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Abstract—Recognizing odor mixture is rather difficult 
problem for the artificial odor recognition system, 
especially when the system used a limited number of 
sensors. The classification processes are more hampered 
when the number of the unlearned mixture odor classes   
is increased. In this paper, authors developed a Fuzzy-
Neuro MLP as a pattern classifier, and compare its 
recognition capability with that of Probabilistic Neural 
Network and Backpropagation neural system. To enhance 
the recognition capability of the system, then we 
developed an optimized Fuzzy-Neuro MLP, by deleting 
the weak weight connections through the used of Genetic 
Algorithms. Experimental results show that the optimized 
Fuzzy-Neuro MLP has the highest recognition rate in 
recognizing 18 classes of two mixture odors with almost 
98.2% by using hardware system with 16 sensors compare 
with only 83.3% when using 8 sensors.   
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I. INTRODUCTION 

Fuzzy systems and neural networks, as a separate diagnosis 
techniques, have received considerable attention for decades 
and obtained many successful application.  Fuzzy systems 
have demonstrated to be well suited for dealing with ill-
defined and uncertain systems, while neural networks are well 
known for its learning capability. Neural networks have 
known for its high performance on fault tolerance, and 
together with its non-linier processing and the flexibility for 
adjusting the networks topology, neural systems can be 
conveniently used as powerful diagnosis techniques. 
Incorporated the fuzzy systems into artificial neural networks 
is then able to enhance the capability of the intelligent 
systems to learn from experience and adapt to changes in an 
environment with qualitative, imprecise, uncertain or 
incomplete information.  

Using antecedents and its corresponding consequents as the 
training pairs of the input-target vectors, a conventional 

neural network can learn the relationship between the 
antecedents and the consequents for the problem domain. 
However, neural network is not able to perform logic-like 
rules because the distribution of connection weights in the 
network is almost impossible to be interpreted in terms of if-
then rules. Furthermore, it is difficult to map the known 
domain knowledge onto the structure of the networks to 
enhance the learning process. Combining the fuzzy logic 
element into the neural networks, hence, produces a neural 
topology that can perform fuzzy inference rules through 
analyzing the values of the weight connection [1-4].  

The developed fuzzy neural networks are already widely 
used [5-7] and some work has been done on obtaining the 
proper network structure and the initial weights to reduce its 
training time [8]. However, this type of neural system, as 
same with that of multilayer perceptron (MLP) neural 
networks, has a drawback due to its huge neural connections. 
It is well recognized that the performance of backpropagation-
trained MLP neural networks depends highly on their 
topology and the values of a number of training parameters. 
Unfortunately, there are no comprehensive analytical methods 
of determining the optimal topology and training parameters 
for a particular task, which often hampers the wider 
application of neural networks to the real world application. 
Traditionally, the design of a neural network is achieved by 
trial and error and requires the involvement of an expert. As 
systems become more costly in its computational 
performance, no one could guarantee that a near optimal 
design has been chosen. 

Design of the neural topology models typically can be 
classified into two groups of network topology. The first is a 
non-adaptive network topology, such as static multilayer 
perceptron (MLP), where neurons are fully connected layer 
by layer, however, this simplified neuron topology creates a 
dilemma from the fact that both large and small networks 
exhibit a number of disadvantages. If the network size is too 
small, the error rate tends to increase due to the network 
might not be able to approximate good enough the functional 
relationship between the input and the target output. While if 
the size is too large, the network would not be able to 
generalize well on the input data that never been learned 
before. As an additional problem, the larger the neural size, 
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the longer of the learning process that should be done.  
The second group of neural network topology allows an 

adaptive, dynamic network design by optimizing the network 
architecture and its weight connections. Optimization of this 
network could be done through two approaches. One starts 
with a larger network structure that is supposed to be 
sufficiently complex to model the relation between input and 
output variables. The training procedure is then implemented 
and the network tries to reduce the number of neurons as 
possible, until an acceptable solution is found. These 
algorithms [9-10], however, have several weaknesses. 

Practically, one does not know with where the starting 
network should be, and since the majority of the training 
procedure is spent on larger network, high computational cost 
could not be avoided. And usually, smaller size network with 
other design may possibly be capable of meeting the same 
smallest acceptable solution with that of the network derived 
from pruning algorithm [11]. 

The other approach on optimization of the dynamic network 
is based on discrete optimization methods. In these methods, 
the optimization of the neural in the training stage is 
discriminated with that of the structure optimization. In this 
approach, each network structure is assigned an evaluation 
value (e.g., an estimation of the generalization error), thus 
formulating a discrete optimization task. A variety of methods 
can be applied to this class of the problems; however, genetic 
algorithms [12-13], have gained a strong methodology as the 
evolutionary approach [14] by either removing the weak 
connections between neurons or removing the neurons that 
perform weak activations.  

In this paper we developed a GA-optimized fuzzy neural 
system and applied it as a pattern classifier to discriminate 
mixture of odors that could not be properly classified with the 
previous neural system. Analysis and comparison of the 
proposed neural system and the other neural systems, e.g. 
Back-propagation, PNN and the un-optimized fuzzy neural 
will be explained.   
 
 

II. FUZZY-NEURO MULTILAYER PERCEPTRON 
 
Fuzzy–Neuro MLP is a type of multi-layers feed-forward 

neural network, however, this fuzzy–Neuro MLP has some 
basic difference compares to the conventional multi-layers 
feed-forward MLP. Instead of using conventional neuron that 
use the sum operation (∑) over the multiplication of the input 
and weights in connection, two types of fuzzy neurons are 
implemented in this Fuzzy-Neuro MLP. Those fuzzy neurons 
are fuzzy AND-neuron and fuzzy OR-neuron where t-norms 
are used for AND operation while t-conorms for OR 
operation. The other difference is the neurons in the F-Neuro 
MLP used fuzzy type of data as their input and the output 
activation, so they can deal directly with the fuzziness of the 
data input from experiments. 

The F-Neuro MLP will construct an inference system that 
consists of an antecedent part and a consequent part [15-17]. 
This system could be expressed in IF-THEN rule in the form 
of: If  P is M, then Q is N,  where P is M stands for the 
antecedent and Q is N denotes the consequent of the IF-

THEN rule. The neural networks that provides a logical 
construction of the IF-THEN rule is developed by using two 
of Pedrycz’s fuzzy set-based neurons [6-7][18] which consists 
of one input layer, several of AND-neurons as a hidden layer 
and OR-neurons as an output layer, and its derivation of the 
min-max operator with respect to its connection weights.  

 Suppose T is used to denote t-norm function and S to 
denote t-conorm function, output activation of the AND-
neuron with its weight v and input x can be expressed as: 

z(t) = T
i

n

=0  
[vi(t) S xi(t)]              (1) 

while the output activation of the OR-neuron with its weight 
w and input z can be written as:  

y(t) = S
i

n

=0
 [wi(t) T zi(t)]          (2) 

 

The commonly used operator for T is the min-operator, 
while for S is the max-operator. 

The IF-THEN rule of the FANN is trained using back-
propagation learning algorithm, which the weight updating 
process is done by using formula of: 

Wnew = Wold + ∆W(t)                           (3) 
 

∆W(t) = )1()( −∆+
∂
∂

− twt
w
E βα           (4) 

 

As in the backpropagation learning rule, the calculation of 
the derivative error to its connection weight in this FANN 
should be done using the derivative of min and max operators 
with respect to its connection weight. These derivatives, 
however, are not linear in some conditions, and one approach 
to solve this problem is by using the Lukasiewicz’s 
linearization formula for those derivatives, such that [6-7]: 
 
  1     if wj ≤ xj                    
    

1 – wj + xj,    if wj > xj 
    

1,     if f(wj) ≥ Mj*  
                   

 1+ f(wj) - Mj*, if f(wj) < Mj*    (5) 
      

where Mj* = maxi (Mi), Mi = min(wi,xi)),  f(wj) = min(wj,xj), xj 
input signal, and wj  denotes the weight of the neuron. 

Derivation of the error function for the OR-neuron, then, 
can be written as: 

 
   (6) 

 
 
 
 

 

 
  (7) 

  
where f(zj) = min(wjk,zj), g(vij) = max(vij,xi), Mi

# = min[g(vij)], 
and Mj*=max[f(zj)].  



Result of the F-Neuro MLP learning process also determines 
the neuron with its weak connections, which can be removed 
to find the ideal topology of network. In this paper, the 
removing its weak connection for optimizing the network 
structure is done by evolving the process through Genetic 
Algorithms that will be explained in the next section. 

 
 

III. OPTIMIZATION OF F-NEURO MLP THROUGH 
EVOLUTIONARY GENETIC TECHNIQUES 

Like the artificial neural networks, genetic algorithms (GAs) 
are also one of the most popular techniques among numerous 
branch of computational intelligence. GA can also be feasibly 
and powerfully used to solve optimization problems in diverse 
fields, because GAs can immediately provide a critical value 
for a variable at a certain function during repeatedly searching 
processes. GAs is a searching algorithm that developed based 
on natural selection of genetics and evolution. The underlying 
principles of GAs were first developed by Holland and its 
mathematical framework was developed and presented in 
Holland’s pioneering book [12], which is intensively observed 
and implemented by Goldberg [13].   

The basic element processed by a GA is the string formed 
by concenating substrings, each of which is a binary coding of 
a parameter of the search space. Thus, each spring represents 
a point in the search space and hence a possible solution to the 
problem. Each string is decoded by an evaluator to obtain its 
objective function value. This value, which should be 
minimized by the GAs, is converted to a fitness value which 
determines the probability of the individual undergoing 
genetic operators. The population then evolves from 
generation to generation through the application of the genetic 
operators. The total number of strings included in a 
population is kept unchanged trough generations. A simple 
genetic algorithm that yields good results in many practical 
problems is composed of these operators: reproduction, 
crossover and mutation.  

As previously described, the size of an ANN determines its 
performance. It is obviously known that if the size of the 
network is too small then the model will not be capable to 
represents the desired function. However, if the size is too big, 
the network will memorize all the examples by forming a 
large lookup table, but not be able to generalize well to the 
inputs that have not been learning before. As like other 
statistical models, neural networks are subject to over-fitting 
when there are too many parameters (i.e., weights) in the 
model. Other additional problem is occurred, because the 
network size also determines the length of learning process. If 
there are m examples, and |W| weights, each epoch takes 
O(m|W|) calculation time. 

The optimization of the F-Neuro MLP through GAs is then 
initially done by making a network with a rather big and 
complex structure. In their optimization process, GAs will 
search the most optimal subset of the initial basic structure. 
Each subset structure will become an individual in the 
population to be processed, which is represented by an 
individual string. As the knowledge representation formed in 
F-Neuro MLP is kept in its connections, the GAs optimization 

is directed in its F-Neuro MLP connection weights. 
Preliminary experimental result showed that optimization over 
networks connection weights work more efficient and 
accurate compare with that of networks hidden neurons. The 
optimization procedure of GAs is then implemented by 
initially encoding the problem and defining the objective 
function.  

The process of the problem encoding can be summarized as 
follows. As the problem parameter that should be optimized in 
the network structure lies in its connection weights, all these 
connections are encoded to a chromosome chain. Each 
chromosome forms a binary string <100….1001> that 
represents the network structure, and the chromosome length 
equivalents to the number of weights in the network, that is  

 

number_of_input_neurons *number_of_hidden_neurons + 
number_of_hidden_neurons *number_of_output_neurons. 

 

Suppose vij represents the connection weight between 
neuron in the input layer and neurons in hidden layer, wjk 
represents the connection weight between neurons in hidden 
layer and neurons in output layer, with I the number of input 
neuron, J the number of hidden neuron, K the number of 
output neurons, then the chromosome chain will represents all 
connection in the network in a sequence of : 

 

v00,v01…v0(J-1),v10 … v1(J-1), … ,v(I-1)0 … v(I-1)(J-1),  
w00,w01…w0(K-1),w10…w1(K-1), …  w(J-1)0 … w(J-1)(K-1). 

 

Each gene/bit in the chromosome/string is mapped one by one 
to each connection weight of the FANN. The gene value 
represents the activation state of connection weight, with a 
value of 1 means the connection is activated while value of 0 
means that the connection is not activated. The non-activated 
connection will not be involved in both forward and backward 
phase of the learning process.  

The objective function of the system to be optimized is done 
through its fitness value. To calculate the fitness value, each 
individual chromosome is decoded back to a F-Neuro MLP 
structure and be trained using backpropagation learning 
algorithm. Weight initialization of each structure is performed 
using Nguyen-Widrow method [19], and the network is 
trained until small error tolerance is accomplished or a 
maximum epoch is reached. After the learning process is 
completed, the fitness value is calculated by:  

 

number_of_non_activated_connections / (error_rate * 
number_of_epochs). 

 

By using fitness value evaluated by the objective function, 
GAs searches an individual best network topology with large 
number of non-activated connection weights, small error rate, 
and small number of epochs. Schematic diagram of the 
methodology for the optimization of F-Neuro MLP topology 
through GAs is depicted in Fig.1  

An example of a schematic diagram of the F-Neuro MLP 
system is depicted in Figure 2. This system consists of a 
fuzzifier that fuzzifing the crips data from each sensor, a 
fuzzy-neural network for recognizing the unknown-odors, and 
the genetic algorithms that optimizing the F-Neuro MLP 
topology for higher recognition capability. 

The most appropriate Genetic Algorithms parameter that 
used for the optimization of the F-Neuro MLP topology is as 



follows. The number of generations: 10; number of 
population: 60; crossover probability: 0.6; mutation 
probability: 0.1; learning rate: 0.2, momentum: 0.2; error rate: 
0.01 and maximum epoch: 200. An example of the optimized 
F-Neuro MLP as a result from the use of genetic algorithms is 
depicted in Figure 3. It is shown that the number of neuron is 
exactly the same with that of the un-optimized neural 
networks, however, the number of neural connection weights 
is reduced significantly. 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Schematic diagram of the optimization method 
of F-Neuro MLP through genetic algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The architectural structure of the developed 
fuzzy-neural networks that is used as pattern classifier in 

the artificial odor recognition system. 
 
 

IV. OPTIMIZED F-NEURO AS A PATTERN 
CLASSIFIER IN ODOR RECOGNITION SYSTEM 

The experiments are designed to elaborate the capability of 
the developed odor recognition system to recognize and 
determine the-unlearn of mixture odors. The odor recognition 
system is consists of a quartz crystal microbalance as a sensor, 
and a frequency counter for measuring the shifted frequency 
of the sensor as it absorbed the odorant molecule, and a 
computer to perform neural network analysis of the data and 
determined the odorant category.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The optimized structure of F-Neuro MLP system 
using genetic algorithms. 

 
In this experiment, two categories of sensory system are 

used, with 8 sensors of 20 MHz quartz resonator sensors as 
the first category of sensory systems and another 16 sensors 
of the same frequency base resonator as the second sensory 
system. For both of the sensory systems, each sensor is 
constructed by applying a sensitive membrane on the two 
surfaces of those quartz resonator sensors. A sample of aroma 
is injected and evaporated in the chamber, and the frequency 
shift is measured at the equilibrium point, before the next 
sample is repeatedly injected through the same procedure. The 
characteristic-frequency of the sensor reduces when the 
odorant molecules are adsorbed onto the membrane, and 
recover to its properties after de-adsorbtion process using a 
fresh air that purges the sensory systems. This phenomenon is 
called the mass-loading effect [20]. 

Since the shifted frequency is proportional to the total mass 
of the adsorbed odorant molecules, it is possible to use this 
mechanism as the fingerprint of the odor concern. To increase 
the accuracy of the recognition system, various types of 
membrane-coated sensors are necessary, which is arranged as 
an arrayed sensor.  

The two-mixture of odors are prepared by mixing 50% of 
aroma-based odor (citrus, canangga and rose) and 50% of 
alcohol with various gradient concentrations, ranging from 
0% to 70%. The data used for the learning stage and its 
recognition tests are obtained from 10 experiments of each 
two-mixture of odors, where 100 data are taken from each 
sensor for each experiment, and the training/testing paradigm 
is determined to be 70%: 30%. Table 1 shows in details the 
used sample odors including with percentage of the alcohol 
concentration. 

Based on the number of classes in each experiment, three 
groups of experiments are designed, simulating the degree of 
difficulties on recognizing the unlearn odors, i.e. 6 classes of 
two-mixture odor, 12 classes of two-mixture odor and 18 
classes of the two-mixture odor, respectively. Table 2 shows 
that 12 classes experiments are conducted by combining every 
two of 6 classes experiments, while 18 classes experiments 
are conducted by combining all of the 6 classes experiment 
into only one experiment.   
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Table 1. Two-mixture odor with various gradient alcohol 
concentrations 

 

No Type of Odor-mixture with various
odor-mixture gradient alcohol concentration 

1 CnAlch CnA0%, CnA15%, CnA25%,
Cannagga based odors CnA35%, CnA45%, CnA70 

2 RoAlch CiA0%, CiA15%, CiA25%,
Rose based odors CiA35%, CiA45%, CiA70 

3 CiAlch CiA0%, CiA15%, CiA25%,
Citrus based odors CiA35%, CiA45%, CiA70  

 
Table 2. Experimental design for recognizing the unlearn 

two-mixture of odor with different number of classes  
 

6 classes RnAlch CiAlch CnAlch

18 classes

Number of 
Classes

12 classes RnAlch + 
CiAlch

CiAlch + 
CnAlch

RnAlch + CiAlch + CnAlch

 Data composition of                 
the Two-Mixture odors

CnAlch + 
RnAlch

 
 

Results of experiment on recognizing the unlearn odor 
within 6 classes of two-mixture odors using 8 sensors are 
depicted in Table 3, while for 12 classes of two-mixture odors 
are depicted in Table 4, respectively. It is shown in the Table 3 
that the average recognition rate of the Back-Propagation 
neural is about 83.9%, PNN is about 96.6%, while fuzzy 
neural is 99.1%, respectively. The highest recognition rate, 
100% could be achieved when the GA-optimized fuzzy neural 
is used.  

Table 4 showed that the recognition rate on recognizing 
unlearn odor within 12 classes of two-mixture odors. As the 
number of classes increases, the recognition rates of all of the 
neural systems are decreased. Same with that of 6 classes of 
two-mixture odors, recognition rate of Back-Propagation 
neural system is the lowest, with only 53.1% in average. This 
results show that the conventional Back-Propagation neural 
system could not be utilized when it is used to discriminate 
two-mixture of odors with higher number of classes. As also 
shown in this table, the un-optimized fuzzy neural system still 
shows higher recognition rate with the average of 81.7%, 
which is nearly equal to the PNN system of 81.0%; however, 
the optimized fuzzy neural shows an average of 91.9%. 

In order to more deeply seen the ability of various neural 
systems used as a classifier, an odor recognition system using 
16 sensors is used. Results of experiment on recognizing the 
unlearn odor within 6 classes of two-mixture odors using the 
system with 16 sensors are depicted in Table 5, while for 12 
classes of two-mixture odors are depicted in Table 6, 
respectively. 

Comparison of the overall neural systems performances are 
depicted in Figure 4 and Figure 5 respectively, which is done 
based on the average recognition rate as shown in the 

respective tables.  As clearly seen in the Figure 4, increasing 
the number of sensors increases the recognition capability of 
the neural system, especially for BPNN, while for the other 
neural system, the increment are not significantly changes. 

However, when the neural system is considered to 
distinguish 12 classes of the mixture odors, as it is clearly 
seen in Figure 5, increasing the number of sensors has higher 
impact on its neural performance. Increment of almost 35% is 
achieved for BP-NN, while for the other three neural systems 
is about 10%. Again it is shown that PNN and the Fuzzy-
Neuro MLP has almost the same capability, while the 
optimized Fuzzy-Neuro MLP shown higher recognition 
capability. 

 
Table 3.  Comparison of recognition rate of neural systems 

to discriminate unlearn odor within 6 classes of two-
mixture odors using8 sensors 

 

CiAlch CnAlch RoAlch Average
GAF-NMLP 100% 100% 100% 100%
F-NMLP 99.3% 98.2% 99.9% 99.1%
PNN 93.7% 99.6% 96.6% 96.6%
BP-NN 68.0% 98.2% 85.6% 83.9%  

 
Table 4. Comparison of recognition rate of neural systems 

to discriminate unlearn odor within 12 classes of two-
mixture odors using 8 sensors 

 

CiAlch CnAlch RoAlch Average
GAF-NMLP 92.3% 95.5% 97.9% 91.9%
F-NMLP 83.3% 79.4% 82.3% 81.7%
PNN 84.2% 78.2% 80.6% 81.0%
BP-NN 50.5% 41.6% 67.3% 53.1%  

 
Table 5.  Comparison of recognition rate of neural systems 

to discriminate unlearn odor within 6 classes of two-
mixture odors using 16 sensors 

 

CiAlch CnAlch RoAlch Average
GAF-NMLP 100% 100% 100% 100%
F-NMLP 100% 100% 100% 100%
PNN 93.7% 99.6% 96.6% 96.6%
BP-NN 88.9% 90.8% 90.0% 89.9%  

 
Table 6.  Comparison of recognition rate of neural systems 

to discriminate unlearn odor within 12 classes of two-
mixture odors using 16 sensors 

 

CiAlch CnAlch RoAlch Average
GAF-NMLP 100% 98.8% 100% 99.6%
F-NMLP 90.7% 92.4% 89.0% 90.7%
PNN 89.4% 88.3% 90.8% 89.5%
BP-NN 83.8% 76.8% 86.6% 81.0%  

 
 



Table 7 shows the comparison results of the recognition rate 
of the overall used neural systems as a classifier for odor 
recognition system using 8 sensors and 16 sensors. When the 
fuzzy neural systems are applied for recognizing the unlearn 
odors within 18 classes of two-mixture odors, the recognition 
capability of the un-optimized fuzzy neural system decreases 
significantly, to only 61.1%. This recognition rate is not 
enough to discriminate unlearn mixture odor properly. In 
contrary, the GA-optimized fuzzy neural system still shows its 
higher recognition rate of about 83.3%. This results show that 
the GA-optimized fuzzy neural system is necessary when 
more difficult task should be encountered in discriminating 
two-mixture of odors. 

 
Figure 4. Comparison of recognition rate of various 
neural system to discriminate unlearn odor within 6 
classes of two-mixture odors using 8 and 16 sensors 
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Figure 5. Comparison of recognition rate of various 

neural system to discriminate unlearn odor within 12 
classes of two-mixture odors using 8 and 16 sensors 
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Increasing the number of the used sensors is significantly 

seen from this experiment. As clearly seen in the Figure 6, the 
recognition rate of the Fuzzy-Neuro MLP and PNN are shown 
to be nearly the same, that is about 93%, while only about 
60% when using hardware system with only 8 sensors. It can 
also be seen that the developed GA optimized Fuzzy-Neuro 
MLP still can increased its recognition rate up to 98.2%. 

 

Table 7. Comparison of recognition rate of neural 
systems to discriminate unlearn odor using 8 sensors and 

16 sensors 
 

8 Sensors 16 Sensors

GA-Fuzzy NN 83.3% 98.2%
Fuzzy NN 61.1% 93.3%

PNN 57.6% 92.6%
BP 38.1% 69.2%  

 
 

Figure 6. Comparison of recognition rate of various 
neural system to discriminate unlearn odor within 18 
classes of two-mixture odors using 8 and 16 sensors 

 

0
10
20
30
40
50
60
70
80
90

100

BP-NN PNN F-NMLP GAF-
NMLP

R
ec

og
ni

tio
n 

R
at

e 
(%

)

8 sensors 16 sensors
  

 
 

V. CONCLUSION 

A method for optimization of the weight connections in 
Fuzzy-Neuro MLP structure through Genetic Algorithms is 
developed and used as a pattern classifier subsystem in the 
artificial odor recognition system. The size and topology of 
the neural network are optimized in term of its cost function, 
i.e. its error rate, learning computational cost, and its 
generalization capability. The performance of this GA- 
optimized Fuzzy-Neuro MLP is then compared with that of 
un-optimized Fuzzy-Neuro MLP, PNN and BP neural system. 
The experiment results showed that the GA-optimized Fuzzy-
Neuro MLP method has successfully found the nearly 
optimized fuzzy-neural structure, by omitting the its weak 
weight connections, which in return can provide higher 
recognition rate. It is showed from the experiments that PNN 
always performed higher recognition capability compare with 
that of Back-Propagation method, which has nearly the same 
value with the un-optimized Fuzzy-Neuro MLP. Increasing 
the number of unlearned classes to be recognized has 
decreasing the ability of the system to discriminate odors 
properly. Improvement of the hardware system using higher 
number of the used sensors, i. e. 16 sensors instead of 8 
sensors, has increased the recognition capability of the 
system, even using a PNN or the un-optimized Fuzzy Neuro 
MLP. However, the GA optimized Fuzzy-Neuro MLP has the 
highest recognition capability, for all of the used data sets.  
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