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Abstract– In this paper, we discuss rule ex-
traction from non-monotonic decision tables with
ordinal attributes based on rough sets. In or-
der to treat the non-monotonicity of a decision
attribute with respect to ordinal condition at-
tribute, we use generalized rough sets based on
a family by intervals spanned by a set of ob-
jects in the decision table. We propose a LEM2-
based rule extraction algorithm called INTLEM
and show its advantages by numerical experi-
ments.

I Introduction

Rough sets were proposed by Pawlak [8]. The meth-
ods based on rough sets are useful to analyze informa-
tion tables and applied to various fields, medical infor-
matics, knowledge discovery, decision analysis and so
on. Since rough sets were defined under equivalence
relations referred to as indiscernibility relations, the
attribute values in information tables were implicitly
assumed to be nominal. Under this assumption, the
rule induction system LERS (Learning from Examples
based on Rough Sets) which produces certain and pos-
sible rules has been proposed. LEM2 (Learning from
Examples Module, version 2) is a subsystem which
computes local coverings of attribute-value pairs. Lo-
cal coverings are constructed from minimal complexes.
The minimal complex contains attribute-value pairs,
selected on the basis of their relevancy to the concept.
In the case of a tie, the next criterion is the maxi-
mum of conditional probability of the concept given
the attribute-value pair.

In the classical rough set based rule extraction, the
implicit weak assumption that the attribute values in
information tables were nominal may sometimes lead
to unacceptable results when some of attribute values
are ordinal. Greco et al. [1] demonstrated this unac-
ceptability by using a simple example. They proposed
dominance based rough sets in order to treat ordinal
attributes in information tables. The dominance based
rough sets are powerful tool to analyze decision tables
with ordinal attributes such as preference information
tables (information tables about human preferences).
Further, they introduced DOMLEM, which is based

on LEM2 and which can deal with monotonic decision
table [2].

Before the dominance based rough sets, numerical
attributes had been treated in rough set literature (see
[4, 13]). Numerical attributes are obviously ordinal at-
tributes. Obtaining a proper partition of each attribute
was a key issue to deal with numerical attributes in
rough set analysis. Various approaches were proposed.
Among them, the minimally necessary partitions for
numerical attributes are obtained by RSBR [] through
converting attribute values to binary values. Tanaka et
al. [12] proposed another method to convert attribute
values to binary values so that they obtained proper
partitions of ordinal attributes.

In the analysis by dominance based rough sets, it is
assumed that the decision attribute values are mono-
tonic with respect to condition attribute values. This
assumption is often acceptable when the given deci-
sion table shows the preference of a decision maker.
However, in real world applications, there are a lot of
attributes whose moderate values are preferable to ex-
treme values. For example, we prefer moderate val-
ues to extremes for blood pressure, room temperature,
sweetness of cakes, and so on. If we know the appro-
priate value for such an attribute, we may convert the
attribute to another by a suitable non-monotonic func-
tion so as to possess the monotonicity with respect to
the decision attribute. Unfortunately, it often occurs
that we would not know the exact appropriate values
or that we would like to know the appropriate values
by the analysis. In such cases, the direct applications
of dominance based rough sets would not be suitable.

Inuiguchi et al. [6] discussed the treatment of a de-
cision attribute which is not monotonic with respect to
condition attributes with ordinal property. To this end,
rough sets suitable for the problem setting have been
defined. It is assumed that each attribute is ordinal
and that the objects in the same decision class are not
very scattered in condition attribute space. Because of
this assumption, the application of classical rough sets
under equivalence relations will not be advantageous.
Moreover, we may have non-monotonic attributes in
the real world which we cannot treat properly by dom-
inance based rough sets. From the problem setting, we



would like to know what ranges of condition attribute
values imply what ranges of decision attribute values.
Namely, the extracted decision rules might have ranges
of condition attribute values rather than single val-
ues in the conditional parts. Then they introduced
rough sets defined under a family of intervals. In order
to extract decision rules, they extended decision ma-
trix methods[6]. Furthermore, since the problem is to
obtain proper granules of condition attributes of de-
cision rules, the approach is similar to BSBR. Then,
they compared their proposed method with BSBR and
shown the advantages of their proposed method. How-
ever, the decision matrix method requires a lot of com-
putational effort. A rule extraction method with less
computational effort is desired.

In this paper, it is assumed that some attributes
are ordinal and that the decision classes are not very
scattered in ordinal condition attribute space. We shall
discuss a method for extracting a set of decision rules
covering all objects with minimal conditions based on
this rough set. This method requires less computa-
tional effort than the method by an extended decision
matrix. It is an extension of LEM2 and then it does
not extract all decision rules but decision rules com-
posing a minimal cover of a given definable set. We
call the method, INTLEM in this paper. After we pro-
pose INTLEM, we examine efficiency of our proposed
method through a numerical experiment.

II Generalized Rough Sets under a Given

Family

Various generalizations of rough sets have been pro-
posed [5, 9, 10]. Two interpretations of rough sets have
been proposed by Inuiguchi [5]: one is an interpretation
of rough sets as classification of objects into positive,
negative and boundary regions and the other is an in-
terpretation of rough sets as approximation of sets by
means of elementary sets of a given family. In appli-
cations, such interpretations are important to obtain
proper results. The former interpretation extracts de-
cision rules which infer positive members of a given
set and the conditional parts of decision rules are sin-
gle valued specifications of condition attribute values.
The latter interpretation extracts decision rules which
infer members of the lower approximation of a given set
and the conditional parts of decision rules are regional
specifications of condition attribute values. Since we
would like to extract decision rules with condition at-
tribute ranges in conditional parts, we introduce the
latter interpretation.

In the latter interpretation, we assume that a family
F = {F1, F2, . . . , Fp} on a universe U is given. The

lower and upper approximations of a set X ⊆ U is
defined by

F∗(X) =
⋃

{Fi | Fi ⊆ X, i = 1, 2, . . . , p}, (1)

F∗(X) = U −
⋃

{Fi | Fi ⊆ U − X, i = 1, 2, . . . , p}.
(2)

A pair (F∗(X),F∗(X)) is called a rough set of X under
a family F . The pair is a classical rough set of X

when F is a partition, i.e., Fi ∩ Fj = ∅ for i �= j

and
⋃
{Fi | i = 1, 2, . . . , p} = U . The fundamental

properties of this kind of rough sets are discussed in
[5].

Corresponding to the definition of the lower approx-
imation of X, we may extract the following type of
decision rules (see [5]):

if x ∈ Fi then x ∈ X, (3)

where Fi satisfies Fi ⊆ X. Such rules are extracted
from decision tables. A set X is defined by using deci-
sion attribute values while a set Fi is defined by using
condition attribute values.

III Decision Tables, Decision Classes and

the Family

In this paper, we consider a decision table repre-
sented by a 4-tuple D = (U, C ∪ {d}, V, ρ), each com-
ponents of which are defined in the following. U =
{x1, x2, . . . , xn} represents a finite set of objects, C =
{c1, c2, . . . , cm} is a finite set of condition attributes
and d is a decision attribute. Let V =

⋃
a∈C∪{d} Va

and Va be a domain of the attribute a. If there is a
total order ≤a on Va, then a ∈ C is called ordinal. For
convenience, we use simply ≤ instead of ≤a if there is
no confusion. The set of all ordinal condition attributes
is denoted by CO and let CN = C − CO. The order
≤d with respect to the decision attribute d may rep-
resent the preference of a decision maker. Further, let
ρ : U×C∪{d} → V be a function such that ρ(x, a) ∈ Va

for every x ∈ U and a ∈ C ∪ {d}, which is called an
information function. If d is not ordinal, a target class
will be represented by X = {x ∈ U | ρ(x, d) = v}
for some v ∈ Vd and otherwise it is represented by
X = {x ∈ U | v1 ≤ ρ(x, d) ≤ v2} for some v1, v2 ∈ Vd.

To define a rough set, it is necessary to define a
family of sets F . Given a set of condition attributes
A ⊆ C, we define a family of sets FA as follows;

FA = {〈Y 〉A | ∅ �= Y ⊆ U}
〈Y 〉A = {x ∈ U | min

y∈Y
ρ(y, a) � ρ(x, a) � max

y∈Y
ρ(y, a),

∀a ∈ A ∩ CO, ρ(x, a) = ρ(y, a), ∀y ∈ Y,

∀a ∈ A ∩ CN}.



By (1), (2) and this family, we can define a rough set in
a decision table with ordinal attributes for any X ⊆ U .

For any a ∈ CN and v ∈ Va, let [(a, v)] denote a set
of objects matching (a, v), namely, [(a, v)] = {x ∈ U |
ρ(x, a) = v}. Similarly, for any a ∈ CO and v1, v2 ∈ Va

such that v1 ≤ v2, let [(a, [v1, v2])] denote a set of
objects matching (a, [v1, v2]), namely, [(a, [v1, v2])] =
{x ∈ U | v1 ≤ ρ(x, a) ≤ v2}. Let T denote a com-
plex being a candidate for a conditional part of the
rule. Then [T ] denotes the set of objects matching
T , namely, [T ] = {x ∈ U | ρ(x, a1) = v, ∀(a1, v) ∈
T s.t. a1 ∈ CN and v1 ≤ ρ(x, a2) ≤ v2, ∀(a2, [v1, v2]) ∈
T s.t. a2 ∈ CO}.

Let B ⊆ U be a nonempty lower or upper approxi-
mation of a target class. Given a complex T , it is said
that B ⊆ U does not depend on T if and only if [T ] �= ∅
and [T ] ⊆ B. A set T is called a minimal complex of B

if and only if B depends on T and B does not depend
on T ′ for any T ′ � T . Let T be a nonempty collection
of attribute-value pairs. Then T is said to be a local
covering of B if and only if the following conditions are
satisfied:

1. each member T of T is a minimal complex of B,

2.
⋃

T∈T
[T ] = B,

3. T is minimal, i.e., ∀T ′ ⊆ T ,∪T∈T ′ [T ] �= B.

IV LEM2

LEM2 [3] is an algorithm to produce a minimal dis-
criminant description for the classical rough set set-
ting, which implicitly assumes all attributes are nomi-
nal, i.e., CO �= ∅. LEM2 is an algorithm to produce a
single local covering and is described as follows;
Procedure LEM2(

input: a set B;
output: a single local covering T of set B;

)

begin
G := B;
T := ∅;
while G �= ∅ do begin
T := ∅;
T (G) := {(a, v) | [(a, v)] ∩ G �= ∅, a ∈ C, v ∈ Va};
while (T �= ∅) or ([T ]�⊆ B) do begin
select a pair (a, v) ∈ T (G);
T := T ∪ {(a, v)};
G := G ∩ [(a, v)];
T (G) := T (G) − T ;
end{while ([T ] �⊆ B)};
for each (a, v) ∈ T do begin
if [T − {(a, v)}] ⊆ B then T := T − {(a, v)};
end{for};
T := T ∪{T };

G := B − ∪T∈T [T ];
end {while(G �= ∅)};
for each T ∈ T do begin
if

⋃
S∈T −{T}[S] = B then T := T − {T};

end{procedure};

In the step of pair selection, select a pair with the
highest attribute priority when such a priority is given;
if a tie occurs or such a priority is not given, select a
pair such that |[(a, v)] ∩G| is maximum; if another tie
occurs, select a pair with the smallest cardinality of
[(a, v)]; if a further tie occurs, select the first pair.

Time complexity of LEM2 is O(k3m2) where k =
|B| and m = |C |, which means polynomial time.

V The method proposed by Tanaka et al.

Tanaka et al. [12] proposed a method to obtain
minimally requisite divisions of ordinal condition at-
tributes. The main idea behind this method is to trans-
form an ordinal condition attribute to a certain number
of binary (categorical) condition attributes. Applying
this transformation, we obtain a 2-valued decision ta-
ble. Then the minimally requisite divisions of ordinal
condition attributes can be obtained by the classical
rough set analysis of the 2-valued decision table.

The procedure of transformation for the case of
CN = ∅ is described as follows; Let the set of attribute
values for a ∈ CO be Va = {v1

a, v2
a, . . . , vm

a }. For a re-
lation > on Va, assume that v1

a > v2
a > · · · > vm

a . For
each attribute value vi

a, consider an attribute ri
a, which

means that we derive new |Va| attributes from each at-
tribute a ∈ CO. Given a ∈ CO, for any x ∈ U and
for any ri

a, i = 1, . . . , m, the attribute value ρ(x, ri
a) is

defined by

ρ(x, ri
a) =

{
1, ρ(x, a) ≥ vi

a,

0, otherwise.
(4)

For any ordinal attribute, we can obtain a 2-valued
decision table by using (4).

Applying classical rough set analysis to the 2-valued
decision table, we find reducts and decision rules with
2-valued attributes ri

a’s. By the inverse application of
(4) to the obtained reducts, we may find requisite divi-
sions. Similarly, decision rules with 2-valued attributes
can be interpreted as decision rules with original con-
dition attributes by the inverse application of (4). For
example, by the inverse application of (4), a decision
rule with 2-values attributes (i > j),

if ρ(x, ri
a) = 1 and ρ(x, rj

a) = 0 then ρ(x, ru
d) = 1 (5)

can be interpreted as

if vi
a ≤ ρ(x, a) < vj

a then ρ(x, d) ≥ vu
d . (6)



Time complexity of this method is O(k5m2) when
we apply LEM2 to extract decision rules. Thus this
method is more computationally complex than LEM2.

VI INTLEM

A. INTLEM

To analyze a non-monotonic decision table with or-
dinal attributes, Inuiguchi et al.[6] have introduced an
extended decision matrices. However, time complex-
ity for this method is not polynomial. In this paper,
we shall propose an algorithm which derives a minimal
set of decision rules covering all objects in a polyno-
mial time. The algorithm is based on LEM2 and will
be called INTLEM (Interval attribute value based on
LEM).

As in LEM2, we can choose a lower approximation
or an upper approximation of each target class for an
input B in INTLEM. Given an input B, we obtain
a minimal set of decision rules covering all objects in
B as an output. More precisely, a minimal collection
composed of conditional parts of decision rules which
cover all objects in X.

In INTLEM, a condition is continuously added to
the temporal condition set T until objects satisfying
all conditions in T are included in B. The selection of
added condition is done by a function evaluate which
is discussed in the next section. After T is obtained,
we erase unnecessary conditions from T so that T is
minimal. Then, we add T to the temporal set T of con-
dition parts of decision rules. Once T is obtained, we
got a decision rule explaining objects in [T ]. Then we
erase those objects [T ] from a set G of unexplained ob-
jects and extract another decision rule explaining some
of unexplained objects by continuing the same proce-
dure. The procedure stops when G becomes empty.

A concrete procedure of INTLEM is given as fol-
lows;
Procedure INTLEM(

input: a set B;
output: a single local covering T of set B;

)

begin
G := B;
T := ∅;
while (G �= ∅) do begin

T := ∅;
S := G;
Cond := ∅;
while (T = ∅) or ([T ] �⊆ B) do begin

best := ∅
for each attribute a ∈ CO do begin

Cond := Cond ∪ {(a, [min(ρ(xi, a), ρ(xj, a)),
max(ρ(xi, a), ρ(xj, a))]) | xi ∈ S, xj ∈ B}

end{for};
for each attribute a ∈ CN do begin

Cond := Cond ∪ {(a, ρ(x, a)) | x ∈ S};
end{for};
for each e ∈ Cond do begin

if evaluate({e} ∪ T ) is better than
evaluate({best} ∪ T ) then best := e;

end {for};
T := T ∪ {best};
S := S ∩ [best];

end{while([T ] �⊆ B)};
for each elementary condition e ∈ T do begin

if [T − {e}] ⊆ B then T := T − {e};
end {for};

T := T ∪ {T}
G := G −∪{T∈T }[T ];
end{while{G �= ∅}};

for each T ∈ T do begin
if

⋃
S∈T −{T}[S] = B then T := T − {T};

end {procedure};
Time complexity of this procedure depends on eval-

uation bases, i.e., function evaluate for the selection of
condition. Indeed, if we use the same evaluation ba-
sis as LEM2 for evaluate(T), then the time complexity
will be O(k5m2).

If we use the following evaluation basis for evaluate(T),
we can find a different time complexity: select a con-
dition with the highest attribute priority when such a
priority is given; if a tie occurs or such a priority is
not given, select a condition such that |[T ] ∩ G|/|[T ]|
is maximum; if a tie occurs, select a pair such that
|[T ] ∩ G| is maximum; if a further tie occurs, select
the first pair. Then the time complexity of INTLEM
is O(k4m2). Here we note that this evaluation basis
is used in DOMLEM [2], a rule extraction algorithm
based on LEM2 from monotonic decision tables.

B. Bases to select conditions

In INTLEM, we use an evaluation basis, i.e., a func-
tion evaluate to select a condition to be added to T .
For a given complex T , we consider the following eval-
uation criteria:

• |B ∩ [T ]|: the number of objects which are in-
cluded in a set B ⊆ U and which are covered by
the candidate of conditional parts T

• |G ∩ [T ]|: the number of objects which should
be covered in this or further steps and which are
covered by the candidate of conditional parts T

• |B ∩ [T ]|/|[T ]|: the ratio of |B ∩ [T ]| to |[T ]|

• |G∩ [T ]|/(|(U−B)∩ [T ]|+ |G∩ [T ]|): the ratio of
|G ∩ [T ]| to the sum of the number of objects in



U − B which are covered by T and the number
of |G ∩ [T ]|)

• |att(T )|: the number of condition attributes in-
cluded in T , i.e., |att(T )| = |{a ∈ C | (a, v) ∈
T}|.

We can use these criteria in an arbitrary order of
priority as an evaluation basis.

VII A Numerical Experiment

In this section, we deal with data of classification
of wine as a numerical experiment. The condition at-
tributes are Alcohol, Malic acid, Ash, Alkalinity of
ash, Magnesium, Total phenols, Flavanoids, Nonfla-
vanoid phenols, Proanthocyanins, Color intensity, Hue,
OD280/OD315 of diluted wines, Proline. The decision
attribute values are represented by 1, 2 and 3. The
number of objects are 178. Target classes character-
ized by decision attribute values 1, 2 and 3 have 59, 71
and 48 objects, respectively.

We consider the following 6 priority orders of eval-
uation criteria as evaluate(T):

• e1 : |G ∩ [T ]|, |G ∩ [T ]|/(|(U − B) ∩ [T ]| + |G ∩
[T ]|),−|att(T )|

• e2 : |G ∩ [T ]|/(|(U − B) ∩ [T ]| + |G ∩ [T ]|), |G ∩
[T ]|,−|att(T )|

• e3 : |G∩ [T ]|, |B∩ [T ]|, |G∩ [T ]|/(|(U−B)∩ [T ]|+
|G ∩ [T ]|),−|att(T )|

• e4 : |G ∩ [T ]|/(|(U − B) ∩ [T ]| + |G ∩ [T ]|), |B ∩
[T ]|/|[T ]|, |G∩ [T ]|,−|att(T )|

• e5 : |G∩[T ]| ≥ 1, |B∩[T ]|, |B∩[T ]|/|[T ]|,−|att(T )|

• e6 : |G∩[T ]| ≥ 1, |B∩[T ]|/|[T ]|, |B∩[T ]|,−|att(T )|

In those evaluation bases, we transform the signs of
each value as the larger number represents the better.

We extract decision rules by 6 kinds of INTLEM
with evaluation bases corresponding to e1, e2, . . . , e6,
and also by LEM2 and the method proposed by Tanaka
et al. for comparison. In order to compare extracted
bodies of decision rules, we apply the 5-fold closs vali-
dation. The results of the experiment are shown in Ta-
bles 1, 2, 3 and 4. Table 1 shows the result of all target
class while Tables 2, 3 and 4 shows the result of each
target class. The numerical experiment is carried out
under the following environments; CPU : Pentium III
600MHz, Memory: 256MB, OS: Windows ME, Com-
piler: Visual C++ 6.0.

In Tables 1, 2, 3 and 4, we observe the following
facts:

• When evaluation bases e1, e3 and e5 are used,
|G∩[T ]| or |B∩[T ]| has a high priority. Since both
|G ∩ [T ]| and |B ∩ [T ]| express the high priority
on the generality rather than the accuracy, the
number of extracted decision rules will be smaller
than others, i.e., |T | will be smaller.

• On the other hand, when evaluation bases e2, e4

and e6 are used, |G∩ [T ]|/(|(U −B)∩ [T ]|+ |G∩
[T ]|) or |B ∩ [T ]|/|[T ]| has a high priority and
both |G ∩ [T ]|/(|(U − B) ∩ [T ]| + |G ∩ [T ]|) and
|B ∩ [T ]|/|[T ]| express the high priority on the
accuracy rather than the generality. Then the
length of the condition part of each extracted de-
cision rule will be smaller than others, i.e., |T |
will be smaller.

• From Table 1, we can see that most of INTLEM
brings a good result. The rate of correctly clas-
sified objects are better than LEM2. Computa-
tional time is shorter than the method proposed
by Tanaka et al. Expect for computational time,
e1, e3 and e5 are better than the other evaluation
bases.

VIII Concluding Remarks

In this paper, we discussed an algorithm to extract
decision rules from a non-monotonic decision table with
ordinal attributes based on rough sets. By a numerical
experiment, we compare our algorithm with other tech-
niques. In the algorithm in this paper, we can change
the evaluation bases and their priorities. However, if
we fix those, we can have more efficient algorithms.
The development of the more efficient algorithms is
one of the future topic. A similar approach is devel-
oped in [7]. A comparison with this approach is also
a future topic. Moreover, it might be interesting to
extract decision rules with nested conditions to infer
ordinal decision attribute values.
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