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Abstract

In this paper the design problem of output feedback H,
controllers for Takagi-Sugeno fuzzy sampled-data systems
is considered. We take a jump system approach to de-
sign controllers. We first introduce the H,, performance
(norm) for a stable fuzzy jump system and give a sufficient
condition for the norm being less than a given number. We
then consider the Ho, problem with output feedback con-
trollers. Since a fuzzy sampled-data system can be writ-
ten in the form of a fuzzy jump system, H., controller for
fuzzy sampled-data systems can be readily derived from

the corresponding results of fuzzy jump systems.
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1 Introduction

The Takagi-Sugeno fuzzy dynamic model is a system de-
scribed by a set of fuzzy if-then rules which gives local
linear representations of the underlying nonlinear system

(9, [10]).

can describe or approximate a wide class of nonlinear sys-

It is well-known in [11] that such a model
tems. Since the work by [10] on stability analysis and
state feedback stabilization there has been much effort de-
veloping system theory for such systems. Robust stabil-
ity is studied in [11] in terms of linear matrix inequalities
(LMI) and in [5] using new stability conditions. Paral-
lel to state feedback design, observer problems have also
been studied. Now it is known in [4], [7] and [13] that the
separation property of designing state feedback controls
and observers hold. This property has been extended to
sampled-data fuzzy systems in [8]. Hao-control was also
considered by many authors. The so-called bounded real

lemma was formulated in terms of LMI’s in [11] and the

design of state feedback H.-controllers was considered in
[1] and [2]. The design of output feedback H-controllers,
though more important and practical, was studied in [14]

for continuous-time case and in [6] for discrete-time case.

When we consider practical systems, it is very natural
that the state of the system is continuous-time, but the ob-
servations are taken only at each sampling instant. This
class of system is called a sampled-data system. Sampled-
data systems often appear in many practical systems and
mathematical formulations, and describe the real situa-
tions of the systems. Recently, a jump system approach
has been taken to analyze sampled-data systems. In fact,
a jump system, whose state variable has jumps at certain
time instants, has been proved useful to treat a wide class
of systems, including continuous-time system, discrete-
time system and sampled-data system. Hs and H, control
problems for such jump system and sampled-data system
were considered in [3]. Moreover, the stochastic control
theory of jump systems was also explored. LQG control
problem and risk-sensitive optimal control problem were
solved in [15] and [12], respectively. In these paper, the
results for jump systems were applied to sampled-data
systems and the same control problems for sampled-data

systems were solved.

In this paper we consider an H,, control problem for
the Takagi-Sugeno fuzzy sampled-data systems via jump
system approach. Since it has been shown that a sampled-
data system can be written as a special case of a jump
system, we first consider an H., control problem for the
Takagi-Sugeno jump systems. We give a design method
of output feedback H,, controllers which is based on the
two LMI’s and give sufficient conditions for the proposed
controller to be suboptimal. Then we apply the result to

fuzzy sampled-data systems.



2 H, Control

This section considers an Ho, control problem for Takagi-
Sugeno fuzzy jump systems, and gives a design method of

output feedback H., controllers.

2.1 Preliminary Results

First we recall some important results that help us obtain

a main result of the paper.

The following lemma is known as the Schur complement

formula.

Lemma 2.1 Let M be a symmetric matrix of the form

My Mo ]

M:
[Mf; Mas

where My, and Mss are assumed to be invertible. Then

the following statements are equivalent.
1)M >0,

2)My1 > 0 and May — MM My > 0,
3)May > 0 and Myy — My My M5 > 0.

Now we review the Ho, norm for a linear stable jump

system. Consider

0 Az(t) + Buw(t), kh<t< (k+1)h,

s(khY) = Agw(kh) + Baway, t= kh, W
z(t) = Cuz(t) + Dw(t),
zag = Cax(kh) + Dgway

where z(t) € R is the state which is left continuous at ¢ =
kh where h is a constant number, w(t) € R™1, wgi, € ™
are the continuous-time and discrete-time disturbances,
respectively, z(t) € RPL, zg € RPe are the controlled
outputs, respectively. The matrices A, A4, B, By, C, Cq, D

and Dy are of appropriate dimensions.

Definition 2.1 The system (1) is said to be input-output
stable if (z,zq) € L2(0,00;R9) x 12(0,00; R%) for any
(w,wq) € L%(0, 00; R™) x 12(0, 00; R™4) where L?(0, 00; -)
is the space of square integrable functions and 1*(0, 00;-)

is the space of square summable functions.

H,, disturbance attenuation performance for the system
(1) is defined in the following.

Definition 2.2 Given a scalar v > 0, the system (1) is
said to be stable with Hy disturbance attenuation -y if it is

exponentially stable and input-output stable with

(2)

I 20z, + 1l 2a I7,< (w17, + 1| wa lIZ,)

for some 0 < d < .

The following lemma gives necessary and sufficient condi-

tions for (2) and is known as the Bounded Real Lemma.

Lemma 2.2 (/8]) Let v > 0 be given, and consider the

system

z(t) = Axz(t)+ Bw(t), kh <t < (k+1)h,
x(kh"’) = Adx(k‘h) + Bawgk, t = kh,

z(t) = Cuz(t) + Dw(t),

Zdk = C’dx(k‘h) + Dgwgg.

Then it is stable with disturbance attenuation v if and only
if there exists a matrix X > 0 such that

[ X(t)+ATX(t)+ X(H)A X(t)B CT
BT X(t) —?I DT | <0,
C D I
kh <t < (k+1)h,
[ —X_l(kih) 0 Ay By (3)
0 —1 Cy Dy 0
AL cf —X(kn7) 0 <5
Bl D! 0 —21
t = kh.

2.2 Fuzzy Jump Systems

Consider the Takagi-Sugeno fuzzy jump system described
by the following fuzzy rules:

IF &1 is My and - - - and & is Mg,
THEN J?(t) = Aiﬂﬁ(t) + Bliw(t),
kh < t < (k+ 1)h,
x(kh™) = Agz(kh) + Boug, t = kh,
Z(t) = Clix(t),
zar = Caiz(kh) + Diguy,
yr = Cojx(kh) + Darjwak + Dagiug,

t=1,---,7r
(4)
where ug € R™2 is the control input, ¥, € RP? is the obser-

vation. All the matrices are of appropriate dimensions. r
is the number of IF-THEN rules. M;; are fuzzy sets and &;,

&1

Here we assume that the premise variables are given.

.-+, & are premise variables. We set £ = [61

The state, controlled output and observation are defined



as follows:

i) = Y AEO) Aiw®) + Briw(®)},

= kh <t < (k+ 1)h,
(kht) = Adx(k:h) + Bouy, t = kh,

2(t) = Z Ai(€(1))Crix(t),

Zdk = Z Ai( ))(Caiz(kh) + Diguyg),

y(t) = Z Ai(E(){Cox(kh) + Darjway, + Dagiu}

(5)

where

)\z(g(t)) = Ma ﬁ zj 5]

> Bi(E®) 7=t

and M;; () is the grade of the membership function of M;;.

We assume

i=1
for any £(t). Hence A;(£(t)) satisfy
Al(g(t)) Z O?Z: 1a"'a7‘

for any &(t).

Remark 2.1 The state equations of (5) can be generalized

o(t) = ZA ){Aix(t) + Briw(t)},
kh <t < (k+1)h,
z(kht) = ZA (kh)){Agix(kh) + Bojug}, t = kh.

However, we keep in mind that our goal is Hy, control
of sampled-data fuzzy systems. As we see in Section 3,
sampled-data fuzzy systems can be written in the form (5).

Thus we proceed our argument with (5).

Suppose that the following rules concerning H., con-

trollers for each subsystem (4) are given.

IF €118 Miy and - - - and &g is Mg,
THEN () = Aii(t), kh<t<(kz+1)h ;
#(kh™) = Agsi(kh) + Buge, t = kh, O
U Zéi.f?(k‘h), i=1,---,7

where #(t) € R" and all matrices are of appropriate di-

mensions. Then an actual choice of a controller is

i) = ZA NAiz(t), kh <t < (k+1)h,
(kh*) = ZA ) {Agiz(kh) + Biyx}, t = kh,
ue = ZA ))Cia(kh).

(7)
We use the same weights \;(£(t)) as those for the rules (6)
of the fuzzy system.

Definition 2.3 A controller (7) is said to be a -
suboptimal controller if it makes the system (5) stable with

H., disturbance attenuation -y.

Now we propose a method to design a y-suboptimal con-
troller based on the linear matrix inequalities(LMI's). To
this end, for some matrices G, let us define common ma-

trices X > 0 and Z > 0 satisfying

X(t)+ AT X (t) + X (t)A; + CLCy;
+ QX(t)BuBlTiX( ) <0, kh<t<(k+1)h,
(kjh ) ATX(kh)Ad — Cg;cdi + FzTVFi > 0,t = kh,

Z(8) + (A +71 B BLX(1)T (1)

+Z(t)(A; + ?BuBlTiX(t)) <0, kh<t<(k+1)h,

%Z_l(kh) —GjDQU Ag — GjCQi 0
_DgliG? ’yQI 0 0 > 0,
(Ad — GjCQi)T 0 ’)/QZ(kih_) F,L-T
0 0 F -1
=kh, V i,J
(8)
where
V(kh) = DZLDis+ BYX(kh)Bs,
Filkh) =~V (kh)(BY X (kh) Ay + DECar).

The following theorem gives a y-suboptimal controller

for fuzzy jump system (5).

Theorem 2.1 Suppose that for some matrices G; there
exist common matrices X > 0 and Z > 0 satisfying (8).



Then the controller

i(t) = Z)\ )(A; 3 BhBlTlX( ))E(t),
kh <t < (k+1)h,
(kh) ZZA ((kh)){Aga(kh) + Byuy
1 ié -1(% ~ Cosi(kh) — Dasiun)}, t = kh,
ug = ZA )) Fyi(kh)

(9)

is a y-suboptimal controller.

Proof: The closed-loop system (5) and (9) becomes

(o = a]f]®+ B,
kh <t < (k+1)h,
[ } (kh*) = Agc [ﬂ (kh) + Bacwar, t = kh, (10)
20 = | w,
zak = Clac [ﬂ (kh)

where e = x — 2 and

r A; 0
_ 1 1
Ae= Z Ai (5) |: ——QBliBliX(t) A; + _QBliBliX(t) :| ’
i Y Y

T

B.=> x| 5] Co= ZA

i=1

Age =) N(ON(9)

i=1j=1

Cll 0 )

[Ad +032Fi —ByF; ]

Ad — GjCQi

Bdc =

DD X9

i=1j=1

Cac = Z Ai(€) [

Now we shall show that for the closed-loop system (10)

0
—GDay; |

Cai + D12oF; —D1oF;].

the positive definite matrix

=0 %]

satisfies (3). In fact, for kh < ¢ < (k+1)h

X (t) + AT X (t) + X (t) A + CTC.

1
+?&maﬁkw>

:Ey&mﬂ%$>¢£m>

where

Xu(t)= X(t)+ AT X(t) + X(t)A; + CLCy;
+?X(t)BuB1TiX(t) <0,
Z(t) + (A + viBuBﬂX( )" Z(t)
+Z(t)(Ai + " BlzBuX( )
+Z(t)BuBLZ(t) < 0.

For t = kh, define

c_l(kh) 0 Adc Bdc
» 2 0 I Clae
= Al CLX(khT) 0
Bl 0 0 A%
Dy Dy
> 3 MEO el e
where
~1(kh) 0 0
Q1 = 0 “Y(kn) 0],
Y
L 0 0 I
I Ad“‘BgFi —BQF,L' 0
Do = 0 Aq—GjCo —GjDoy; |,
| Cai + D12F; —D1oF; 0
X(kh™) 0 0
Do = 0 vZ(kh™) 0 |,
0 0 V2T
and we need to show ® > 0. We calculate
0O 0 0 I 0 O O I 0 0 0 O
I 00 0 0 O 0O 0 0 I 0 O
0O 0 I 0 0 O P 0O 0 I 0 0 O
O I 0 0 0 O I 0 0 0 0 O
0O 0 0 0 0 I O 0 0 0 0 I
0O 0 0 0 I o0 0O 0 0 0 I o0
K i A
26 = 3OS aen (e | 2o D
== Piy; oz
where
R [ X(kh™)  (Ag+ BoFy)T
D1, =| Aq+ BoF; ~1(kh)
| Cai + D12 F; 0
(Cai + 6)12Fi)T
I )
N 0 0 0
P0i=10 0 —-BF; |,
0 O —D12F'
1
= _ 'Y
B22ij = _DQTUGJT 'YQI 0
(Ag — G;C2)T 0 V2 Z(kh™)

Clearly, ® > 0 if and only if ® > 0. In order to show

® > 0, we refer to Lemma 2.1 and need to check if

‘i)lli > 0, ‘i)ggij — ‘i){%‘i)l_lli‘i)lgi >0, Vi,j.



Since we have
X(kh™)
- [(Ad + Bo )T (Cai + D12Fi)T}

X(k;h) 0 [Ad‘FBQFi}

x Cai + D12 F;

= X(kh™) — ATX(k:h)Ad — C :Cai + FI'VF; >0,
we can show ‘13111' > 0 by Lemma 2.1. Next we calculate
Bij = Bosij — DTy b1) d1oi =
LQ L (kh) —G ;Do Ag — G;Cy
_DQTUGJT VI 0
(Ag — G;Co)T 0 2Z(kh™) — FI'VEF;

®;; > 0 for all 4,5 if and only if

1
- _1(kjh) —GjDQU Ad — GjCQi 0
—-DJ,,GT V2 0 0 | >0
(Ag — G;C2)T 0 vZ(kh=) FT
0 0 F; V-t

for all 4, j. This completes the proof.

3 Application to Sampled-Data
Systems

In this section, we shall give a method of designing a
~v-suboptimal controller for fuzzy sampled-data systems,
which is our main result in the paper. As will be noted in
this section, a fuzzy sampled-data system is a special case
of a fuzzy jump system. Thus we can apply the results
in the previous section to sampled-data systems. First we
shall show that fuzzy sampled-data systems can be writ-
ten in the form of the fuzzy jump system (5). Consider
the Takagi-Sugeno fuzzy system described by the following
fuzzy rules:

IF &1 is My and - - - and & is Mg,
THEN x(t) = Aiﬂﬁ(t) + Bliw(t) + Bgi’&,(t),
Z(t) = Cli.ﬁ(t) + Dlga(t), '
yr = Coix(kh) + Dorjwar,i=1,---,r
where 4(t) € R™ is the zero-order hold control input and
Then the

state, the controlled output and observation are defined as

all the matrices are of appropriate dimensions.

follows;
i) = Z Xi(E0)){Aiz(t) + Brw(t) + Bua(t)},
2(t) = ZA ){Criz(t) + Di2i(t)},
Y = Z i (1)) {Coix(kh) + Darjwar}

(11)

Since (t) is the zero-order hold input, it implies that
u(t) = uk, kh < t < (k+ 1)h where h is a sampling
time. That is, since the input @(t) is constant between
two sampling periods, we can take the following state space

representation:
=0, 2(kht) = ug, kh <t < (k+1)h.

Tzl ]T, then

1) becomes the following

Clearly u(t) = &(t). If we define z.(t) = [ 2T
the fuzzy sampled-data system (1

fuzzy jump system:

Fe(t) = Z (€ {Aie(t) + Brw(®)},
kh <t < (k+1)h,
(kh"‘) = -AdJTe(kh) + Bouy, t = kh,
Z(t) = Z )\ Chxe )
Rdk = \/_'Dlguk,
U Z Ai(§(#){Caize(kh) + Darjwar }
where

a4 B am [ 8] mem [ 5]

322[9},0112[011‘ 0], Coi=[Co 0],
D12 = D12, D21; = Doy,

and v/h comes from

[eS) o h
/ ’&T(t)DEDlz’a(t)dt = Z / ’U,g'DTQ'Dm’U,kdt
0 k=0 0

e
= Z ’U,g (h'D{Q'Dm)uk
k=0

Thus we can apply the jump system result in the previ-
ous section to obtain a y-suboptimal controller for fuzzy

sampled-data systems.

Theorem 3.1 Suppose that there exist common matrices
X >0, Z> 0 and matrices G; such that
X(t) + JléliTX (t) + X(1)A; + CLCy;
+=5X()BBX(t) <0, kh <t < (k+1)h,

X(kh™) — AT X (kh) A + FTVF > 0, t = kh,
. 1
Z(t) + (Ai + ?BliBﬂX(t))TZ(t)
1
Z(t)(A; + ?BliBﬂX(t)) <0, kh <t < (k+1)h,
1
— “Ykh)  —GjDa; Aq—GiCy 0
D367 VI 0 0 | >0,
V2 Z(kh™)  FT

(Aqg —G;C)T 0
0



where

V(kh) = hDL D12+BTX(kh)BQ,
F(kh) = V L(kh)BE X (kh)Aqg.
Then the controller
() = ZA (At L BuBLX (1)),

kh <t < (k+1)h,

&(kht) = Z Z Ai( (€(kh)){Aqz(kh) + Bauy,
1 41‘éj(lyk — Coi(kh))}, t = kh,
U = f.f?(k‘h)

is a y-suboptimal controller.

4 Conclusion

We have considered the output feedback H., control prob-
lem for the Takagi-Sugeno fuzzy sampled-data systems,
and have given a design method of an H, controller based
on LMTI’s.

gated. Then the result for a jump system has been applied

First, a fuzzy jump system has been investi-

to a fuzzy sampled-data system.
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