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Abstract

In this paper the design problem of output feedback H∞
controllers for Takagi-Sugeno fuzzy sampled-data systems
is considered. We take a jump system approach to de-
sign controllers. We first introduce the H∞ performance
(norm) for a stable fuzzy jump system and give a sufficient
condition for the norm being less than a given number. We
then consider the H∞ problem with output feedback con-
trollers. Since a fuzzy sampled-data system can be writ-
ten in the form of a fuzzy jump system, H∞ controller for
fuzzy sampled-data systems can be readily derived from
the corresponding results of fuzzy jump systems.
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1 Introduction

The Takagi-Sugeno fuzzy dynamic model is a system de-
scribed by a set of fuzzy if-then rules which gives local
linear representations of the underlying nonlinear system
([9], [10]). It is well-known in [11] that such a model
can describe or approximate a wide class of nonlinear sys-
tems. Since the work by [10] on stability analysis and
state feedback stabilization there has been much effort de-
veloping system theory for such systems. Robust stabil-
ity is studied in [11] in terms of linear matrix inequalities
(LMI) and in [5] using new stability conditions. Paral-
lel to state feedback design, observer problems have also
been studied. Now it is known in [4], [7] and [13] that the
separation property of designing state feedback controls
and observers hold. This property has been extended to
sampled-data fuzzy systems in [8]. H∞-control was also
considered by many authors. The so-called bounded real
lemma was formulated in terms of LMI’s in [11] and the

design of state feedback H∞-controllers was considered in
[1] and [2]. The design of output feedback H∞-controllers,
though more important and practical, was studied in [14]
for continuous-time case and in [6] for discrete-time case.

When we consider practical systems, it is very natural
that the state of the system is continuous-time, but the ob-
servations are taken only at each sampling instant. This
class of system is called a sampled-data system. Sampled-
data systems often appear in many practical systems and
mathematical formulations, and describe the real situa-
tions of the systems. Recently, a jump system approach
has been taken to analyze sampled-data systems. In fact,
a jump system, whose state variable has jumps at certain
time instants, has been proved useful to treat a wide class
of systems, including continuous-time system, discrete-
time system and sampled-data system. H2 and H∞ control
problems for such jump system and sampled-data system
were considered in [3]. Moreover, the stochastic control
theory of jump systems was also explored. LQG control
problem and risk-sensitive optimal control problem were
solved in [15] and [12], respectively. In these paper, the
results for jump systems were applied to sampled-data
systems and the same control problems for sampled-data
systems were solved.

In this paper we consider an H∞ control problem for
the Takagi-Sugeno fuzzy sampled-data systems via jump
system approach. Since it has been shown that a sampled-
data system can be written as a special case of a jump
system, we first consider an H∞ control problem for the
Takagi-Sugeno jump systems. We give a design method
of output feedback H∞ controllers which is based on the
two LMI’s and give sufficient conditions for the proposed
controller to be suboptimal. Then we apply the result to
fuzzy sampled-data systems.



2 H∞ Control

This section considers an H∞ control problem for Takagi-
Sugeno fuzzy jump systems, and gives a design method of
output feedback H∞ controllers.

2.1 Preliminary Results

First we recall some important results that help us obtain
a main result of the paper.

The following lemma is known as the Schur complement
formula.

Lemma 2.1 Let M be a symmetric matrix of the form

M =
[

M11 M12

MT
12 M22

]
,

where M11 and M22 are assumed to be invertible. Then
the following statements are equivalent.
1)M > 0,
2)M11 > 0 and M22 − MT

12M
−1
11 M12 > 0,

3)M22 > 0 and M11 − M12M
−1
22 MT

12 > 0.

Now we review the H∞ norm for a linear stable jump
system. Consider

ẋ(t) = Ax(t) + Bw(t), kh < t < (k + 1)h,
x(kh+) = Adx(kh) + Bdwdk, t = kh,

z(t) = Cx(t) + Dw(t),
zdk = Cdx(kh) + Ddwdk

(1)

where x(t) ∈ �n is the state which is left continuous at t =
kh where h is a constant number, w(t) ∈ �m1 , wdk ∈ �md

are the continuous-time and discrete-time disturbances,
respectively, z(t) ∈ �p1 , zdk ∈ �pd are the controlled
outputs, respectively. The matrices A, Ad, B, Bd, C, Cd, D

and Dd are of appropriate dimensions.

Definition 2.1 The system (1) is said to be input-output
stable if (z, zd) ∈ L2(0,∞;�q) × l2(0,∞;�qd) for any
(w, wd) ∈ L2(0,∞;�m) × l2(0,∞;�md) where L2(0,∞; ·)
is the space of square integrable functions and l2(0,∞; ·)
is the space of square summable functions.

H∞ disturbance attenuation performance for the system
(1) is defined in the following.

Definition 2.2 Given a scalar γ > 0, the system (1) is
said to be stable with H∞ disturbance attenuation γ if it is
exponentially stable and input-output stable with

‖ z ‖2
L2

+ ‖ zd ‖2
l2
≤ d2(‖ w ‖2

L2
+ ‖ wd ‖2

l2
) (2)

for some 0 < d < γ.

The following lemma gives necessary and sufficient condi-
tions for (2) and is known as the Bounded Real Lemma.

Lemma 2.2 ([3]) Let γ > 0 be given, and consider the
system

ẋ(t) = Ax(t) + Bw(t), kh < t < (k + 1)h,
x(kh+) = Adx(kh) + Bdwdk, t = kh,

z(t) = Cx(t) + Dw(t),
zdk = Cdx(kh) + Ddwdk.

Then it is stable with disturbance attenuation γ if and only
if there exists a matrix X > 0 such that

[
Ẋ(t) + AT X(t) + X(t)A X(t)B CT

BT X(t) −γ2I DT

C D −I

]
< 0,

kh < t < (k + 1)h,


−X−1(kh) 0 Ad Bd
0 −I Cd Dd

AT
d CT

d −X(kh−) 0
BT

d DT
d 0 −γ2I


 < 0,

t = kh.

(3)

2.2 Fuzzy Jump Systems

Consider the Takagi-Sugeno fuzzy jump system described
by the following fuzzy rules:

IF ξ1 is Mi1 and · · · and ξq is Miq,
THEN ẋ(t) = Aix(t) + B1iw(t),

kh < t < (k + 1)h,
x(kh+) = Adx(kh) + B2uk, t = kh,

z(t) = C1ix(t),
zdk = Cdix(kh) + D12uk,
yk = C2ix(kh) + D21iwdk + D22iuk,

i = 1, · · · , r
(4)

where uk ∈ �m2 is the control input, yk ∈ �p2 is the obser-
vation. All the matrices are of appropriate dimensions. r

is the number of IF-THEN rules. Mij are fuzzy sets and ξ1,
· · ·, ξq are premise variables. We set ξ =

[
ξ1 · · · ξq

]T .
Here we assume that the premise variables are given.

The state, controlled output and observation are defined



as follows:

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + B1iw(t)},
kh < t < (k + 1)h,

x(kh+) = Adx(kh) + B2uk, t = kh,

z(t) =
r∑

i=1

λi(ξ(t))C1ix(t),

zdk =
r∑

i=1

λi(ξ(kh))(Cdix(kh) + D12uk),

y(t) =
r∑

i=1

λi(ξ(t)){C2ix(kh) + D21iwdk + D22iuk}
(5)

where

λi(ξ(t)) =
βi(ξ(t))

r∑
i=1

βi(ξ(t))

, βi(ξ(t)) =
q∏

j=1

Mij(ξj(t))

and Mij(·) is the grade of the membership function of Mij .
We assume

βi(ξ(t)) ≥ 0, i = 1, · · · , r,
r∑

i=1

βi(ξ(t)) > 0

for any ξ(t). Hence λi(ξ(t)) satisfy

λi(ξ(t)) ≥ 0, i = 1, · · · , r,
r∑

i=1

λi(ξ(t)) = 1

for any ξ(t).

Remark 2.1 The state equations of (5) can be generalized
as

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + B1iw(t)},
kh < t < (k + 1)h,

x(kh+) =
r∑

i=1

λi(ξ(kh)){Adix(kh) + B2iuk}, t = kh.

However, we keep in mind that our goal is H∞ control
of sampled-data fuzzy systems. As we see in Section 3,
sampled-data fuzzy systems can be written in the form (5).
Thus we proceed our argument with (5).

Suppose that the following rules concerning H∞ con-
trollers for each subsystem (4) are given.

IF ξ1 is Mi1 and · · · and ξq is Miq,
THEN ˙̂x(t) = Âix̂(t), kh < t < (k + 1)h,

x̂(kh+) = Âdix̂(kh) + B̂iyk, t = kh,
uk = Ĉix̂(kh), i = 1, · · · , r

(6)

where x̂(t) ∈ �n̂ and all matrices are of appropriate di-
mensions. Then an actual choice of a controller is

˙̂x(t) =
r∑

i=1

λi(ξ(t))Âix̂(t), kh < t < (k + 1)h,

x̂(kh+) =
r∑

i=1

λi(ξ(t)){Âdix̂(kh) + B̂iyk}, t = kh,

uk =
r∑

i=1

λi(ξ(t))Ĉix̂(kh).

(7)
We use the same weights λi(ξ(t)) as those for the rules (6)
of the fuzzy system.

Definition 2.3 A controller (7) is said to be a γ-
suboptimal controller if it makes the system (5) stable with
H∞ disturbance attenuation γ.

Now we propose a method to design a γ-suboptimal con-
troller based on the linear matrix inequalities(LMI’s). To
this end, for some matrices Gj, let us define common ma-
trices X > 0 and Z > 0 satisfying

Ẋ(t) + AT
i X(t) + X(t)Ai + CT

1iC1i

+
1
γ2

X(t)B1iB
T
1iX(t) < 0, kh < t < (k + 1)h,

X(kh−) − AT
d X(kh)Ad − CT

diCdi + F T
i V Fi > 0, t = kh,

Ż(t) + (Ai +
1
γ2

B1iB
T
1iX(t))T Z(t)

+Z(t)(Ai +
1
γ2

B1iB
T
1iX(t)) < 0, kh < t < (k + 1)h,


1
γ2

Z−1(kh) −GjD21i Ad − GjC2i 0

−DT
21iG

T
j γ2I 0 0

(Ad − GjC2i)T 0 γ2Z(kh−) F T
i

0 0 Fi V −1


 > 0,

t = kh, ∀ i, j
(8)

where

V (kh) = DT
12D12 + BT

2 X(kh)B2,
Fi(kh) = −V −1(kh)(BT

2 X(kh)Ad + DT
12Cdi).

The following theorem gives a γ-suboptimal controller
for fuzzy jump system (5).

Theorem 2.1 Suppose that for some matrices Gj there
exist common matrices X > 0 and Z > 0 satisfying (8).



Then the controller

˙̂x(t) =
r∑

i=1

λi(ξ(t))(Ai +
1
γ2

B1iB
T
1iX(t))x̂(t),

kh < t < (k + 1)h,

x̂(kh+) =
r∑

i=1

r∑
j=1

λi(ξ(t))λj(ξ(kh)){Adx̂(kh) + B2uk

+Gj(yk − C2ix̂(kh) − D22iuk)}, t = kh,

uk =
r∑

i=1

λi(ξ(t))Fix̂(kh)

(9)
is a γ-suboptimal controller.

Proof: The closed-loop system (5) and (9) becomes

[
ẋ
ė

]
(t) = Ac

[
x
e

]
(t) + Bcw(t),

kh < t < (k + 1)h,[
x
e

]
(kh+) = Adc

[
x
e

]
(kh) + Bdcwdk, t = kh,

z(t) = Cc

[
x
e

]
(t),

zdk = Cdc

[
x
e

]
(kh)

(10)

where e = x − x̂ and

Ac =
r∑

i=1

λi(ξ)


 Ai 0

− 1
γ2

B1iB1iX(t) Ai +
1
γ2

B1iB1iX(t)


 ,

Bc =
r∑

i=1

λi(ξ)
[
B1i
B1i

]
, Cc =

r∑
i=1

λi(ξ) [C1i 0 ] ,

Adc =
r∑

i=1

r∑
j=1

λi(ξ)λj(ξ)
[

Ad + B2Fi −B2Fi
0 Ad − GjC2i

]
,

Bdc =
r∑

i=1

r∑
j=1

λi(ξ)λj(ξ)
[

0
−GjD21i

]
,

Cdc =
r∑

i=1

λi(ξ) [Cdi + D12Fi −D12Fi ] .

Now we shall show that for the closed-loop system (10)
the positive definite matrix

Xc =
[
X 0
0 γ2Z

]

satisfies (3). In fact, for kh < t < (k + 1)h

Ẋc(t) + AT
c Xc(t) + Xc(t)Ac + CT

c Cc

+
1
γ2

Xc(t)BcB
T
c Xc(t)

=
r∑

i=1

λi(ξ(t))
[

X11(t) 0
0 γ2X22(t)

]

where

X11(t) = X(t) + AT
i X(t) + X(t)Ai + CT

1iC1i

+
1
γ2

X(t)B1iB
T
1iX(t) < 0,

X22(t) = Ż(t) + (Ai +
1
γ2

B1iB
T
1iX(t))T Z(t)

+Z(t)(Ai +
1
γ2

B1iB
T
1iX(t))

+Z(t)B1iB
T
1iZ(t) < 0.

For t = kh, define

Φ ∆=




X−1
c (kh) 0 Adc Bdc

0 I Cdc 0
AT

dc CT
dc Xc(kh−) 0

BT
dc 0 0 γ2I




=
r∑

i=1

r∑
j=1

λi(ξ(t))λj(ξ(t))
[

Φ11 Φ12ij

ΦT
12ij Φ22

]

where

Φ11 =




X−1(kh) 0 0

0
1
γ2

Z−1(kh) 0

0 0 I


 ,

Φ12ij =

[
Ad + B2Fi −B2Fi 0

0 Ad − GjC2i −GjD21i

Cdi + D12Fi −D12Fi 0

]
,

Φ22 =


X(kh−) 0 0

0 γ2Z(kh−) 0
0 0 γ2I


 ,

and we need to show Φ > 0. We calculate


0 0 0 I 0 0
I 0 0 0 0 0
0 0 I 0 0 0
0 I 0 0 0 0
0 0 0 0 0 I
0 0 0 0 I 0


Φ




0 I 0 0 0 0
0 0 0 I 0 0
0 0 I 0 0 0
I 0 0 0 0 0
0 0 0 0 0 I
0 0 0 0 I 0




∆= Φ̂ =
r∑

i=1

r∑
j=1

λi(ξ(t))λj (ξ(t))

[
Φ̂11i Φ̂12i

Φ̂T
12i Φ̂22ij

]

where

Φ̂11i =

[
X(kh−) (Ad + B2Fi)T

Ad + B2Fi X−1(kh)
Cdi + D12Fi 0

(Cdi + D12Fi)T

0
I

]
,

Φ̂12i =

[
0 0 0
0 0 −B2Fi
0 0 −D12Fi

]
,

Φ̂22ij =




1
γ2

Z−1(kh) −GjD21i Ad − GjC2i

−DT
21iG

T
j γ2I 0

(Ad − GjC2i)T 0 γ2Z(kh−)


 .

Clearly, Φ > 0 if and only if Φ̂ > 0. In order to show
Φ̂ > 0, we refer to Lemma 2.1 and need to check if

Φ̂11i > 0, Φ̂22ij − Φ̂T
12iΦ̂

−1
11iΦ̂12i > 0, ∀ i, j.



Since we have
X(kh−)

−
[
(Ad + B2Fi)T (Cdi + D12Fi)T

]
×

[
X(kh) 0

0 I

] [
Ad + B2Fi

Cdi + D12Fi

]
= X(kh−) − AT

d X(kh)Ad − CT
diCdi + F T

i V Fi > 0,

we can show Φ̂11i > 0 by Lemma 2.1. Next we calculate

Φ̄ij
∆= Φ̂22ij − Φ̂T

12iΦ̂
−1
11iΦ̂12i =


1
γ2

Z−1(kh) −GjD21i Ad − GjC2i

−DT
21iG

T
j γ2I 0

(Ad − GjC2i)T 0 γ2Z(kh−) − F T
i V Fi


 .

Φ̄ij > 0 for all i, j if and only if


1
γ2

Z−1(kh) −GjD21i Ad − GjC2i 0

−DT
21iG

T
j γ2I 0 0

(Ad − GjC2i)T 0 γ2Z(kh−) F T
i

0 0 Fi V −1


 > 0

for all i, j. This completes the proof.

3 Application to Sampled-Data
Systems

In this section, we shall give a method of designing a
γ-suboptimal controller for fuzzy sampled-data systems,
which is our main result in the paper. As will be noted in
this section, a fuzzy sampled-data system is a special case
of a fuzzy jump system. Thus we can apply the results
in the previous section to sampled-data systems. First we
shall show that fuzzy sampled-data systems can be writ-
ten in the form of the fuzzy jump system (5). Consider
the Takagi-Sugeno fuzzy system described by the following
fuzzy rules:

IF ξ1 is Mi1 and · · · and ξq is Miq,
THEN ẋ(t) = Aix(t) + B1iw(t) + B2iũ(t),

z(t) = C1ix(t) + D12ũ(t),
yk = C2ix(kh) + D21iwdk, i = 1, · · · , r

where ũ(t) ∈ �m is the zero-order hold control input and
all the matrices are of appropriate dimensions. Then the
state, the controlled output and observation are defined as
follows;

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + B1iw(t) + B2iũ(t)},

z(t) =
r∑

i=1

λi(ξ(t)){C1ix(t) + D12ũ(t)},

yk =
r∑

i=1

λi(ξ(t)){C2ix(kh) + D21iwdk}
(11)

Since ũ(t) is the zero-order hold input, it implies that
ũ(t) = uk, kh < t < (k + 1)h where h is a sampling
time. That is, since the input ũ(t) is constant between
two sampling periods, we can take the following state space
representation:

˙̄x = 0, x̄(kh+) = uk, kh < t < (k + 1)h.

Clearly ũ(t) = x̄(t). If we define xe(t) =
[
xT x̄T

]T , then
the fuzzy sampled-data system (11) becomes the following
fuzzy jump system:

ẋe(t) =
r∑

i=1

λi(ξ(t)){Aixe(t) + B1iw(t)},
kh < t < (k + 1)h,

xe(kh+) = Adxe(kh) + B2uk, t = kh,

z(t) =
r∑

i=1

λi(ξ(t))C1ixe(t),

zdk =
√

hD12uk,

yk =
r∑

i=1

λi(ξ(t)){C2ixe(kh) + D21iwdk}

where

Ai =
[
Ai B2i
0 0

]
, Ad =

[
I 0
0 0

]
, B1i =

[
B1i
0

]
,

B2 =
[ 0

I

]
, C1i = [ C1i 0 ] , C2i = [ C2i 0 ] ,

D12 = D12, D21i = D21i,

and
√

h comes from∫ ∞

0

ũT (t)DT
12D12ũ(t)dt =

∞∑
k=0

∫ h

0

uT
k DT

12D12ukdt

=
∞∑

k=0

uT
k (hDT

12D12)uk.

Thus we can apply the jump system result in the previ-
ous section to obtain a γ-suboptimal controller for fuzzy
sampled-data systems.

Theorem 3.1 Suppose that there exist common matrices
X > 0, Z > 0 and matrices Gj such that

Ẋ(t) + AT
i X(t) + X(t)Ai + CT

1iC1i

+
1
γ2

X(t)B1iBT
1iX(t) < 0, kh < t < (k + 1)h,

X(kh−) −AT
d X(kh)Ad + FTVF > 0, t = kh,

Ż(t) + (Ai +
1
γ2

B1iBT
1iX(t))T Z(t)

+Z(t)(Ai +
1
γ2

B1iBT
1iX(t)) < 0, kh < t < (k + 1)h,


1
γ2

Z−1(kh) −GjD21i Ad − GjC2i 0

−DT
21iGT

j γ2I 0 0
(Ad − GjC2i)T 0 γ2Z(kh−) FT

0 0 F V−1


 > 0,

t = kh, ∀ i, j



where

V(kh) = hDT
12D12 + BT

2 X(kh)B2,
F(kh) = −V−1(kh)BT

2 X(kh)Ad .

Then the controller

˙̂x(t) =
r∑

i=1

λi(ξ(t))(Ai +
1
γ2

B1iBT
1iX(t))x̂(t),

kh < t < (k + 1)h,

x̂(kh+) =
r∑

i=1

r∑
j=1

λi(ξ(t))λj(ξ(kh)){Adx̂(kh) + B2uk

+Gj(yk − C2ix̂(kh))}, t = kh,
uk = F x̂(kh)

is a γ-suboptimal controller.

4 Conclusion

We have considered the output feedback H∞ control prob-
lem for the Takagi-Sugeno fuzzy sampled-data systems,
and have given a design method of an H∞ controller based
on LMI’s. First, a fuzzy jump system has been investi-
gated. Then the result for a jump system has been applied
to a fuzzy sampled-data system.
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