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Abstract - Efficient assignment and scheduling for tasks 

to multiprocessors is one of the key issues in the effective 
utilization of multiprocessor systems. This problem is well 
known as an NP-hard problem and many heuristic 
methods for finding a optimal or suboptimal schedule 
reported.  
This paper addresses the problem of scheduling to 

multiprocessors represented as directed acyclic task 
graph (DAG) without communication costs to fully 
connected multiprocessors. We propose integrated 
algorithm, called pGA/SPF (Priority-based Genetic 
Algorithm with Shortest Processor First mapping 
method), where a priority-based genetic algorithm is 
improved with the introduction of some knowledge about 
the scheduling problem represented by the used of 
crossover and mutation genetic operators. And new 
mapping method, shortest processor first method, assigns 
the selected task to a processor that can minimize a task 
schedule efficiently. A comparison of proposed algorithm 
with previous reported scheduling algorithms is carried 
out. The proposed algorithm generates same or even 
better solutions than the previous algorithms in terms of 
the completion times of resulting schedules. 

I. INTRODUCTION 

The impressive proliferation in the use of multiprocessor 
systems these days in a great variety of applications is the 
result of many breakthroughs over the last two decades. 
These developments of multiprocessor systems are being 
used for several applications, including fluid flow, weather 
modeling, database systems, real-time, and image processing. 
The data for these applications can be distributed evenly on 
the processors of multiprocessor systems and maximum 
benefits from these systems can be obtained by employing 
and efficient task assignment and scheduling strategy.  

Moreover, multiprocessor systems are increasingly being 
used to meet the high performance and intense computation 
needs of today’s applications. To efficiently execute a 
program on a multiprocessor system, it is essential to solve a 
minimum execution time of multiprocessor scheduling 
problem [1]~[3], which determines how to assign a set of 
tasks to processors and in what order these tasks should be 
executed to obtain the minimum execution time.  

The multiprocessor scheduling problem considered in this 
paper is based the deterministic model, that is, the execution 

time between tasks are represented and the directed acyclic 
graph (DAG) represents the precedence relations of the tasks 
of a multiprocessor system. Such problems are, however, 
extremely difficult to solve and are generally intractable; that 
is, it is well known that relaxed or simplified sub-problems 
constructed from the original scheduling problem by 
imposing a variety of restricting conditions still fall into the 
class of NP-hard problems and we made some strong 
assumptions that communication costs between task nodes 
are not considered. 

Many heuristic based methods and approaches to the task 
scheduling problem have been proposed [4]~[6]. One of the 
major set of heuristics for task scheduling on multiprocessors 
is based on list scheduling [7]~[9]. It has been reported in 
[7][8] that the critical path list scheduling heuristic is within 
5% of the optimal solution 90% of the time when the 
communication cost is ignored, while in the worst case any 
list scheduling is within 50% of the optimal solution.  

Recently, an evolutionary approaches have been developed 
to solve the problem and GA-based approach can find better 
near optimal solution than list scheduling in most case 
[10]~[12]. A GA is a guided random search method where 
elements (called population) are randomly combined until 
some termination condition is achieved. In these GA-based 
scheduling problems, Hou et al. [1], Gen et al. [11] and 
Wang et al.[9] proposed pure genetic algorithms whose main 
difference lays in the way the individuals are code. Wang 
uses a dimensional matrix to code a schedule, while Hou et al. 
and Gen et al. proposed a coding based on strings. In all 
algorithms, no knowledge about the problem is taken into 
account, and the search is accomplished entirely at random.  

In this paper, we demonstrated the impact of integrating 
knowledge- heuristic mapping method as Shortest Processor 
First (SPF) with priority-based genetic algorithm for 
encoding method into multiprocessor scheduling. We 
proposed algorithm, called pGA/SPF (Priority-based Genetic 
Algorithm/Shortest Processor First mapping method), where 
algorithm used the encoding method from Gen’s [11] 
approach and heuristic mapping method that efficiently 
assign tasks to processors refers to the lowest absolute value 
of difference between the schedule length on the processor 
and the earliest start time of the task node. 

We will compare our pGA/SPF with the ETF, HLFET and 
MCP algorithms which belong to the bounded number of 



processors scheduling algorithms to evaluate the 
effectiveness of algorithm by using simple DAG. In 
additionally, instead of testing our pGA/SPF algorithm with 
randomly generated instance, as in [1], we preferred to use as 
benchmark test for some relatively large graph: the 
Newton-Euler inverse dynamics equations task graph for the 
Stanford manipulator [2]. We will compare with other 
previous GA approaches by using this Stanford manipulator 
task graph. 

II. MULTIPROCESSOR SCHEDULING PROBLEMS 

In this paper, we use a well-accepted model of 
multiprocessor system and parallel programs. The system 
consists of m identical processors, m > 1, which are fully 
connected with each other via a reliable network. Each 
processor has its own memory, and can execute at most one 
task at a time and task preemption is not allowed. While 
computing, we made some strong assumptions that 
communication costs between task nodes are not considered. 
An example of a DAG consisting of 10 tasks is shown in Fig. 
2 and a fully connected multiprocessor systems consisting of 
two processors (m = 2). However, the start node s and 
terminal node t are dummy node. Table 1 is data set of 
example DAG that includes the processing time and set of 
predecessors of each task.  

We formulate the problem of multiprocessor scheduling 
that can be stated as finding a scheduling for a general DAG 
as shown in Fig. 2. to be executed on a multiprocessor 
system so that schedule length can be minimized. The 
multiprocessor system with m processors is to assign the 
computation tasks to processors in such a way that 
precedence relations are maintained and that all tasks are 
completed in the shortest possible time as given time chart 
(Fig. 1) with mathematical formulation: 
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Fig. 1.  Time Chart for DAG 
 

And where t max= maxi {ti}, cj is the completion time of 
task Tj, pj the processing time of task Tj, ti the time required 
to process all tasks assigned to processor Pi, Predj the set of 
predecessors of task Tj and p represents a precedence 
relation; a precedence relation between tasks, Tjp Tk means 
that Tj precedes Tk. We assume that the communication 
system is contention free and permits the overlap of 
communication started only after all dates have been received 
from predecessors. And duplication of the same task is not 
allowed. 

III. PGA/SPF APPROACH 

In this section, we present the Priority-based Genetic 
Algorithm (pGA) and Shortest Processor First (SPF) 
mapping method for multiprocessor scheduling problem. We 
demonstrate the operation of the proposed pGA/SPF using 
the simple DAG as shown in Fig 2. 
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Fig. 2.  A directed acyclic graph (DAG) with 10 tasks 
 

Table 1. Data set of DAG 

{1,2,7}

19

10

{8,9,10}{1,3}{1,2,6}{1,4}{2}{2,3,4}{s}{s}{s}{s}{ }Predj

0151213133788200pj

t987654321sTj

{1,2,7}

19

10

{8,9,10}{1,3}{1,2,6}{1,4}{2}{2,3,4}{s}{s}{s}{s}{ }Predj

0151213133788200pj

t987654321sTj

  



procedure 1: priority-based encoding
( initial chromosome )

input: number of processors m,
number of tasks n

output: chromosome [v(j)]
begin

for j = 1 to n                                 // step 0
v(j) random (1, n);
for j = 1 to // step 1⎣ ⎦2/n

j random (1, n); 
k random (1, n);

if j    k  then
swap {v(j),  v(k)};

Output the chromosome [v(j)] // step 2
end

priority v (j) :

10987654321task ID j:

1098764321 5priority v (j) :

10987654321task ID j:

1098764321 5 1098764321 5

priority v (j) :

10987654321task ID j:

1098714326 10priority v (j) :

10987654321task ID j:

1098714326 10 1098714326 10

step 1: Swapping two genes randomly

step 0:Input the gene number randomly

priority v (j) :

10987654321task ID j :

2781014356 9priority v (j) :

10987654321task ID j :

2781014356 9 2781014356 9

step 2: Output  priority-based chromosome 

←

←

←

≠

 

Fig. 3. An example priority-based encoding procedure 
 

A. Priority-based Genetic Algorithm (pGA)   
The scheduling problem can be thought of as consisting of 

two parts: the assignment of tasks to processors and task 
execution ordering within a processor. At list scheduling 
heuristic solves both problems at once. In a GA approach, 
how to encode a schedule for a DAG is a critical step. Special 
difficulty arises because: 1) a schedule contains variable 
number of nodes, and 2) a random sequence of edges usually 
does not correspond to a schedule. To cope with such 
difficulties, Gen et al. [9][10] adopted an indirect approach: 
Gen et al. proposed priority-based encoding method that the 
position of a gene was used to represent a task node and the 
value of the gene was used to represent the priority of the 
task node for constructing a schedule among candidates. As 
proposed encoding method, first randomly generate initial 
chromosome from procedure 1 of Fig. 3. Each position of 
chromosome is called a gene. Each gene will be used the 
priority of node in DAG. This encoding method is easily 
verified that any permutation of the encoding corresponds to 
the schedules, so that most existing genetic operators can 
easily be applied to the encoding. 

Suppose we want to assign n tasks to m processors by 
using above chromosome (Fig. 3). We use the simple DAG 
as Fig. 1, at the beginning, we try to find a node for the 
position next to node s. Node T1, T2, T3, and T4 are eligible 
for the next position, which can be suitable for next start 
node. Here we check their priority that are 6, 5, 3 and 4 
respectively. Then the task T1 has the highest priority of 6 
and is put into the schedule S. Then next possible nodes are 
T2, T3 and T4. They have 5, 3 and 4 priority respectively, and 

then we put T2 into schedule S. And we repeat these steps 
until we obtain complete schedule S = {T1, T2, T4, T7, T3, T5, 
T9, T10, T6, T8} as decoding procedure 2 (Fig. 5). 

B. Shortest Processor First (SPF) with Mapping   
Next step, we assign the selected task Tj to processor Pi 

from the above completed schedule which corresponds to 
lowest absolute value of difference between the current 
schedule length on the processor and the earliest start time of 
the task node as shown the procedure 3. If the processor 
exists, our algorithm assigns the selected task Tj to the 
processor Pi with the smallest value of ai =|li - ek|. Otherwise 
it assigns the selected task Tj to the processor that allows the 
earliest execution, using the non insertion approach. 

Procedure 3 describes the task assignment procedure. And 
where ej is the earliest start time of task Tj, li the schedule 
length of processor Pi and ai is the absolute value of 
difference between the earliest start time of task Tj and the 
schedule length on the processor Pi. 

 

priority v (j) :

task ID j :

2311084756 9

10987654321

priority v (j) :

task ID j :

2311084756 9 2311084756 9

10987654321

 
Fig. 4.  A priority-based encoding chromosome 

C. Evaluation Function   
The calculation of the evaluation function is quite simple. 

First, the Gantt chart of each string is calculated. The length 
of each processor string is measured to find the total finishing 
time of the schedule. The evaluation function used for our 
algorithm is based on the makespan (Fmax) of schedule. 



procedure 2: decoding (one schedule growth)
input: number of tasks n, chromosome [v(j)], 

set of task nodes
output: schedule S
begin

Ø, S    Ø;                    //step 0
n    0, j   0;

while ( j ≦ n ) do               //step 1
Predj;

j* argmax{ v(j)| j∈ };
∖ j*;

S j*;
j* j;

Output the S                       //step 2
end

S

S

S

S

∪S
S

S
S ∪

procedure 3: decoding ( assigning  tasks )
input: processing time pk for each task, schedule S, 

set of predecessors Predj 
output: makespan F
begin

cj 0, j = 1,2, …, n //step 0
li 0, i = 1,2, …, m
k 0;

for r = 1 to n                                             //step 1
k S [r]
ek    max {cj| j ∈ Predk};
i* argmin {ai| ai=|li - ek|, i = 1,2, …, m};
ck    + pk;

ck;
makespan F max{ ck, k = 1,2, …, n } // step 2

end
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Fig. 5.  Decoding procedures 

 
We convert the minimization problem to maximization 
problem, that is, the used evaluation function is as follow:  

 
 
 

where   kFmax : the makespan of the k-th chromosome 

D. Crossover   

Here the position-based crossover operator by the weight 
mapping crossover (WMX) that we proposed. It can be 
viewed as two-point crossover of binary string and 
remapping by order of different binary string as shown in Fig. 
6. 

 
Fig. 6. Weight Mapping Crossover (WMX) 

E. Mutation   

We proposed the swap mutation operator, in which two 
positions are selected at random and their contents are 
swapped as shown in Fig. 7. 

Fig. 7.  Swap Mutation operator 

IV. NUMERICAL EXAMPLES AND ANALYSES 

A. Example 1 (DAG Fig. 2)   

Our proposed pGA/SPF algorithm, as mentioned above, 
creates a schedule the task graph onto the multiprocessor 
system with two processors. We present the performance 
results of the proposed pGA/SPF algorithm and compare 
with the HLFET (High Levels First with Estimated Times) 
by Adam et al. [8], ETF (Earliest Test First) by Hwang et al. 
[7] and MCP (Modified Critical Path) by Wu et al. [13] 
algorithms as shown in Fig 8. The HLFET algorithm 
schedule the nodes in the same schedule as the MCP 
algorithm (makespan = 64 time unit) and ETF algorithm 
schedule the worse (makespan = 67 time unit) than other 
algorithms.  

As a result, our proposed algorithm performed batter than 
other three algorithms (makespan = 59 time unit). 

popSizeiFveval k
k ,...,1,/1)( max ==

278101435parent 1 : 6 9 278101435parent 1 : 6 9

26398451parent 2 : 7 10 26398451parent 2 : 7 10

substring selected

1  10    8    7

offspring 1 :

offspring 2 :

4 1     2    3
8101 78101 8101 7

398 6398 398 6
2 1     4    3 4 1     2    3

2 1     4    3

268934517 10 268934517 10

2711084356 9

step 0: select the substring at random

step 1: determine mapping relationship

step 2: legalize offspring with mapping relationship

8   9     3    6

8   10    1    7

3   9     8    6

271108435parent : 6 9 271108435parent : 6 9

231108475offspring : 6 9

Exchanging points



Fig. 8.  The schedule Gantt chart of the task graph on Fig 2 generated by ETF, MCP, HLFET and pGA/SPF algorithms. 
 

Table 2.  Comparative Results for the Stanford Manipulator Task Graph 

100.0100.096.657057059057010
94.791.291.46056286275736
91.387.386.36426716795865
91.086.885.17247597746594
99.097.393.78889039388793
99.799.699.412461247124912422

pGA/SPFT-G’s
GA (14)

Hou et 
al.’s
GA (1)

pGA/SPFT-G’s
GA (14)

Hou et al.’s
GA (1)

Optimal solution/GA approaches (%)Best Solution (time unit)
Optimal 
Solution

Number of 
Processors

100.0100.096.657057059057010
94.791.291.46056286275736
91.387.386.36426716795865
91.086.885.17247597746594
99.097.393.78889039388793
99.799.699.412461247124912422

pGA/SPFT-G’s
GA (14)

Hou et 
al.’s
GA (1)

pGA/SPFT-G’s
GA (14)

Hou et al.’s
GA (1)

Optimal solution/GA approaches (%)Best Solution (time unit)
Optimal 
Solution

Number of 
Processors

 
 

B. Example 2 (Stanford Manipulator Graph)   

In a numerical experiment, we use the data of the 
Newton-Euler inverse dynamics equations task graph for the 
Stanford manipulator [2] as a large-scale of benchmark test. 
The Stanford manipulator task graph consists of 88 tasks. In 
Fig. 10, it does not need take nodes 1 and 90 into 
consideration because they are additional dummy nodes. We 
used same parameter of former GA approaches- Hou et al.’s 
GA [1] and T-G’s GA [14] (Tsujimura and Gen)- to compare 
pGA/SPF with them. The proposed pGA/SPF used the 
following parameters throughout the simulations: 

Population size: popSize = 30 

Maximum generation: maxGen = 2000 
Crossover probability: pC = 0.7 
Mutation probability: pM = 0.3 
The comparative results for various numbers of processors 

are summarized in Table 2. We present the performance 
results of the proposed pGA/SPF algorithm and compare 
with the Hou et al.’s GA and T-G’s approaches as shown in 
Fig 9. pGA/SPF presents the ranging from 0.0 to 10% greater 
than the optimal solutions. 

V. CONCLUSION 

In This paper presents pGA/SPF scheduling algorithms 
which can schedule the directed acyclic graph (DAG) with 
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precedence constraints between each task. The pGA/SPF 
algorithm schedules the tasks and it is suitable for graphs 
with arbitrary computation and without communication costs, 
and applicable to homogeneous fully connected processors. 
The performances of the proposed pGA/SPF algorithm have 
been observed by comparing with well-known heuristic list 
scheduling algorithms and other existing genetic algorithm 
approaches in terms of the schedule length. As a result, it is 
confirmed that the proposed pGA/SPF can provide good 
solutions for simple multiprocessor scheduling problems (Fig. 
2) and improve task graph scheduling without significantly 
increasing the scheduling time. In addition, results on the 
second example showed that the completion time can be 
reduced more efficiently by using the proposed algorithm as 
compared with existing approaches. 

In the future, we intent to extend our algorithms to 
schedule both the tasks and the messages for task graphs with 
arbitrary computation and communication costs. 
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Fig. 9.  Number of processors versus Best Solution 
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Fig. 10.  Stanford manipulator with 88 tasks 


