
Automatic Learning Based on
SOM and Reinforcement Learning

Ryo Maeda and Masafumi Hagiwara

Department of Information and Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

{maeda,hagiwara}@soft.ics.keio.ac.jp

Abstract – In this paper, we propose a system hav-

ing automatic learning ability. It can acquire skills or

knowledge by repeating trials in an unknown situation.

It is assumed that the proposed system does not have

special knowledge or mechanism on the target: what the

system tries to do is to continue the target as long as

possible. A lot of studies have been made on autonomous

learning, however, they are toward specific problems:

learning is limited on the target problem. This research

aims at obtaining universal learning mechanism which

does not depend on a specific problem. The proposed sys-

tem employs reinforcement learning self-organized fea-

ture map to cope with huge state. “Tetris” and “Puyo-

puyo” are used as learning target problems. Experimen-

tal results show the effectiveness of the proposed system.

1 Introduction
In the real world, the situation which cannot be pre-

dicted exists. The traditional computers are able to per-
form only specified operation. Therefore, it is difficult
to cope with unexpected events [1].

Most of the studies on artificial intelligence employ
top-down method [2]. However this approach requires
huge amount of if-then rules. For example, in 1997,
the super computer ”Deep Blue” of IBM won the chess
champion. The algorithm of this computer is a total
search based on simple logic [3]. It requires a lot of cost
to constitute this system. The computer should respond
more flexibly by the autonomous study.

Unsupervised learning is often used for game learn-
ing. These methods adopt important knowledge and
information into the system, and can achieve effective
learning by adjusting parameters [4]. However, it is nec-
essary to adjust an evaluation function appropriately for
each target. Finally this kind of method is reduced to
optimization of parameters. And the obtained rules are
based on these parameters.

Supervised learning requires the explicit provision of
input-output pairs. In game learning, this input might
be a play log of users. However, in supervised learn-

ing, teacher data with targets are indispensable, and
the performance depends on teacher data [5].

In contrast, reinforcement learning(RL) uses a scalar
reward signal to evaluate an input-output pair, and dis-
covers the optimal output for each input through trial
and error, even if RL has neither prior knowledge nor
teacher data [6]- [7].

RL is an efficient method without priori knowledge
about the environment. However RL needs numerous
trials to learn. Since RL must cover all of the state-
action pairs of the target, if the target is complicated,
learning will become difficult.

In this paper, we propose a new learning system
adapted for environment by repeating trials. What the
proposed system tries to do is to continue the target as
long as possible.

In order to cope with huge state, we combined self-
organizing feature map(SOM) and RL. SOM can do
clustering without teacher signal [8]. The number of
states can be reduced by applying RL only to a repre-
sentation pattern of clustering.

The proposed system treats two or more sensors. And
the system presumes the value of each sensor informa-
tion, when each information is mapped on SOM and is
learned by RL.

We select ”Tetris” and ”Puyo-puyo” that are pop-
ular games as targets. Our system can acquire the
skill that operate the target object adequately. ”Tetris”
and ”Puyo-puyo” are the similar environment, however,
they are different considerably. We evaluate and discuss
the auto leaning skill in strange environment.

2 System

2.1 Outline of the proposed system

Outline of the proposed system is shown in Fig.1. The
system learns to operate target object appropriately in
unknown environment. Our system acquires state of the
environment by observing environment. Basically the
proposed system tries to know how to operate agents

Operation

State

Feedback
(Game over)

 Environment

Update
Maps

Figure Evaluation Map

Position Evaluation Map

x

y

Color Evaluation Map

Position

Figure

Color

SystemSensor

Evaluate

Agent

Figure 1: Outline of the system

beforehand. The system consists of two or more sensors
and evaluation maps corresponding to each sensor. A
sensor observes an state of environment. Without sen-
sors, the system can’t get the state of environment. The
same number of evaluation maps exist as a sensor. And
evaluation maps are applied the structure of SOM. In
this paper, we use three kinds of sensors that deal with
color, position, and shape.

The system observes the state for trial and the state
of agents, and operates agents appropriately based on
the information on the environment. The evaluation
maps acquire from the environment the information cor-
responding to each map, and estimate the evaluation
value for operating agents. The evaluation value is cal-
culated at every map in all cases to which agent should
act next. An action having the highest comprehensive
evaluation is selected as next action. Comprehensive
evaluation is combined evaluation of each map.

The proposed system learns by feedback information.
The evaluation is updated with reinforcement learning.
However, if RL is applied to all patterns, since the num-
ber of states becomes huge, learning may not be per-
formed appropriately. Therefore, all of the patterns are
clustered using SOM. Similar inputs are arranged on a
map in near position. The number of states can be re-
duced by applying RL to the representation pattern of
each cluster.

Outline of evaluation map is shown in Fig.2. Sensor
information is input to evaluation maps, and evaluation
value for input pattern is output. Maps are composed
of input layer, SOM layer and output layer. Input layer
and SOM layer are fully connected by a weight vector
w. The weight vector is updated using by competitive
learning. SOM layer and output layer are connected one
by one by a evaluation value vector q. The evaluation
value vector is updated using reinforcement learning.

The number of neurons in the input layer is equal to
the number of dimensions of a sensor input. Weight
vector between the input layer and the SOM layer is
first initialized by small uniform random numbers.

Mapping by classifying an input pattern roughly, the

q

w
Som Layer

O
utput Layer

Input Layer

s

1
2

5

1

3

(winner)

n

4

Figure 2: Outline of evaluation map

map can hold an input pattern in the form of a weight
vector. The number of nuerons in the output layer is
one. Weight between SOM layer and output layer is
regarded as evaluation value of each neuron on the SOM
layer.

When evaluation map receives an input, the neuron
that has weight vector close to the input will be fired.
The fired neuron outputs its evaluation value. And eval-
uation value is updated by reinforcement learning.

Weight combined between neuron i in the SOM layer

and neuron j in the input layer is w
(i)
j .

Weight vector w(i) is

w(i) =
(

w
(i)
1 , w

(i)
2 , · · · , w(i)

n

)

(1)

In a similar way, weight in SOM layer and output
layer is q(i). Vector of evaluation value is

q(i) =
(

q(i)
)

(2)

If an input vector U is given, the euclidian distance
of an input vector and a weight vector will be computed
first. The neuron having the weight vector close to the
input vector is searched, and the neuron is fired as a
winner neuron. And the evaluation value vector which
winner neuron holds is outputted.

s = arg min
i

{

|U −w(i)|
}

(3)

Q = q(s) (4)

2.1.1 Sensor

The proposed system use position sensor, shape sen-
sor, and color sensor in order to acquire state of envi-
ronment.

Forcus

U

M

N

Agent

Figure 3: Vicinity pattern

Like human being observes focusing on an object, the
observable range of a sensor is assumed within the M ×
N around the center position of agent [9]

We call the state in sensor domain as a circumference
pattern.

2.1.2 Position evaluation map

The position of an agent when the agent is operat-
ing appropriately is inputted to the position evaluation
map. Position evaluation map outputs the evaluation
value that is an indicator of position. In this reason, as
human pays attention to an object, the proposed system
captures rough position of agent to environment.

The input vector is expressed as

V = (x, y) (5)

.

2.1.3 Shape evaluation map

Input of shape evaluation map checks whether a cell
ui,j exists in the area M ×N of circumference pattern.
Circumference pattern is the existence of the cell in the
Board. If there is a cell, circumference pattern is re-
garded as 1, and without cell, pattern is regarded as 0.
Average of nine neighboring cells is added to each cell.

Therefore, input vector is expressed as

V = (v0,0, v1,0, · · · , vM,0, v0,1, · · · , vM−1,N , vM,N) (6)

vi,j = ui,j +

j+1
∑

n=j−1

i+1
∑

m=i−1

(um,n)/9 (7)

2.1.4 Color evaluation map

Color evaluation map receives the number of each
color in circumference pattern. Since the system used
only the information on the level of a color like human.

When there are Cc kinds of color already observed
, the dimension of input layer is Cc. neuron i of input
layer is inputted number vi of the color in circumference
pattern. For the neuron i in the input layer, vi is the

Update Evaluation Maps

Test Cχ Trials

End

Start

Adjust Evaluation Maps

τ : Loop count

+1 τ τ

Yes

No
<Cτ τ

τ=0

Figure 4: Outline of learning

number of color i pixels which exists in the circumfer-
ence pattern.

V = (v1, v2, · · ·vCc
) (8)

2.2 Algorithm to operate Agent

1. Evaluate all actions a.

2. Enter sensor information to maps, and output eval-
uation value Qmap(a) for each action a.

3. Adopt act a that maximize equation P (a).

P (a) =
∏

map

(π(map)Qmap(a)) × ξ(t) for all maps

(9)

Where, ξ(t) is a uniform random number. Cτ is the
number of times of learning. This is because RL learns
by mistake and error.

2.3 Learning

The outline of learning is shown in Fig.4.
Whenever the system operates agents, the system re-

news evaluation maps once. Until updating map, for all
actions during trying target, the learning continues.

1. Based on trial, the proposed system inputs sensor
information to each evaluation maps.

2. Fired neuron for the input is selected.

3. The weight vector held each neuron is adjusted.

2.4 Update code vector

By using the input data, system learns weight vector
of all neurons in accordance with SOM rule. Weight
vector that is connected to neighborhood neuron of the
fired neuron is updated. The updating formula of the
weight vector w(i) of the neuron i is as follows.

w(i) ← w(i) + λ(t)φ(di, t)(V −w(i)) (10)

φ(di, t) = exp(−
di

2(σ(t))2
) (11)

λ(t) = λI × (
λF

λI

)
t

T (12)

σ(t) =
R

2
× (

2

R
)

t

T (13)

λ(t) is learning factor. φ(di, t) is neighborhood func-
tion. di is distance between the neuron i and fired neu-
ron. And R is initial size of neighborhood. λI is initial
value of λ. λF is final value of λ, and T is the number
of trials in other words times of learning.

Until learning times reaches a certain number, the
proposed system continues the trials. Then each neuron
on the SOM layer acquires the state of environment as
the form of weight vector.

2.5 Reinforcement learning

Evaluation value vector is initialized by small uni-
form random number. When one trial is finished, the
proposed system receives punishment ρ. An evaluation
value vector of the neuron near a winner neuron is up-
dated largely. The updating formula of an evaluation
value vector is similar to the study rule of RL.

q(i) ← q(i) + φ(di, t)
[

ρ + γ(q(s) − q(i))
]

(14)

Where,γ is discounted rate, and ρ is the feedback from
environment. In this paper, only when a trial is finished,
punishment is returned from environment.

By SOM, similar input data is mapped near by on
SOM layer. The neighborhood neuron of the fired neu-
ron is updated as soon as the fired neuron is updated.
It might be contribute to acceleration of convergence.

3 Experiments
We demonstrates the performance of the proposed

system on two environments. These environments are
”Tetris” and ”Puyo-puyo”.

Evaluation of experiment uses the score of the trial
and length of play time of the trial. We think that the
achievement of learning relates to play time closely on
“Tetris” and on “Puyo-puyo”. For example, play time
is constant on “Othello”. But trial play time depend
on player’s skill on “Tetris” and “Puyo-puyo”. Conse-
quently, we evaluate not only the score but also play

Table 1: Evaluation experiment(”Tetris”)

score(deleted lines) play time(time)
maximum average maximum average

proposed 37 9.421 128 61.3
method
random 2 0.013 34 20.2
method

Table 2: Evaluation experiment(”Puyo-puyo”)

score(deleted times) play time(time)
maximum average maximum average

proposed
method

68 14.7 227 108.3

random 33 6.3 136 65.7
method

time. Play time defines the time interval at which one
agent operates once as unit time.

We compared the proposed method with the random
method. After performing renewal of a map Cτ times,
10,000 times performance evaluation was carried out.
And maximum value and average value were calculated.

3.1 Evaluation experiment(”Tetris”)

First, we evaluated the proposed system on “Tetris”.
In what follows, we explain “Tetris”. The falling brick is
used and it can move on the playing field. While it falls,
it can rotate there. This trial is finished when block is
heaped up the highest. If you form a horizontal row of
square blocks, the row is deleted and the blocks which
remained move down. Score of the trial is the number
of deleted horizontal row.

The result of simulation is shown in Table.1.
In the first learning, only one line was not able to

be eliminated for the first several 100 trials. The sys-
tem began to be able to delete lines by degrees through
learning as shown in Fig.5. More blocks could be deleted
gradually as learning progressed.

3.2 Evaluation experiment(”Puyo-puyo”)

Second, we evaluated the proposed system on “Puyo-
puyo”. In what follows, we explain “Puyo-puyo”. If a
match is any chain of 4 or more blocks of the same color,
that are adjacent to each other (up, down, right, or left),
blocks disappear and all blocks above move down. Then,
Score of the trial is the number of deleted times.

The result of simulation is shown in Table.2. And the
result also indicates that performance is enhanced. As

Map updates

N
um

be
r

of
 e

ra
se

d
bl

oc
ks

Proposed method

Random method

Figure 5: Maximum deleted lines on “Tetris”

Map updates

N
um

be
r

of
 e

ra
se

d
bl

oc
ks

Proposed method

Random method

Figure 6: Maximum deleted lines on “Puyo-puyo”

shown in Fig.6.

4 Conclusion
This paper is concerned with automatic learning in

unknown environment. The system learns through trial
and error, and doesn’t have valuable knowledge and
mechanism about target. It tries to continue the tar-
get as long as possible. This research aims at obtaining
universal learning mechanism which does not depend
on a specific problem. We combined self organizing map
and reinforcement learning to cope with huge state, and
used “Tetris” and “Puyo-puyo” as learning target prob-
lems. We confirmed that the proposed system got bet-
ter performance by degrees, and could learn without
information specialized by the target. Experimental re-
sults show that the proposed system has useful learning
mechanism for unknown environment.

Acknowledgment
This research is partly supported by Keio University

Special Grant-in-Aid for Innovative Collaborative Re-
search Projects.

References
[1] Tomohiro Yamaguti: “Propagating Learning Be-

haviors from a Virtual Agent to a Physical Robot
in Exploitation-Oriented Reinforcement Learning”
Journal of Japanese Society for Artificial Intelli-
gence, Vol.12, No.4, pp.570-581, 1997. (in japanese)

[2] Hitoshi Matsubara: “Recent Progresses on Game
Programming Reserches,” Journal of Japanese
Society for Artificial Intelligence, Vol.10, No.6,
pp.835-845, Nov. 1995. (in japanese)

[3] Hitoshi Matsubara: “What Can AI Resercheres
Learn from Deep Blue’s Victory?” Journal of
Japanese Society for Artificial Intelligence, Vol.12,
No.5, pp.698-703, 1997. (in japanese)

[4] Singer J. A.: “Co-evolving a Neural-Net Evaluation
Function for Othello by Combining Genetic Algo-
rithms and Reinforment Learning,” Lecture Notes
in Computer Science, Vol.2074, pp.377-389, 2001.

[5] Mirai Tabuse, Masafumi Hagiwara: “Automatic
Learning for Acquisition of Tetris’s Skills using
Fuzzy Inference Neural Networks,” Journal of
Japan Society for Fuzzy Theory and Systems,
Vol.11, No6, pp.1089-1097, Dec. 1999. (in japanese)

[6] Sadayoshi Mikami “Reinforcement Learning,”
Morikita publisher, 2000. (in japanese)

[7] Andrew James Smith: “Application of the self-
organizing map to reinforcement learning,” Neural
Networks 15, pp.1107-1124, 2002.

[8] Teuvo Kohonen: “The Self-Organizing Map,” Pro-
ceeding of IEEE, Vol.78, No.9, pp.1464-1480, Sep.
1990.

[9] Yuuichiro Anzai “Recongition and Learning,”
Iwanami bookstore, 1989. (in japanese)

