
A Comparison of Multiprocessor Scheduling Algorithms
without Communication Costs
ReaKook Hwang* and Mitsuo Gen**

* Graduate School of Information, Production & Systems, Waseda University
rkhwnag@ruri.waseda.jp

** Graduate School of Information, Production & Systems, Waseda University
gen@ruri.waseda.jp

Abstract - Efficient assignment and scheduling for tasks

to multiprocessors is one of the key issues in the effective
utilization of multiprocessor systems. This problem is well
known as an NP-hard problem and many heuristic
methods for finding a optimal or suboptimal schedule
reported.
This paper addresses the problem of scheduling to

multiprocessors represented as directed acyclic task
graph (DAG) without communication costs to fully
connected multiprocessors. We propose integrated
algorithm, called pGA/SPF (Priority-based Genetic
Algorithm with Shortest Processor First mapping
method), where a priority-based genetic algorithm is
improved with the introduction of some knowledge about
the scheduling problem represented by the used of
crossover and mutation genetic operators. And new
mapping method, shortest processor first method, assigns
the selected task to a processor that can minimize a task
schedule efficiently. A comparison of proposed algorithm
with previous reported scheduling algorithms is carried
out. The proposed algorithm generates same or even
better solutions than the previous algorithms in terms of
the completion times of resulting schedules.

I. INTRODUCTION

The impressive proliferation in the use of multiprocessor
systems these days in a great variety of applications is the
result of many breakthroughs over the last two decades.
These developments of multiprocessor systems are being
used for several applications, including fluid flow, weather
modeling, database systems, real-time, and image processing.
The data for these applications can be distributed evenly on
the processors of multiprocessor systems and maximum
benefits from these systems can be obtained by employing
and efficient task assignment and scheduling strategy.

Moreover, multiprocessor systems are increasingly being
used to meet the high performance and intense computation
needs of today’s applications. To efficiently execute a
program on a multiprocessor system, it is essential to solve a
minimum execution time of multiprocessor scheduling
problem [1]~[3], which determines how to assign a set of
tasks to processors and in what order these tasks should be
executed to obtain the minimum execution time.

The multiprocessor scheduling problem considered in this
paper is based the deterministic model, that is, the execution

time between tasks are represented and the directed acyclic
graph (DAG) represents the precedence relations of the tasks
of a multiprocessor system. Such problems are, however,
extremely difficult to solve and are generally intractable; that
is, it is well known that relaxed or simplified sub-problems
constructed from the original scheduling problem by
imposing a variety of restricting conditions still fall into the
class of NP-hard problems and we made some strong
assumptions that communication costs between task nodes
are not considered.

Many heuristic based methods and approaches to the task
scheduling problem have been proposed [4]~[6]. One of the
major set of heuristics for task scheduling on multiprocessors
is based on list scheduling [7]~[9]. It has been reported in
[7][8] that the critical path list scheduling heuristic is within
5% of the optimal solution 90% of the time when the
communication cost is ignored, while in the worst case any
list scheduling is within 50% of the optimal solution.

Recently, an evolutionary approaches have been developed
to solve the problem and GA-based approach can find better
near optimal solution than list scheduling in most case
[10]~[12]. A GA is a guided random search method where
elements (called population) are randomly combined until
some termination condition is achieved. In these GA-based
scheduling problems, Hou et al. [1], Gen et al. [11] and
Wang et al.[9] proposed pure genetic algorithms whose main
difference lays in the way the individuals are code. Wang
uses a dimensional matrix to code a schedule, while Hou et al.
and Gen et al. proposed a coding based on strings. In all
algorithms, no knowledge about the problem is taken into
account, and the search is accomplished entirely at random.

In this paper, we demonstrated the impact of integrating
knowledge- heuristic mapping method as Shortest Processor
First (SPF) with priority-based genetic algorithm for
encoding method into multiprocessor scheduling. We
proposed algorithm, called pGA/SPF (Priority-based Genetic
Algorithm/Shortest Processor First mapping method), where
algorithm used the encoding method from Gen’s [11]
approach and heuristic mapping method that efficiently
assign tasks to processors refers to the lowest absolute value
of difference between the schedule length on the processor
and the earliest start time of the task node.

We will compare our pGA/SPF with the ETF, HLFET and
MCP algorithms which belong to the bounded number of

processors scheduling algorithms to evaluate the
effectiveness of algorithm by using simple DAG. In
additionally, instead of testing our pGA/SPF algorithm with
randomly generated instance, as in [1], we preferred to use as
benchmark test for some relatively large graph: the
Newton-Euler inverse dynamics equations task graph for the
Stanford manipulator [2]. We will compare with other
previous GA approaches by using this Stanford manipulator
task graph.

II. MULTIPROCESSOR SCHEDULING PROBLEMS

In this paper, we use a well-accepted model of
multiprocessor system and parallel programs. The system
consists of m identical processors, m > 1, which are fully
connected with each other via a reliable network. Each
processor has its own memory, and can execute at most one
task at a time and task preemption is not allowed. While
computing, we made some strong assumptions that
communication costs between task nodes are not considered.
An example of a DAG consisting of 10 tasks is shown in Fig.
2 and a fully connected multiprocessor systems consisting of
two processors (m = 2). However, the start node s and
terminal node t are dummy node. Table 1 is data set of
example DAG that includes the processing time and set of
predecessors of each task.

We formulate the problem of multiprocessor scheduling
that can be stated as finding a scheduling for a general DAG
as shown in Fig. 2. to be executed on a multiprocessor
system so that schedule length can be minimized. The
multiprocessor system with m processors is to assign the
computation tasks to processors in such a way that
precedence relations are maintained and that all tasks are
completed in the shortest possible time as given time chart
(Fig. 1) with mathematical formulation:

⎩
⎨
⎧

=

===

==

=≤

≥−

∑

∑

=

=

otherwise,0

processor toassigned is task if,1
where

...,,1,...,,1,1or0

...,,1,1

...,,1,

,t.s.

}}{max{min

1

1
max

ij
ij

ij

m

i
ij

n

j
ijj

kjjkk

ijjj

PT
x

njmix

njx

mitxp

TTcpc

xc

p

jp kp
jc kc

P1

time

Pm

Tj

Tk

Pi

…
…

Fig. 1. Time Chart for DAG

And where t max= maxi {ti}, cj is the completion time of
task Tj, pj the processing time of task Tj, ti the time required
to process all tasks assigned to processor Pi, Predj the set of
predecessors of task Tj and p represents a precedence
relation; a precedence relation between tasks, Tjp Tk means
that Tj precedes Tk. We assume that the communication
system is contention free and permits the overlap of
communication started only after all dates have been received
from predecessors. And duplication of the same task is not
allowed.

III. PGA/SPF APPROACH

In this section, we present the Priority-based Genetic
Algorithm (pGA) and Shortest Processor First (SPF)
mapping method for multiprocessor scheduling problem. We
demonstrate the operation of the proposed pGA/SPF using
the simple DAG as shown in Fig 2.

s

T1 T3 T4

Execution time

T2

T9 T7 T5 T6

T10 T8

t

p1 = 20 p3 = 8 p4 = 7 p2 = 8

p9 = 15
p7 = 13

p5 = 3 p6 = 13

p10 = 19 p8 = 12

Fig. 2. A directed acyclic graph (DAG) with 10 tasks

Table 1. Data set of DAG

{1,2,7}

19

10

{8,9,10}{1,3}{1,2,6}{1,4}{2}{2,3,4}{s}{s}{s}{s}{ }Predj

0151213133788200pj

t987654321sTj

{1,2,7}

19

10

{8,9,10}{1,3}{1,2,6}{1,4}{2}{2,3,4}{s}{s}{s}{s}{ }Predj

0151213133788200pj

t987654321sTj

procedure 1: priority-based encoding
(initial chromosome)

input: number of processors m,
number of tasks n

output: chromosome [v(j)]
begin

for j = 1 to n // step 0
v(j) random (1, n);
for j = 1 to // step 1⎣ ⎦2/n

j random (1, n);
k random (1, n);

if j k then
swap {v(j), v(k)};

Output the chromosome [v(j)] // step 2
end

priority v (j) :

10987654321task ID j:

1098764321 5priority v (j) :

10987654321task ID j:

1098764321 5 1098764321 5

priority v (j) :

10987654321task ID j:

1098714326 10priority v (j) :

10987654321task ID j:

1098714326 10 1098714326 10

step 1: Swapping two genes randomly

step 0:Input the gene number randomly

priority v (j) :

10987654321task ID j :

2781014356 9priority v (j) :

10987654321task ID j :

2781014356 9 2781014356 9

step 2: Output priority-based chromosome

←

←

←

≠

Fig. 3. An example priority-based encoding procedure

A. Priority-based Genetic Algorithm (pGA)
The scheduling problem can be thought of as consisting of

two parts: the assignment of tasks to processors and task
execution ordering within a processor. At list scheduling
heuristic solves both problems at once. In a GA approach,
how to encode a schedule for a DAG is a critical step. Special
difficulty arises because: 1) a schedule contains variable
number of nodes, and 2) a random sequence of edges usually
does not correspond to a schedule. To cope with such
difficulties, Gen et al. [9][10] adopted an indirect approach:
Gen et al. proposed priority-based encoding method that the
position of a gene was used to represent a task node and the
value of the gene was used to represent the priority of the
task node for constructing a schedule among candidates. As
proposed encoding method, first randomly generate initial
chromosome from procedure 1 of Fig. 3. Each position of
chromosome is called a gene. Each gene will be used the
priority of node in DAG. This encoding method is easily
verified that any permutation of the encoding corresponds to
the schedules, so that most existing genetic operators can
easily be applied to the encoding.

Suppose we want to assign n tasks to m processors by
using above chromosome (Fig. 3). We use the simple DAG
as Fig. 1, at the beginning, we try to find a node for the
position next to node s. Node T1, T2, T3, and T4 are eligible
for the next position, which can be suitable for next start
node. Here we check their priority that are 6, 5, 3 and 4
respectively. Then the task T1 has the highest priority of 6
and is put into the schedule S. Then next possible nodes are
T2, T3 and T4. They have 5, 3 and 4 priority respectively, and

then we put T2 into schedule S. And we repeat these steps
until we obtain complete schedule S = {T1, T2, T4, T7, T3, T5,
T9, T10, T6, T8} as decoding procedure 2 (Fig. 5).

B. Shortest Processor First (SPF) with Mapping
Next step, we assign the selected task Tj to processor Pi

from the above completed schedule which corresponds to
lowest absolute value of difference between the current
schedule length on the processor and the earliest start time of
the task node as shown the procedure 3. If the processor
exists, our algorithm assigns the selected task Tj to the
processor Pi with the smallest value of ai =|li - ek|. Otherwise
it assigns the selected task Tj to the processor that allows the
earliest execution, using the non insertion approach.

Procedure 3 describes the task assignment procedure. And
where ej is the earliest start time of task Tj, li the schedule
length of processor Pi and ai is the absolute value of
difference between the earliest start time of task Tj and the
schedule length on the processor Pi.

priority v (j) :

task ID j :

2311084756 9

10987654321

priority v (j) :

task ID j :

2311084756 9 2311084756 9

10987654321

Fig. 4. A priority-based encoding chromosome

C. Evaluation Function
The calculation of the evaluation function is quite simple.

First, the Gantt chart of each string is calculated. The length
of each processor string is measured to find the total finishing
time of the schedule. The evaluation function used for our
algorithm is based on the makespan (Fmax) of schedule.

procedure 2: decoding (one schedule growth)
input: number of tasks n, chromosome [v(j)],

set of task nodes
output: schedule S
begin

Ø, S Ø; //step 0
n 0, j 0;

while (j ≦ n) do //step 1
Predj;

j* argmax{ v(j)| j∈ };
∖ j*;

S j*;
j* j;

Output the S //step 2
end

S

S

S

S

∪S
S

S
S ∪

procedure 3: decoding (assigning tasks)
input: processing time pk for each task, schedule S,

set of predecessors Predj
output: makespan F
begin

cj 0, j = 1,2, …, n //step 0
li 0, i = 1,2, …, m
k 0;

for r = 1 to n //step 1
k S [r]
ek max {cj| j ∈ Predk};
i* argmin {ai| ai=|li - ek|, i = 1,2, …, m};
ck + pk;

ck;
makespan F max{ ck, k = 1,2, …, n } // step 2

end

*i
l

*i
l

← ←

← ←

←

←
←

←

←

←

←

←

←

←

←

←

←

←

Fig. 5. Decoding procedures

We convert the minimization problem to maximization
problem, that is, the used evaluation function is as follow:

where kFmax : the makespan of the k-th chromosome

D. Crossover

Here the position-based crossover operator by the weight
mapping crossover (WMX) that we proposed. It can be
viewed as two-point crossover of binary string and
remapping by order of different binary string as shown in Fig.
6.

Fig. 6. Weight Mapping Crossover (WMX)

E. Mutation

We proposed the swap mutation operator, in which two
positions are selected at random and their contents are
swapped as shown in Fig. 7.

Fig. 7. Swap Mutation operator

IV. NUMERICAL EXAMPLES AND ANALYSES

A. Example 1 (DAG Fig. 2)

Our proposed pGA/SPF algorithm, as mentioned above,
creates a schedule the task graph onto the multiprocessor
system with two processors. We present the performance
results of the proposed pGA/SPF algorithm and compare
with the HLFET (High Levels First with Estimated Times)
by Adam et al. [8], ETF (Earliest Test First) by Hwang et al.
[7] and MCP (Modified Critical Path) by Wu et al. [13]
algorithms as shown in Fig 8. The HLFET algorithm
schedule the nodes in the same schedule as the MCP
algorithm (makespan = 64 time unit) and ETF algorithm
schedule the worse (makespan = 67 time unit) than other
algorithms.

As a result, our proposed algorithm performed batter than
other three algorithms (makespan = 59 time unit).

popSizeiFveval k
k ,...,1,/1)(max ==

278101435parent 1 : 6 9 278101435parent 1 : 6 9

26398451parent 2 : 7 10 26398451parent 2 : 7 10

substring selected

1 10 8 7

offspring 1 :

offspring 2 :

4 1 2 3
8101 78101 8101 7

398 6398 398 6
2 1 4 3 4 1 2 3

2 1 4 3

268934517 10 268934517 10

2711084356 9

step 0: select the substring at random

step 1: determine mapping relationship

step 2: legalize offspring with mapping relationship

8 9 3 6

8 10 1 7

3 9 8 6

271108435parent : 6 9 271108435parent : 6 9

231108475offspring : 6 9

Exchanging points

Fig. 8. The schedule Gantt chart of the task graph on Fig 2 generated by ETF, MCP, HLFET and pGA/SPF algorithms.

Table 2. Comparative Results for the Stanford Manipulator Task Graph

100.0100.096.657057059057010
94.791.291.46056286275736
91.387.386.36426716795865
91.086.885.17247597746594
99.097.393.78889039388793
99.799.699.412461247124912422

pGA/SPFT-G’s
GA (14)

Hou et
al.’s
GA (1)

pGA/SPFT-G’s
GA (14)

Hou et al.’s
GA (1)

Optimal solution/GA approaches (%)Best Solution (time unit)
Optimal
Solution

Number of
Processors

100.0100.096.657057059057010
94.791.291.46056286275736
91.387.386.36426716795865
91.086.885.17247597746594
99.097.393.78889039388793
99.799.699.412461247124912422

pGA/SPFT-G’s
GA (14)

Hou et
al.’s
GA (1)

pGA/SPFT-G’s
GA (14)

Hou et al.’s
GA (1)

Optimal solution/GA approaches (%)Best Solution (time unit)
Optimal
Solution

Number of
Processors

B. Example 2 (Stanford Manipulator Graph)

In a numerical experiment, we use the data of the
Newton-Euler inverse dynamics equations task graph for the
Stanford manipulator [2] as a large-scale of benchmark test.
The Stanford manipulator task graph consists of 88 tasks. In
Fig. 10, it does not need take nodes 1 and 90 into
consideration because they are additional dummy nodes. We
used same parameter of former GA approaches- Hou et al.’s
GA [1] and T-G’s GA [14] (Tsujimura and Gen)- to compare
pGA/SPF with them. The proposed pGA/SPF used the
following parameters throughout the simulations:

Population size: popSize = 30

Maximum generation: maxGen = 2000
Crossover probability: pC = 0.7
Mutation probability: pM = 0.3
The comparative results for various numbers of processors

are summarized in Table 2. We present the performance
results of the proposed pGA/SPF algorithm and compare
with the Hou et al.’s GA and T-G’s approaches as shown in
Fig 9. pGA/SPF presents the ranging from 0.0 to 10% greater
than the optimal solutions.

V. CONCLUSION

In This paper presents pGA/SPF scheduling algorithms
which can schedule the directed acyclic graph (DAG) with

20

P1

time

P2

157

T4T4 T2T2 T3T3

23

T1T1 T6T6

33

ETF algorithm

T5T5

26

T7T7

39

T9T9

48

T8T8

51

T10T10

67

Makespan: 67

20157

P1

time

P2 T4T4 T2T2

T1T1

MCP and HLFET algorithm

T7T7

33

T6T6 T3T3

41

T10T10

52

T9T9

56

T8T8

64

T5T5

59

Makespan: 64

time

Makespan: 59

P1

P2

208 16

T3T3

2927 5940

⎩
⎨
⎧

→→→
→→→→→

=
)}59:40,()40:27,()27:20,()20:0,{(

)}59:47,()47:32,()32:29,()29:16,()16:8,()8:0,{(

107412

8956231

TTTTP
TTTTTTP

S

T2T2

T1T1

T6T6

T4T4

T5T5

32

T7T7

T9T9

47

T10T10

T8T8

pGA/SPF algorithm

⎩
⎨
⎧

→→→→
→→→→

=
)}64:52,()52:33,()33:20,()15:7,()7:0,{(
)}59:56,()56:41,()41:33,()33:20,()20:0,{(

8107242

593611

TTTTTP
TTTTTP

S

⎩
⎨
⎧

→→→→→
→→→

=
)}51:39,()39:26,()26:23,()23:15,()15:7,()7:0,{(

)}67:48,()48:33,()33:20,()20:0,{(

8753242

109611

TTTTTTP
TTTTP

S

precedence constraints between each task. The pGA/SPF
algorithm schedules the tasks and it is suitable for graphs
with arbitrary computation and without communication costs,
and applicable to homogeneous fully connected processors.
The performances of the proposed pGA/SPF algorithm have
been observed by comparing with well-known heuristic list
scheduling algorithms and other existing genetic algorithm
approaches in terms of the schedule length. As a result, it is
confirmed that the proposed pGA/SPF can provide good
solutions for simple multiprocessor scheduling problems (Fig.
2) and improve task graph scheduling without significantly
increasing the scheduling time. In addition, results on the
second example showed that the completion time can be
reduced more efficiently by using the proposed algorithm as
compared with existing approaches.

In the future, we intent to extend our algorithms to
schedule both the tasks and the messages for task graphs with
arbitrary computation and communication costs.

80

82

84

86

88

90

92

94

96

98

100

2 3 4 5 6 7 10

Nu mbe r o f P r o c e sso r s

O
pt

im
al

 s
ol

ut
io

n/
G

A
 a

pp
ro

ac
he

s
(%

)

Hou et al.’s T-G’s pGA/SPF

Fig. 9. Number of processors versus Best Solution

REFERENCES

[1] E. Hou, N. Ansari and H. Ren : “A Genetic Algorithm for
Multiprocessor Scheduling”, IEEE Trans. on Parallel and
Distributed System, Vol.5, No.2, pp.113-120 (1994)

[2] H. Kasahara and S. Narita : “Parallel Processing of Robot-Arm
Control Computation on a Multimicroprocessor System”, IEEE
Trans. of Robotics and Automation, Vol.Ra-1, No.2, pp.686-701
(1985)

[3] T. Tsuchiya, T. Osada and T. Kikuno : “A new heuristic
algorithm based on GAs for multiprocessor scheduling with task
duplication”, Proc. of Algorithms and Architectures for Parallel
Processing, Vol.10, No.12, pp.295-308 (1997)

[4] A. Gerasoulis amd T. Yang : “On the granularity and clustering
of directed acyclic task graphs”, IEEE Trans. on Parallel and
Distributed Systems, Vol.4, No.6, pp.686-701 (1996)

[5] M.A. Palis and J.C. Lieu : “Task clustering and scheduling for
distributed memory parallel architectures”, IEEE Trans. on
Parallel and Distributed Systems, Vol.7, No.1, pp.46-55 (1996)

[6] S. H. Woo, S. B. Yang, S. D. Kim and T. D. Han : “Task
scheduling in distributed computing systems with a genetic
algorithm”, Proc, of High Performance Computing on the
Information Superhighway, HPC Asia '97, pp.301-305 (1997)

[7] T. Tsuchiya, T. Osada and T. Kikuno : “A new heuristic
algorithm based on GAs for multiprocessor scheduling with task
duplication”, Proc. of Algorithms and Architectures for Parallel
Processing, Vol.10, No.12, pp.295-308 (1997)

[8] S. Darbha and D.P. Agrawal : “Optimal scheduling algorithm for
distributed-memory machines”, IEEE Trans. on Parallel and
Distributed Systems, Vol.9, No.1, pp.87-95 (1998)

[9] M.A. Palis and J. C. Lieu : “A new heuristic for scheduling
parallel programs on multiprocessor”, Proc. of International
Conference on Parallel Architectures and Compilation
Techniques, Vol.2, No.18, pp.358-365 (1998)

[10] M. Gen and R. Cheng : Genetic Algorithms & Engineering
Design, John Wiley & Sons, New York, (1997)

[11] M. Gen and R. Cheng : Genetic Algorithm and Engineering
Optimization, John Wiley and Sons, New York, (2000)

[12] R.K. Hwang and M. Gen : “Task Scheduling in Parallel and
Distributed Systems Using Priority-based Genetic Algorithm”,
Proc. 33rd International Conference on Computer and
Industrial Engineering, Korea, pp.686-701 (2004)

[13] M.-Y. Wu and D. D. Gajski : “Hypertool: A programming aid
for message-passing systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol.1, No.3, pp.330-343 (1990)

[14] Tsujimura, Y. and M. Gen : “Genetic algorithms for solving
multiprocessor scheduling problems”, Simulated Evolution and
Learning , Springer-Verlag, Heidelberg, pp.106-115 (1995).

21 31

41

11

51

61

71

81

10 12 13

4 56

7 18

9

22

3242

52

62

72

2

20

30

40

50

60

70

80

23

33

43

53

63

73

83

3

14

24

34

44

54

64

74

84

15

25

35

45

55

65

75

85

16

26

36

46

56

66

76

86

17

27

37

47

57

67

７7

28

38

48

58

68

8

78

88

19

29
39

49

59

69

798２

87

89

90

1 0

1 1

5 10 5 5 10

101515

1 57 66 38 15 1024

10

40 32 57 15 10 1038 53

12

24

39 4

15 24 10 57 32 66 12

40 12 10 57 32

24 15

24

40 12 84 38111

69 42 10

39

66

39 28

28

28

39

24

39

12

40

40

40 38

40

12

24

12

42

28

24

24

24

24

28 24

10 10

24

24

24

24

0

37

36

8

21 31

41

11

51

61

71

81

10 12 13

4 56

7 18

9

22

3242

52

62

72

2

20

30

40

50

60

70

80

23

33

43

53

63

73

83

3

14

24

34

44

54

64

74

84

15

25

35

45

55

65

75

85

16

26

36

46

56

66

76

86

17

27

37

47

57

67

７7

28

38

48

58

68

8

78

88

19

29
39

49

59

69

798２

87

89

90

1 0

1 1

5 10 5 5 10

101515

1 57 66 38 15 1024

10

40 32 57 15 10 1038 53

12

24

39 4

15 24 10 57 32 66 12

40 12 10 57 32

24 15

24

40 12 84 38111

69 42 10

39

66

39 28

28

28

39

24

39

12

40

40

40 38

40

12

24

12

42

28

24

24

24

24

28 24

10 10

24

24

24

24

0

37

36

8

Fig. 10. Stanford manipulator with 88 tasks

