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Abstract— In this paper, we propose a solution method using
genetic algorithm for traveling salesman problem with visiting or-
ders. Since the order visiting cities has to be considered, we define
the good character of individual as the order visiting cities. Con-
cretely, the order visiting each city in individuals which are parents
is inherited to children in the proposed crossover. The effectiveness
of our method was verified by numerical experiments.

I. I NTRODUCTION

Traveling salesman problem (TSP) is a typical combinatorial
optimization problem that is known to beNP-hard. Therefore,
various approximation algorithms have been studied. Among
such algorithms genetic algorithm (GA) has been applied to
TSP well since the use is easy and a solution with compara-
tively high accuracy is obtained for a short time. TSP is the
problem which finds a minimum tour in which all of given
cities are visited. However, in many cases another constraint
is added to TSP. For example, there is a case that the appointed
time for some specific cities has been decided beforehand. TSP
with such constraint is called Traveling Salesman Problem with
Time Windows (TSPTW), and recently there are many studies
on TSPTW[1][2][3][5][6]. In this paper, we treat TSP with a
constraint on the order visiting cities. That is, it has been de-
cided beforehand that some specific cities must be visited be-
fore other cities, respectively. Such TSP will be called Travel-
ing Salesman Problem with Visiting Orders (TSPVO). To think
such problem is needed in the situation that the result of a meet-
ing held at a city has to be reported in a meeting held at an-
other city. Many of the methods of GA for TSP which have
been known define the good character as the edges which con-
struct the tour, and in the crossover edges that parents possess
are inherited to the children. The first crossover that inherits
edges was proposed by Grefenstette[4]. Whitley[10] proposed
a crossover (EX) that improved on Grefenstette’s crossover. EX
increases the inheritance rate of edges than the Grefenstette’s
one. SXX[12] and EXX[7] are the crossover in which the edges
of parents are inherited completely. Although it is guaranteed
that in SXX and EXX, the length of the generated tours is much
the same as the length of the parent tours, they can not keep up
diversity of the population. EAX[8] is developed by consider-
ing the balance between the inheritance rate of edges and the
variation of generated individuals. If we pursue only the length

of the tour, then the edges which construct the tour should be
defines as the good character. In TSPVO, however, to inherit the
order visiting cities is more natural than to inherit edges which
construct the tour. In this paper, we define the good character
of individual as the order visiting cities, and the good character
is used as the guide which designs our solution method. Al-
though generated individuals may have some crossing edges,
this fact will be of helpful for keeping up diversity of the pop-
ulation. The solution candidates with crossing edges will be
modified by applying the 2-opt method [7]. It cannot be said
that our crossover is enough from the point of the local search
since solution space is searched widely. To make up for this
point, we propose a mutation which works like local search.
That is, some cities are selected randomly, and if the tour is
improved by changing the locations of selected cities, then the
original tour is updated. Our method can obtain a good solution
by balancing between crossover and mutation. This fact will be
verified by the numerical experiment using some instances.

II. T RAVELING SALESMAN PROBLEM WITH V ISITING

ORDERS

Let G = (V, E) be a complete graph withn vertices, andd :
E → Z+ be a distance function which satisfies the following
condition:

∀c, c′ ∈ V, d(c, c′) = d(c′, c).

A tour onG is a sequencet : ci1 , ci2 , · · ·, cin
of cities which

satisfies the following condition:

ij 6= ik, (1 ≤ j, k ≤ n, j 6= k).

The lengthl of the tourt is defined as follows,

l =
n−1∑

j=1

d(cij , cij+1) + d(cin , ci1).

Let s be a vertex ofG, and letT ⊆ V 2 be a set of pairs
of vertices. Traveling salesman problem with visiting orders
(TSPVO) is a problem to find a minimum tourt : ci1 , ci2 , · · ·,
cin on G that satisfies the following conditions for givenG, d,
s, andT :
• ci1 = s,
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Fig. 1. An original tour (a) and the modified tour by mutation (b).

• for any(c, c′) ∈ T , if c = cij
andc′ = cik

, thenj < k,
The vertex of graph will be called city,s and the element ofT
will be called starting city and visiting order, respectively.

III. PROPOSEDMETHOD

In this paper, we propose a solution method using GA that
solves TSPVO. In this section, a crossover which inherits the
order visiting cities and a mutation are proposed.

A. Crossover

Let t : ci1 , ci2 , · · ·, cin be a tour, andcs(= cij ) andck(= cil
)

be cities. The visiting rank of cityck for the citycs on the tour
t, which is denoted byrt(cs, ck), is defined as follows:

rt(cs, ck) =
{

l − j, if il > ij ,
n− j + l, otherewise.

That is, the visiting rankrt(cs, ck) denotes the order visiting
ck when salesman starts fromcs on tour t. For example, let
V = {c1, c2, · · · , c10} be a set of cities, and lett : c6, c4, c2, c5,
c1, c9, c3, c10, c8, c7 be a tour. In this case,rt(c2, c8) = 6, and
rt(c3, c4) = 5. The procedure of our proposed crossover is as
follows:

step 1 Select one citycs from the setV , randomly.
step 2 For each cityci ∈ V , the visiting ranksrt1(cs, ci) and

rt2(cs, ci) are computed.
step 3 For eachi(1 ≤ i ≤ n), Rs,i is computed as follows:

Rs,i = rt1(cs, ci) + rt2(cs, ci).

step 4 A tourtc that is the sequence of cities sorted on the
order which increases the value ofRs,i is generated.
That is,

tc : ck1 , ck2 , · · · , ckn ,

whereRs,k1 ≤ Rs,k2 ≤ · · · ≤ Rs,kn
.

step 5 For the generated tourtc, 2-opt method is applied.
The child is the tourt′c that is generated by 2-opt
method.

By the same procedure, one more child is generated from par-
entst1 and t2. For example, lett1: c3, c5, c4, c2, c1, c6 and
t2: c3, c6, c5, c4, c2, c1 be a pair of parents, and letc3 be the
selected city. In this case,

R3,1 = rt1(c3, c1) + rt2(c3, c1) = 4 + 5 = 9,

R3,2 = rt1(c3, c2) + rt2(c3, c2) = 3 + 4 = 7,

R3,3 = rt1(c3, c3) + rt2(c3, c3) = 0 + 0 = 0,

R3,4 = rt1(c3, c4) + rt2(c3, c4) = 2 + 3 = 5,

R3,5 = rt1(c3, c5) + rt2(c3, c5) = 1 + 2 = 3,

R3,6 = rt1(c3, c6) + rt2(c3, c6) = 5 + 1 = 6.

A new tourtc : c3, c5, c4, c6, c2, c1 is generated by sorting cities
on the order which increases the value ofR3,l. For generated
tour tc, 2-opt method is applied, and the childt′c: c3, c2, c1, c6,
c5, c4 is generated.

B. Mutation

The idea of our mutation is as follows (Figure 1):
1) Select a citycs randomly, andcs is removed from tourt.
2) Insertcs to immediately before (or after) the neighboring

city of cs.
3) If the length of the modified tour is shorter than the origi-

nal tour, then the modified tour is substituted for the orig-
inal one.

We enter into detail on our mutation. LetV = {c1, c2, · · · , cn }
be a set of cities, and lett : ci1 , ci2 , · · ·, cin be a tour. On
the tourt, the city which is visited immediately before cityc is
denoted byPt(c), and the city that is visited immediately after
c is denoted byNt(c). Let m andrepN be positive integers,
and letNm(c) be a set of the neighboringm cities for c. Our
proposed mutation is the procedure in which the following is
repeatedrepN times:

step 1 Select one citycs ∈ V randomly.
step 2 For eachc ∈ Nm(cs) − {Pt(cs)), cs, Nt(cs)}, the

following are computed:

lt(0, c) = d(Pt(c), cs) + d(cs, c),

lt(1, c) = d(c, cs) + d(cs, Nt(c)).

step 3 For a pair ofi andc that minimizelt(i, c),

1) if i = 0 and lt(0, c) + d(Pt(cs), Nt(cs)) <
d(Pt(cs), cs) + d(cs, Nt(cs)) + d(Pt(c), c), then the
tourt is modified as follows: go toc via cs fromPt(c),
and go toNt(cs) directly fromPt(cs).

2) if i = 1 and lt(1, c) + d(Pt(cs), Nt(cs)) <
d(Pt(cs), cs) + d(cs, Nt(cs)) + d(c,Nt(c)), then the
tour t is modified as follows: go toNt(c) via cs from
c, and go toNt(cs) directly fromPt(cs).



TABLE I
THE RESULTS OF EXPERIMENTATION1 (* IS THE LENGTH OF THE

OPTIMAL SOLUTION)

Compared Method
Instance

MGA NGA pGA
Best 629 629 629

eil101 Worst 630 629 629
629* Ave. 629.02 629.00 629.00

Freq. 98 100 100
Best 29368 29368 29368

kroA200 Worst 29445 29368 29384
29368* Ave. 29375.29 29368.00 29369.23

Freq. 72 100 89
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Fig. 2. The average length of the best tour in population of each generation on
eil101.

C. proposed method

Our proposed method is as follows:

Initial Population:popN individuals (tours) are generated ran-
domly. The 2-opt method is applied for all generated individu-
als.

Selection of Parents:popN/2 individual pairs are selected ran-
domly.

Generation of Children: For each pair of parents, two children
are generated. That is, the probability of the crossover equals 1.
For all generated children, 2-opt method is applied. Moreover,
mutation is applied for each generated tour.

Existence Selection: Individuals which are left to the next gen-
eration are selected by elite selection from all parents and chil-
dren.

IV. PERFORMANCE EVALUATION

In this section, we show the results of two experiments to
evaluate the performance of our method.

Experimentation 1: We experimented on the instances with
the empty set T. That is, we evaluated the performance of our
method for the simple TSP without visiting orders. In this

Fig. 3. The optimal tour of eil101 obtained by pGA.
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Fig. 4. The average length of the best tour in population of each generation on
KroA200.

experimentation, we compared the proposed method with ex-
isting methods by using two benchmarks eil101 and kroA200
[9]. We adopt Maekawa’s method[7] and Nagata’s method[8]
as the subjects for comparison, and these comparison methods
are called MGA and NGA, respectively. The proposed method
are called pGA below.

Experimentation 2: We evaluated the performance of our
method by using eil101 to which visiting orders are added. The
proposed method was compared with NGA. We experimented
on eil101 to which five and eight visiting orders are added. Pop-
ulation size were set to 100 and 200 if instances are eil101 and
kroA200, respectively. Population size is denoted bypopN be-
low. The number of generations was set to 300. In the pro-
posed method, the probability of crossover, the parameterm,
andrepN are set to 1.0, 20, andpopN , respectively.

A. The results of experimentation 1

In table I, the results of experimentation 1 are shown. The
value of min({bi}), max({bi}), (

∑
bi/100), and the frequency

of the optimal tours (that is, the number of times that the opti-
mal tour is obtained out of 100 trials) are shown, wherebi is the
length of the best tour obtained in theith trial. On the method
MGA the results in [7] are quoted. The average lengths of the



Fig. 5. The optimal tour of KroA200 obtained by pGA.

Fig. 6. The optimal tour of eil101(T5) obtained by pGA. The large vertex and
dotted arrows denote the starting citys and visiting orders, respectively.

best tour in the population of each generation on 100 trials of
eil101 and kroA200 are shown in figure 2 and 4, respectively.
The frequency of the optimal solutions which could be obtained
by pGA is more than the frequency for MGA’s. On the values
of maximum and average, the close values to the optimal so-
lution could be obtained. For kroA200, the accuracy of pGA
could not be better than the accuracy of NGA. In figure 3 and
5, the optimal tours for eil101 and kroA200 obtained by pGA
are shown, respectively.

B. The results of experimentation 2

In table II, the results of experimentation 2 are shown. T5
and T8 are sets of five and eight visiting orders, respectively.
Eil101 to which a set T of visiting orders is added is denoted
by eil101(T). Freq.]1, Best, Worst, Ave., and Freq.]2 denote
the frequency of feasible solutions obtained out of 30 trials, the
minimum value, the maximum value, the average, and the fre-
quency of the best tours in the obtained feasible solutions, re-
spectively. In figure 6, the best solution of eil101(T5) obtained
by pGA is shown. By dotted arrows visiting orders are denoted.
That is, for each arrow, the head city has to be visited after the
tail city when s is the starting city. On both eil101(T5) and
eil101(T8), pGA was able to obtain many feasible solutions
compared with NGA. This is because although the tendency
for NGA to violate the constraint on the order visiting cities has

TABLE II
THE RESULTS OF EXPERIMENTATION2 (* IS THE LENGTH OF THE BEST

SOLUTION)

Compared Method
Instance

NGA pGA
Freq. # 1 13 30
Best 640 640

eil101(T5) Worst 648 662
640* Ave. 641.23 642.37

Freq. # 2 8 10
Freq. # 1 4 23
Best 647 649

eil101(T8) Worst 649 681
647* Ave. 647.50 667.61

Freq. # 2 3 0

been seen since NGA possesses the property that the accuracy
of solutions is pursued, pGA does not violate the constraint and
the order visiting cities in pair is inherited in the crossover. Al-
though pGA could not obtain the best tour, this result is because
importance was attached to obeying the constraint on the order
visiting cities. Since to obey the constraint on the order visit-
ing cities is contrary to pursue the accuracy of solutions, these
balances are important.

V. CONCLUSION

For solving Traveling Salesman Problem with visiting orders
efficiently, we proposed a method of GA on which the good
character is defined as the order visiting cities, and the perfor-
mance was evaluated. It was shown that for the simple TSP
without the constraint on the order visiting cities, comparatively
high accuracy could be obtained by proposed method. For TSP
with the constraint on the order visiting cities, proposed method
could obtain the feasible solutions stably, although the existing
method could not obtain them stably. However, the proposed
method could not obtain the sufficient accuracy. For the in-
crease of accuracy, in the crossover, it is known that the balance
of the inheritance of edges is important[8]. The reason why a
high accuracy could not be obtained by proposed method is be-
cause the inheritance of edges which the parents possess was
not considered. In order to raise the accuracy, an improvement
in which the inheritance of edges is considered is necessary.
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