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Abstract— A rough sets based method to obtain mini-
mal certain rules in information systems is presented. This
method employs discernibility functions, and minimal cer-
tain rules are obtained as solutions of a discernibility func-
tion. Some manipulations on discernibility functions are
proposed, and these manipulations are implemented for
not only deterministic information systems but also non-
deterministic information systems. An execution of realized
programs is also shown.

I. Introduction

Rough set theory is seen as a mathematical foundation
of soft computing. This theory usually handles tables with
deterministic information, which we call Deterministic
Information Systems (DISs). Many applications of this
theory to rule generation, machine learning and knowledge
discovery have been presented [1,2,3,4].

Non-deterministic Information Systems (NISs) and
Incomplete Information Systems have been proposed for
handling information incompleteness in DISs, like null val-
ues, unknown values, missing values and etc. In this ex-
tension, the concept of modality is introduced into NISs,
and an axiomatization of logic in NISs has been studied
[5,6,7,8]. Most of work related to NISs is research of logic
with modal operators [ ] and <>, and focuses on valid
formulas.

Very few work deals with algorithms for handling NISs
on computers. In [7,8], Lipski showed a question-answering
system besides an axiomatization of logic. Grzymala-Busse
surveyed the unknown attribute values, and studied the
learning from examples with unknown attribute values
[9,10]. In [11,12], Kryszkiewicz discussed rules in incom-
plete information systems. These are the most important
work for handling incomplete information on computers.

According to such previous work, we have already pro-
posed rule generation in NISs [13,14], and in this paper
we focus on minimal rule generation in NISs.

II. Preliminary

A Deterministic Information System (DIS) is a quadru-
plet (OB, AT, {V ALA|A ∈ AT}, f), where OB is a finite
set whose elements are called objects, AT is a finite set
whose elements are called attributes, V ALA is a finite set
whose elements are called attribute values and f is such
a mapping that f : OB×AT → ∪A∈AT V ALA which is
called a classification function. Such a relation that

f(x, A)=f(y, A) for every A ∈ ATR ⊂ AT is an equiva-
lence relation over OB. Let [x]ATR denote an equivalence
class {y ∈ OB|f(y, A)=f(x, A) for every A ∈ ATR}.

Let us consider two sets CON ⊂ AT which we call con-
dition attributes and DEC ⊂ AT which we call decision
attributes. An object x ∈ OB is consistent with an ob-
ject y, if f(x, A)=f(y, A) for every A ∈ CON implies
f(x, A)=f(y, A) for every A ∈ DEC. An object x ∈ OB
is consistent, if x is consistent with any y ∈ OB.

For any x ∈ OB, let imp(x, CON, DEC) denote a for-
mula called an implication:

∧A∈CON [A, f(x, A)] ⇒ ∧A∈DEC[A, f(x, A)],
where a formula [A, f(x, A)] implies that f(x, A) is the
value of the attribute A. This is called a descriptor in
[7,12].

III. Basic Definitions on NISs

A Non-deterministic Information System (NIS) is
also a quadruplet (OB, AT, {V ALA|A ∈ AT}, g), where
g : OB × AT → P (∪A∈AT V ALA) (a power set of
∪A∈AT V ALA) [5,7]. Every set g(x, A) is interpreted as
that there is an actual value in this set but this value is
not known. Especially if the actual value is not known at
all, g(x, A) is equal to V ALA. Codd has already dealt with
such information incompleteness in relational databases,
and relational algebra handling this information incom-
pleteness was proposed. This interpretation to information
incompleteness was named null value interpretation [15].
In [16], new relational algebra handling non-deterministic
information has also been proposed.

Let us consider a NIS=(OB,AT, {V ALA|A ∈ AT}, g),
a set ATR ⊂ AT and a mapping h : OB × ATR →
∪A∈ATRV ALA such that h(x, A) ∈ g(x, A). We call a
DIS=(OB,ATR, {V ALA|A ∈ ATR}, h) a derived DIS
(for ATR) from NIS.

Let us consider a NIS and a set ATR={A1, · · · , An} ⊂
AT . For any x ∈ OB, let PT (x, ATR) denote the Carte-
sian product g(x, A1) × · · · × g(x, An). We call every el-
ement a possible tuple (for ATR) of x. For a possible
tuple ζ=(ζ1, · · ·, ζn) ∈ PT (x, ATR), let [ATR, ζ] denote a
formula

∧
1≤i≤n[Ai, ζi].

For a NIS, let CON be condition attributes and let
DEC be decision attributes. For any x ∈ OB, let PI(x,
CON, DEC) denote a set {[CON, ζ] ⇒ [DEC, η] |ζ ∈
PT (x, CON ), η ∈ PT (x, DEC)}. We call an element of



OB A B C D E F G H
1 3 1,3,4 3 2 5 5 2,4 3
2 2 3,4 1,3,4 4 1,2 2,4,5 2 2
3 4,5 5 1,5 5 2 5 1,2,5 1
4 1 3 4 3 1,2,3 1 2,5 1,2
5 4 1 2,3,5 5 2,3,4 1,5 4 1
6 4 1 5 1 4 2,4,5 2 1,2,3
7 2 4 3 4 3 2,4,5 4 1,2,3
8 4 5 4 2,3,5 5 3 1,2,3 1,2,3
9 2 3 5 3 1,3,5 4 2 3
10 4 2 1 5 2 4,5 3 1

TABLE I

A Table of NIS1

PI(x, CON, DEC) a possible implication (for CON and
DEC) of x. If PI(x, CON, DEC) is a singleton set {τ},
we say τ (from x) is definite. Otherwise we say τ (from
x) is indefinite.

For a possible implication τ ∈ PI(x, CON, DEC),
let DD(τ, x, CON, DEC) denote a set {ϕ| ϕ is such
a derived DIS for CON ∪ DEC that an implication
imp(x, CON, DEC) in ϕ is equal to τ}.

If a set {ϕ ∈ DD(τ, x, CON, DEC)| x is consistent in
ϕ} is equal to DD(τ, x, CON, DEC), we say τ is globally
consistent (GC). If this set is equal to ∅, we say τ
is globally inconsistent (GI). Otherwise we say τ is
marginal (MA). By combining two cases, i.e., ‘D(efinite)
or I(ndefinite)’ and ‘GC or MA or GI’, we define six
classes, D-GC , D-MA, D-GI, I-GC , I-MA, I-GI, for pos-
sible implications.
Example 1. Let us consider NIS1 in Table I, which is
an artificial data and symbols { and } are omitted. There
are 7346640384 derived DISs for all attributes. As for
CON={A, B} and DEC={C}, there are 216(=23 × 33)
derived DISs. Here, PT (1, {A, B})={(3, 1), (3, 3), (3, 4)},
PT (1, {C})={(3)} and PI(1, {A, B}, {C}) consists of three
possible implications [A, 3]∧[B, 1] ⇒ [C, 3], [A, 3]∧[B, 3] ⇒
[C, 3] and [A, 3]∧ [B, 4] ⇒ [C, 3]. Since there exists no pos-
sible tuple (3, ) ∈ PT (x, {A, B}) (x �=1), each possible im-
plication τ is consistent in DD(τ, 1, {A, B}, {C}). There-
fore, every possible implication belongs to I-GC class. A
possible implication τ : [A, 4] ∧ [B, 2] ⇒ [C, 1] from object
10 belongs to D-GC class.

A possible implication τ belonging to D-GC class is con-
sistent in all derived DISs, and this τ is not influenced by
the information incompleteness, therefore we especially say
τ is a certain rule. A possible implication τ ’ belonging to
either I-GC ,D-MA or I-MA class is consistent in some
derived DISs, therefore we also say τ ’ is a possible rule.

IV. Rough Sets based Properties in NISs

This section presents necessary and sufficient conditions
for characterizing GC , MA and GI classes [14].
Definition 1. Let us consider a NIS and a set ATR ⊂
AT . For any ζ ∈ PT (x, ATR), we fix the tuple of x to ζ,
and define (1) and (2) below.
(1) inf(x, ζ, ATR)={y ∈ OB|PT (y, ATR)={ζ}},
(2) sup(x, ζ, ATR)={y ∈ OB|ζ ∈ PT (y, ATR)}.

In Definition 1, inf(x, ζ, ATR) implies a set of objects

whose tuples are ζ and definite. A set sup(x, ζ, ATR) im-
plies a set of objects whose tuples may be ζ. In DISs,
[x]ATR=inf(x, ζ, ATR)=sup(x, ζ, ATR) holds, and {x} ⊂
inf(x, ζ, ATR) ⊂sup(x, ζ, ATR) holds in NISs. Although
sup specifies the same set defined by the similarity relation
SIM [5,12], inf is newly introduced in NISs.
Theorem 1.[14] For any NIS, let CON be condition at-
tributes, let DEC be decision attributes and let us consider
a possible implication τ :[CON, ζ] ⇒ [DEC, η] ∈ PI(x,
CON, DEC). Then, the following holds.
(1) τ belongs to GC class if and only if

sup(x, ζ, CON ) ⊂ inf(x, η, DEC).
(2) τ belongs to MA class if and only if

inf(x, ζ, CON ) ⊂ sup(x, η, DEC).
(3) τ belongs to GI class if and only if

inf(x, ζ, CON ) �⊂ sup(x, η, DEC).
Here, we show a useful property for calculating inf and

sup. This property is effective for examining conditions in
Theorem 1.
Proposition 2. For any NIS, let ATR ⊂ AT be {A1,
· · · , An}, and let a possible tuple ζ ∈ PT (x, ATR) be
(ζ1, · · · , ζn). Then, the following holds.
(1) inf(x, ζ, ATR)=∩iinf(x, (ζi), {Ai}).
(2) sup(x, ζ, ATR)=∩isup(x, (ζi), {Ai}).

By means of Theorem 1 and Proposition 2, it is
possible to decide a class of each possible implication.
Namely, we first prepare inf(x, (ζi,j), {Ai}) and sup(x,
(ζi,j), {Ai}) for any x ∈OB, any Ai ∈AT and any
(ζi,j) ∈PT (x, {Ai}). Then, we produce inf(x, ζ, CON ),
sup(x, ζ, CON ), inf(x, η, DEC) and sup(x, η, DEC) ac-
cording to Proposition 2. Finally, we apply Theorem 1 to
them. Especially, if ∩isup(x, (ζi), {Ai}) ⊂ inf(x, η, DEC)
holds for a set of definite descriptors [Ai, ζi] in x, it is pos-
sible to conclude that a certain rule can be generated from
object x. In the subsequent sections, a minimal certain
rule is defined in every object satisfying this condition. It
is impossible to generate any certain rules from object x,
which does not satisfy the above condition.

V. Minimal Certain Rules in NISs

Now, let us consider minimal certain rules in NISs. Ac-
cording to the usual definition in DISs [1,2,10], we give
the definition of minimal certain rules in NISs.
Definition 2. Let us consider a possible implication τ :
[CON, ζ] ⇒ [DEC, η], which belongs to D-GC class. We
say τ is a minimal certain rule, if there is no proper non-
empty subset CON ∗ ⊂ CON such that [CON ∗, ζ∗] ⇒
[DEC, η] (ζ∗ is a tuple restricted to CON ∗) belongs to
D-GC class.

Now it is possible to define the problem in this paper.
Problem. For any NIS, let DEC be decision attributes
and let η be a tuple of decision attributes values for
DEC. Then, find all minimal certain rules in the form
of [CON, ζ] ⇒ [DEC, η].

This problem has already been investigated in DISs. An
important problem for finding minimal rules in DISs lies in
such a fact that the minimal rule may not be unique. Some
minimal rules may be generated from an object. In [2,17],



a discernibility function in DISs has been proposed, and
some algorithms including reduction of attributes were in-
vestigated by means of discernibility functions. To find a
minimal reduct in a DIS is proved to be NP-hard, too. A
discernibility function in DISs is extended to a discerni-
bility function in incomplete information systems [12].

In [18,19], the problem of finding minimal reducts is dis-
cussed. For a disjunctive normal form DNF=(a ∨ b) ∧ c ∧
(b ∨ c), c must be true for assigning true to DNF . Then,
true is automatically assigned to (b ∨ c), and DNF is re-
duced to (a ∨ b). Such procedure is called the absorption
law in [19]. For a set ATT of attributes which appear in
a discernibility function, a power set p(ATT ) of ATT is
defined. All minimal reducts are elements in p(ATT ). The
lower and upper bounds of minimal reducts are defined by
a set of core attributes and ATT , respectively. All min-
imal reducts exist between these two bounds. According
to these properties, a depth-first search algorithm to find
minimal reducts in DISs is proposed [19]. However, the
implementation of these results on computers are not clear.
There exists no statement of an implementation.

In such a situation, we investigate a method to generate
minimal certain rules in NISs, and implement some pro-
grams on computers. We define a discernibility function
in NISs, and propose some manipulations on a discerni-
bility function. In this case also, we apply the absorption
law to reducing the discernibility function. Moreover, we
employ an interactive method. Generally, there may exist
lots of minimal certain rules in NISs. For obtaining more
suitable rules, we interactively select descriptors in a dis-
cernibility function. The generated minimal certain rules
are based on the selection of descriptors. Thus, the inter-
active method may be better than another method, which
simply generates all minimal certain rules.

VI. Minimal Certain Rules and a Discernibility

Function in NISs

Let us suppose a certain rule can be generated from ob-
ject x, whose conclusion is [DEC, η]. According to Theo-
rem 1, the problem is to find such a minimal conjunction
[CON, ζ] that sup(x, ζ, CON ) ⊂ inf(x, η, DEC). Here,
sup(x, ζ, CON )=∩isup(x, (ζi), {Ai}) (Ai ∈ CON ) holds.
Therefore, a minimal set of definite descriptors, which
discriminate every object in OB-inf(x, η, DEC) from
inf(x, η, DEC), becomes a minimal conjunction [CON, ζ].
According to this property, we give the following defini-
tions.
Definition 3. Let us consider an object x ∈ OB. Any
distinct y ∈ OB is discriminated from x by a definite de-
scriptor [A, ζ] (A ∈ AT -DEC) in x, if y �∈ sup(x, (ζ), {A}).
Let DISC(x, y) denote a disjunction of such definite de-
scriptors in x. If DISC(x, y) is a disjunction consisting of
a descriptor [A,ζ ], we say [A, ζ] is a core descriptor.
Definition 4. For any NIS, let us suppose that it is
possible to generate a certain rule from object x. A
discernibility function DF (x) (in D-GC class) is a for-
mula, DF (x)=∧y∈OB−inf(x,η,DEC)DISC(x, y).
Definition 5. For a discernibility function DF (x), let

us identify every descriptor in DF (x) with a propositional
variable. If a set SOL of descriptors assigns true to DF (x),
we say SOL satisfies DF (x).
Example 2. In Table I, let us consider possible implica-
tions [CON, ζ] ⇒[H,1]. Since a definite descriptor [H,1]
appears in objects 3, 5 and 10, it may possible to gener-
ate certain rules from these three objects. A discernibility
function DF (3) is

DF (3)=
([B,5]∨[D,5]∨[E,2])∧([B,5]∨[D,5])∧([B,5]∨[D,5]∨ [F,5])
∧([B,5]∨[D,5]∨[E,2])∧([B,5]∨[D,5]∨[E,2])∧([E,2]∨[F,5])
∧([B,5]∨[D,5]∨[E,2]∨[F,5]).

Since DISC(3, y) �= ∅ holds for every y ∈ OB − inf(3, (1),
{H})=OB − {3, 5, 10}={1, 2, 4, 6, 7, 8, 9}, it is possible to
generate a certain rule from object 3. Here, the first dis-
junction ([B,5]∨[D,5]∨[E,2]) implies that descriptors [B,5],
[D,5] and [E,2] discriminate object 1 from object 3. A set
{[B,5],[E,2]} satisfies this function, and neither {[B,5]} nor
{[E,2]} satisfy this function. Thus, we obtain a minimal
certain rule [B,5]∧[E,2]⇒[H,1].

VII. Manipulations on Discernibility Functions

This section proposes some manipulations on discerni-
bility functions.

At first, a simple method to obtain all minimal cer-
tain rules is proposed in Algorithm 1, which we name
enumeration method. In this method, we enumerate ev-
ery subset of all descriptors in DF (x), then we sequentially
examine the satisfiability of DF (x).

Algorithm 1. (Enumeration method)
Input: Such an object x that a certain rule [CON,ζ]⇒

[DEC,η] is generated from x.
Output: All minimal certain rules from x.
begin

generate DF(x);
enumerate every subset SUB of all descriptors in
DF(x) according to an order of the set inclusion;
repeat the following;

if SUB satisfies DF(x), SUB is a minimal subset,
namely ∧DESC∈SUBDESC ⇒[DEC,η] is a minimal
certain rule, and remove every subset SUB1
satisfying SUB⊂SUB1;

end.

This enumeration method can generate all minimal cer-
tain rules from object x. However, there exist 2|ALL DESC|

kinds of subsets for a set of all descriptors ALL DESC in
DF (x). Therefore, this method works well just for small
size NISs.

Now, let us consider another method to obtain a minimal
subset of descriptors, which satisfy DF (x). Namely, we
sequentially select a descriptor in DF (x), and we reduce
DF (x) to new DF ’(x). By repeating this procedure, it is
possible to obtain a set of descriptors satisfying DF (x).

Let us consider the discernibility function DF (3) in
Table I, again. If we select a descriptor [B,5] in the
first disjunction, it is possible to remove all disjunctions



with [B,5] from DF (3). Therefore, we have only to solve
DF ’(3)=[E,2]∨[F,5]. This is the application of the absorp-
tion law, and we name new discernibility function a revised
discernibility function. This revision will be effective for re-
ducing descriptors in DF (x).

According to such consideration, we have proposed
interactive selection method for obtaining minimal cer-
tain rules [20]. However, we have to pay attention to this
interactive selection method. Because some sets of selected
descriptors, which satisfy DF (x), may not be minimal. Let
us consider the following example.
Example 3. Let a,b,c,d be descriptors in a NIS, and let
us suppose DF=(a∨ b)∧ (b∨ c)∧ (c∨d) be a discernibility
function for a class. If we select descriptor a in DF , DF
is revised to DF ’=(b ∨ c) ∧ (c ∨ d). Similarly if we select
descriptor b in DF ’, DF ’ is revised to DF”=(c∨d). Finally,
we select descriptor c and we obtain a set {a, b, c}. This
set satisfies DF , but this set is not minimal. Because, both
sets {a, c} and {b, c} satisfy DF .

For solving the problem in Example 3, we combine in-
teractive selection method with enumeration method, and
propose Algorithm 2.

Algorithm 2. (Interactive selection and enumera-
tion method)
Input: Such an object x that a certain rule [CON,ζ]⇒

[DEC,η] is generated from x.
Output: Interactively selected minimal certain rules from

x.
begin

generate DF(x); CORE={}; SOL={};
for (every descriptor DESC in DF(x))

if ([Ai,ζi] is a core) CORE=CORE∪{[Ai,ζi]} and
remove each disjunction with [Ai,ζi] from DF(x);

suppose DF’(x) be the revised discernibility function;
while (DF’(x)�= ∅) do

select a descriptor DESC in DF’(x), SOL=SOL∪
{DESC} and assign the revised discernibility
function to DF’(x);

apply Algorithm 1 for descriptors CORE∪SOL, and
generate all minimal certain rules based on SOL;

end.

In Algorithm 2, we sequentially fix a branch of tree
search, and a set of descriptors satisfying DF (x) is also
decided. Then, Algorithm 1 is applied, so Algorithm 2
generates only minimal certain rules depending upon SOL.
We also propose Algorithm 3.

Algorithm 3.(Interactive selection and enumeration
method with a threshold value)
Input: Such an object x that a certain rule [CON,ζ]⇒

[DEC,η] is generated from x, and a threshold value α.
Output: Interactively selected minimal certain rules from

x.
begin

fix a value α; generate DF(x); CORE={}; SOL={};
for (every descriptor DESC in DF(x))

if ([Ai,ζi] is a core) CORE=CORE∪{[Ai,ζi]} and
remove each disjunction with [Ai,ζi] from DF(x);

suppose DF’(x) be the revised discernibility function,
and let LIST DESC be a set of all descriptors in DF’(x);
while (|SOL|+|LIST DESC| > α) do

select a descriptor DESC in DF’(x), SOL=SOL∪
{DESC} and assign the revised discernibility
function to DF’(x);
if DF’(x)=∅ exit while loop;

apply Algorithm 1 for either CORE∪SOL∪
LIST DESC or CORE∪SOL, and generate all
minimal certain rules;

end.

In Algorithm 3, the threshold value α adjusts the appli-
cation of Algorithm 1. For relatively small size α, like 4 or
5, it may be necessary to specify several number of descrip-
tors in DF ’(x), and small numbers of minimal certain rules
are generated. In this case, Algorithm 1 works well for such
small size of |SOL| + |LIST DESC|. On the other hand,
for relatively large size α, for example more than 15, it may
not be necessary to specify any descriptors in DF ’(x), and
most of minimal certain rules are generated. In this case,
Algorithm 1 takes much execution time.

VIII. Real Execution

This section shows real execution by a tool. Programs
are implemented in prolog respectively, and they are real-
ized on a workstation with 450 MHz UltraSparc CPU.
% more data.pl [Operation 1]
object(10,8).
data(1,[3,[1,3,4],3,2,5,5,[2,4],3]).
data(2,[2,[3,4],[1,3,4],4,[1,2],[2,4,5],2,2]).
data(3,[[4,5],5,[1,5],5,2,5,[1,2,5],1]).
data(4,[1,3,4,3,[1,2,3],1,[2,5],[1,2]]).
data(5,[4,1,[2,3,5],5,[2,3,4],[1,5],4,1]).
data(6,[4,1,5,1,4,[2,4,5],2,[1,2,3]]).
data(7,[2,4,3,4,3,[2,4,5],4,[1,2,3]]).
data(8,[4,5,4,[2,3,5],5,3,[1,2,3],[1,2,3]]).
data(9,[2,3,5,3,[1,3,5],4,2,3]).
data(10,[4,2,1,5,2,[4,5],3,1]).
total cases(7346640384).
% more attrib.pl [Operation 2]
decision([8]).
decval([1]).
condition([1,2,3,4,5,6,7]).

In Operation 1, the contents in data file are displayed.
The statement object(10,8) implies that there are 10 ob-
jects and 8 attributes. Every tuple of data is denoted by
means of a list structure. In Operation 2, the contents of
the attribute definition file are displayed. Here for the sim-
plicity, we identify an attribute with the ordinal number
of this attribute, for example an attribute B is identified
with 2. The contents indicate the 8th attribute(={H}) is
the decision attribute and this attribute value is 1, namely
rules, whose decision is [8,1], are specified. Attributes 1
to 7(={A, B, · · · , G}) are applied as condition attributes.
According to such syntax, it is possible to define any NIS



and any rule.
% plc [Operation 3]
?-consult(rule.pl). [Operation 4]
yes
?-translate. [Operation 5]
File Name for Read Open:’data.pl’.
Decision Definition File:’attrib.pl’.
File Name for Write Open:’data.rs’.
EXEC TIME=0.147(sec)
yes
?-init. [Operation 6]
Certain Rules come from [3,5,10]
EXEC TIME=0.003(sec)
yes

In Operation 3, prolog complier is invoked. In Opera-
tion 4, a prolog program is included. In Operation 5, the
contents in the data file and the attribute definition file
are translated into internal expressions, which are stored
in data.rs file. Operation 6 shows it is possible to gener-
ate a certain rule from each of objects 3, 5 and 10. These
are examined by means of checking such a formula like
∩i=1,7,definitesup(3, (ζi), {i}) ⊂inf(3, (1), {8}). Therefore,
minimal certain rules are only generated from these three
objects.
?-minimal. [Operation 7]
<<Minimal Certain Rules from object 3>>
DF:[[1,[2,5],[4,5],[5,2]],[2,[2,5],[4,5]], · · ·,
[9,[2,5],[4,5],[5,2],[6,5]]]
<<Minimal Certain Rules from object 5>>
DF:[[1,[1,4],[4,5]],[2,[1,4],[2,1],[4,5],· · ·,
[8,[2,1],[7,4]],[9,[1,4],[2,1],[4,5],[7,4]]]
<<Minimal Certain Rules from object 10>>
[2,2]=>[8,1] [324/324(=6/6,54/54),D-GC:Common]
Rule covers objects [10],Coverage=0.333
EXEC TIME=0.015(sec)
yes

In Operation 7, all minimal certain rules from object 3,
5 and 10 are handled. The unique minimal certain rule,
which appears in 324 derived DISs and belongs to D-GC
class, exists just for object 10. As for objects 3 and 5, there
is no unique minimal certain rule, and every discernibil-
ity function in each object is displayed. The discernibility
function DF (3) is internally in the form of

[[1,[2,5],[4,5],[5,2]],[2,[2,5],[4,5]],[4,[2,5],[4,5],[6,5]],[6,[2,5],
[4,5],[5,2]],[7,[2,5],[4,5],[5,2]],[8,[5,2],[6,5]],[9,[2,5],[4,5],
[5,2],[6,5]]].

In every list, the first element denotes an object, and the
rest elements denote descriptors discriminating the object
from inf(3, (1), {8}).
?-solall(3). [Operation 8]
Number of Descriptors:5. [Operation 9]
Exhaustive Search for less than 32 Cases !!
<<Minimal Certain Rules from object 3>>
Core Descriptors:[]
DF without Cores:[[1,[2,5],[4,5],[5,2]],· · ·,
[8,[5,2],[6,5]],[9,[2,5],[4,5],[5,2],[6,5]]]
Currently Selected Descriptors:[]
[Loop:1]

Descriptors in DF:[[2,5],[4,5],[5,2],[6,5]]
Exhaustive Search([[2,5],[4,5],[5,2],[6,5]]),
16 Cases !!
Finally Selected Descriptors:[]
[4,5]&[6,5]=>[8,1] [17496/17496,D-GC]
Rule covers objects [3],Coverage=0.333
[4,5]&[5,2]=>[8,1] [8748/8748,D-GC]
Rule covers objects [3,10],Coverage=0.667
[2,5]&[6,5]=>[8,1] [34992/34992,D-GC]
Rule covers objects [3],Coverage=0.333
[2,5]&[5,2]=>[8,1] [17496/17496,D-GC]
Rule covers objects [3],Coverage=0.333
EXEC TIME(for Exhaustive Search)=0.013(sec)
yes

In Operation 8, minimal certain rules from object 3 are
handled. This program solall simulates Algorithm 3. A
threshold value α is fixed to 5 in Operation 9. In Loop 1,
there are four descriptors in this discernibility function, and
this value is less than α=5. Therefore, an exhaustive search
begins for all subsets of four descriptors. Four minimal cer-
tain rules are generated. The 2nd rule [4, 5]&[5, 2]=>[8,1]
comes from not only object 3 but also object 10.
?-solall(3). [Operation 10]
Number of Descriptors:2. [Operation 11]
Exhaustive Search for less than 4 Cases !!
<<Minimal Certain Rules from object 3>>
Core Descriptors:[]
DF without Cores:[[1,[2,5],[4,5],[5,2]],· · ·,
[8,[5,2],[6,5]],[9,[2,5],[4,5],[5,2],[6,5]]]
Currently Selected Descriptors:[]
[Loop:1]
Descriptors in DF:[[2,5],[4,5],[5,2],[6,5]]
Select a Descriptor:[5,2]. [Operation 12]
DF without Cores:[[2,[2,5],[4,5]],[4,[2,5],
[4,5],[6,5]]]
Currently Selected Descriptors:[[5,2]]
[Loop:2]
Descriptors in DF:[[2,5],[4,5],[6,5]]
Common Descriptors in DF: [[2,5],[4,5]]
Exhaustive Search([[5,2],[2,5]]),4 Cases !!
Finally Selected Descriptors:[[5,2]]
[2,5]&[5,2]=>[8,1] [17496/17496,D-GC]
Rule covers objects [3],Coverage=0.333
Exhaustive Search([[5,2],[4,5]]),4 Cases !!
Finally Selected Descriptors:[[5,2]]
[4,5]&[5,2]=>[8,1] [8748/8748,D-GC]
Rule covers objects [3,10],Coverage=0.667
EXEC TIME(for Exhaustive Search)=0.006(sec)
yes

In Operation 10, minimal certain rules from object 3
are handled again. In Operation 11, the number of spec-
ified descriptors is fixed to 2. In Loop 1, there are four
descriptors in this discernibility function, and we select a
descriptor [5,2]. In Loop 2, the revised discernibility func-
tion is displayed. The common descriptors [2,5] and [4,5]
satisfy this new discernibility function. Thus, we have two
sets of descriptors [[5,2],[2,5]] and [[5,2],[4,5]] for the origi-
nal discernibility function. Both sets consists of less than



2 descriptors, so an exhaustive search begins for each set,
respectively. Finally, we obtain two minimal certain rules,
which are generated according to the selection [5,2].

IX. Execution Time for Other NISs

Data NIS1 in the previous section is very small, so we de-
fine other NISs and examine the execution time for other
NISs. Table II shows the details of three NISs. These
NISs are also artificial data. The column of derived DISs
indicates the number of all derived DISs from NIS, re-
spectively. Intuitively, it seems hard to pick up every de-
rived DISs sequentially.

NIS |OB| |AT | |V ALA| derived DISs
NIS2 50 10 10 1.57 × 1018

NIS3 100 10 10 7.01 × 1035

NIS4 300 10 10 6.74 × 1086

TABLE II

Definitions of NISs

NIS translate minimal object solall
NIS2 0.896 0.723 7 0.764
NIS3 6.503 3.589 16 1.370
NIS4 49.892 35.345 21 2.943

TABLE III

Execution time(sec) of programs

In Table III, the object column implies the number of ob-
jects, in which some minimal certain rules are generated.
The execution time of minimal depends upon the number
of objects. A program solall are also applied to an object
in each NIS. In this execution, the threshold value α was
fixed to 10. Since |AT |=10, this program began to enumer-
ate 1024(= 210) subsets without specifying any descriptors,
and generated all minimal certain rules. According to Ta-
ble III, we may employ α=10 for NISs as large as NIS4.
For NISs with more large number of attributes, we se-
quentially specify some descriptors in DF (x), and DF (x)
is sequentially reduced. When the sum of specified descrip-
tors and descriptors in the revised DF (x) is smaller than
α, Algorithm 1 is invoked.

X. Concluding Remarks

A tool for generating minimal certain rules in NISs is
presented. Minimal certain rules are not influenced by the
information incompleteness, and they are always consistent
in every derived DIS. We will know the property and the
tendency of data through generated minimal certain rules.

In Example 3, we stated a problem of generating min-
imal certain rules, i.e., interactive selection method may
not generate minimal certain rules. In order to solve this
problem, we applied enumeration method to a set of de-
scriptors satisfying DF (x). Since such problem has also
been discussed in [18,19], it is necessary to include some
theoretical results on monotonic Boolean functions to our
programs. We have to clarify the computational complex-
ity of proposed algorithms, too.

As we have discussed in section VIII, it is possible to con-
trol minimal rule generation in NISs by means of adjusting
a threshold value α. For relatively large size of threshold
α, we obtain most minimal certain rules from objects but
it may take much execution time. On the other hand for
relatively small size of α, it is necessary to specify some
descriptors, and we may obtain small number of minimal
certain rules based on specified descriptors. Although, this
will take less execution time. According to this control,
it is possible to generate minimal certain rules for every
user’s purpose. We will apply this tool to real data with
much missing values and uncertain values.

The author is grateful to anonymous referees for their
useful comments.
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