ≤ 8 55K

14 M.S. 6 < n ≤ 8 51K

15 Ph.D. 6 < n ≤ 8 65K

16 M.S. 8 < n ≤ 10 64K

TABLE II

INDUCED FUZZY PARTITION OF U BASED ON Salary

U µLow µMedium µHigh

1 0 0 1

2 0 0.87 0.13

3 0 0.47 0.53

4 1 0 0

5 1 0 0

6 0 0.67 0.33

7 0.67 0.33 0

8 0.33 0.67 0

9 0.27 0.73 0

10 0 0 1

11 0 0.67 0.33

12 1 0 0

13 0 0.33 0.67

14 0 0.6 0.4

15 0 0 1

16 0 0 1

2K 2.5K 3K  3.5K 4K  4.5K 5K  5.5K 6K  6.5K 7K  
0

0.2

0.4

0.6

0.8

1

Salary

M
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Medium
High

Fig. 1. A Linguistic Partition ofSalary Attribute

That is we have the following partial dependency in the
database

{Degree, Experience} ⇒0.84 Salary (19)

To calculate the precision measure of fuzzy classes we
need to obtain the mass assignment for each fuzzy class and
approximations of its focal sets respectively. For example,
the mass assignment ofLow and approximations of its
focal sets are shown in Table IV. Then we have

π̂{Degree,Experience}(Low) = 0.878

Similarly, we also obtain

π̂{Degree,Experience}(Medium) = 0.646
π̂{Degree,Experience}(High) = 0.876

Now in order to show how the influence of, for example,
attributeExperience on the quality of approximation, let
us consider the partition induced by the attributeDegree
as shown on the next page.

Then we obtain approximations of the fuzzy partition
induced bySalary in the approximation space defined by
Degreegiven in Table V. Thus we have

γ̂{Degree}(Salary) =
3.2
16

= 0.2



TABLE IV

MASS ASSIGNMENT FORµLow AND APPROXIMATIONS OF ITS FOCAL SETS

α 1 0.67 0.33 0.27
Lowα {4, 5, 12} {4, 5, 12, 7} {4, 5, 12, 7, 8} {4, 5, 12, 7, 8, 9}

mLow(Lowα) 0.33 0.34 0.06 0.27
R(Lowα) {4, 12} {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9}
R(Lowα) {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9} {4, 5, 12, 7, 8, 9}

U/ind({Degree}) = {{1, 2, 6, 15}, {3, 8, 9, 10, 11, 13, 14, 16}, {4, 5, 7, 12}}

TABLE V

THE APPROXIMATIONS OF THE FUZZY PARTITION BASED ONSalary

Xi {1, 2, 6, 15} {3, 8, 9, 10, 11, 13, 14, 16} {4, 5, 7, 12}
µHigh∗ 0.13 0 0
µHigh∗ 1 1 0

µMedium∗ 0 0 0
µMedium∗ 0.87 0.73 0.33

µLow∗ 0 0 0.67
µLow∗ 0 0.33 1

Similarly, we also easily obtain

γ̂{Experience}(Salary) =
5.06
16

= 0.316

As we can see, both attributesDegreeand Experience
are highly significant as without each of them the measure
of approximation quality changes considerably. It would
be worth noting that based on background knowledge one
may infer a dependency between{Degree, Experience}
andSalary which is often expressed linguistically, however
such a dependency in general can not be described by
traditional data dependencies.

VI. CONCLUSIONS

In this paper we have extended the measure of rough
dependency for fuzzy classification for dealing with prac-
tical situations where a fuzzy classification must be ap-
proximated by available knowledge expressed in terms of
a classical approximation space. Such situations may come
up naturally for example when we want to realize partial
dependency between attributes which is infered based on
background knowledge; while such a dependency can not
be expressed in terms of traditional data dependencies as
described in Example.
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