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ABSTRACT 
 
A high-order feedforward neural architecture, called 
Pit-Sigma (πtσ) Neural Network with hybrid 
evolutionary local learning, is proposed for lossy digital 
image compression and reconstruction problems. The πtσ 
network architecture is composed of an input layer, a 
single hidden layer, and an output layer. The hidden 
layer is composed of classical additive neurons, whereas 
the output layer is composed of translated multiplicative 
neurons (πt-neurons). In order to adjust the parameters 
of the  πtσ network, a two-stage learning algorithm is 
proposed: first, a genetic algorithm (GA) is used to avoid 
premature convergence to poor local minima; in the 
second stage, a conjugate gradient method is used to fine 
tune the solution found by GA. Experiments using the 
Standard Image Database (SIDBA) and infrared satellite 
images show that the proposed πtσ network performs 
better than classical multilayer perceptron, improving 
the reconstruction precision (measured by the mean 
squared error) in about 56%, on average. 
Keywords: Neural networks, image compression, 
multiplicative neurons, high-order neural networks, 
genetic algorithm. 

 
1. INTRODUCTION 

 
The expansion of multimedia information processing 

systems, associated to physical limitations on bandwidth of 
transmission lines and limited capacity of storage devices, 
resulted in an increasing interest on data compression 
technologies, both in industry and in academia. As an 
efficient image compression and reconstruction scheme, 
classical Multilayer Perceptron (MLP) neural networks and 
some of its variations have already been applied in lossy 
image compression problems (Namphol et al., 1996; Ma and 
Khorasani, 2002). Because digital images are highly 
nonlinear mappings, neural networks with expanded 
nonlinear processing abilities are needed to realize better 
compression using the smallest amount possible of 
computational resources. In this paper, therefore, a 
multiplicative neural network, called pit-sigma (πtσ) network, 
is proposed for image compression and reconstruction 
problems. The πtσ network is a feedforward network 
composed of an input layer, a hidden layer of additive 
neurons, and an output layer composed of translated 
multiplicative neurons (πt-neurons) (Iyoda et al., 2004). The 
πtσ network is trained using a supervised learning algorithm, 
composed of 2 stages: (i) a Genetic Algorithm (GA) is used 
to avoid local minima in the error surface; and (ii) the 
Scaled Conjugate Gradient (SCG) is applied to fine-tune the 
solution found by GA. To assess the efficacy of the 

proposed method, 2 image compression/reconstruction 
experiments (Standard Image Database (SIDBA) and 
Geostationary Operational Environmental Satellite (GOES)) 
are performed.  

 
2. FEEDFORWARD NEURAL NETWORKS FOR 

IMAGE COMPRESSION 
 
There are many possible approaches for image 

compression using neural networks proposed in the 
literature (Jiang, 1999). Among these approaches, lossy 
image compression using feedforward neural networks 
trained by supervised learning techniques have produced 
promising results (Namphol et al., 1996; Ma and Khorasani , 
2002). These methods make use of the universal 
approximation capability of such neural networks to 
produce high quality reconstructed images, which are 
approximations of the original image. 

The procedure adopted for image compression and 
reconstruction using feedforward neural networks can be 
described as follows: initially, a digital image of size M× N 
pixels is divided in m⋅n blocks and these blocks are arranged 
in vectors x11,…,_,xmn of size l = (M⋅N)/(m⋅n), as shown in fig. 
1. These m⋅n vectors of dimension l form the training data set 
for the neural network. Define g:ℜl→ℜl, such that g(xij) = xij, 
i=1,…,m, j=1,…,n. The objective is to design a neural 
network able to approximate the mapping g(⋅), i.e., a neural 
network whose output yij (∈ ℜl) is given by 

 ( )ij ij ijg≈ =y x x . (1)  

Fig. 2 presents an overview of this learning procedure, 
where an MLP with a single hidden layer with K hidden 
neurons is used to approximate the mapping g(⋅). Note that, 
to reconstruct the original image, it is necessary to have the 
outputs of the hidden neurons for each training pattern and 
the weights between hidden neurons and output layer. In fig. 
2, there are K⋅l weights between hidden and output layers, 
and K⋅m⋅n numerical values representing the hidden neurons 
outputs for each training pattern. Therefore, the 
compression rate ρ is defined by 

 
( 1K m n
M N

ρ )⋅ +
=

⋅
. (2) 

If ρ  < 1, then a successful compression has been achieved. 
In the following, image compression methods employing 
the procedure presented above are briefly described. 

Namphol et al. (1996) propose a hierarchical neural 
network architecture for image compression, composed of 3 
hidden layers, denoted combiner, compressor, and 
decombine. An image is divided in a number of sub-scenes 
and each of the sub-scenes is processed by a group of 
neurons in the combiner layer. The decombine layer is also 
divided in groups of neurons, each of them responsible for 



reconstructing a sub-scene from the signals generated by the 
compressor layer. 
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Fig. 2. Construction of neural network training data set. 

Ma and Khorasani (2002) apply single hidden layer 
neural networks designed by a constructive learning 
algorithm to image compression. The learning algorithm is 
based on the Cascade Correlation algorithm (Fahlman and 
Lebiere, 1991). Several experiments are performed to 
compare the constructive approach and fixed structure 
networks. Comparisons with baseline JPEG are also 
provided. 

Although these 2 methods may perform better than 
existing image compression techniques, they employ neural 
networks composed of classical additive neurons only. It has 
been shown that neural architectures employing 
multiplicative neurons may outperform classical neural 
network architectures (Ghosh and Shin, 1992; Leerink et al., 
1995; Schmitt, 2002), both in terms of approximation 
accuracy and computational cost. This happens because 
multiplicative neurons can extract high-order information 
from learning data more efficiently than additive neurons.  

 
3. TRANSLATED MULTIPLICATIVE NEURON 

(πt-NEURON) 
 
Artificial neuron models are usually composed of 2 

blocks: an aggregation operator followed by an activation 
function (Duch and Jankowski, 1999). The aggregation 
operator combines the neuron’s inputs to produce a signal 
called level of internal activation v (∈ ℜ). The output s 
(∈ ℜ) of the neuron is then given by s = f(v), where f:ℜ→ℜ 
is the model’s activation function. 
 

Neuron models can be classified according to the type 
of aggregation operator and activation function employed 
(Duch and Jankowski, 1999). When v is produced by an 
additive weighted composition of neuron's inputs, then the 
model is called additive neuron (or σ-neuron, for short), 
defined by 

  (3) 1
,

( ),

m

i i
i

v w p

s f v
=

=

=

∑

where wi (∈ ℜ), i=1,…,m, are the weights (adjustable 
parameters) of the neuron and pi (∈ ℜ), i=1,…,m are the 
neuron’s inputs. The model in (3) is the traditional 
McCulloch-Pitts neuron model. 

The multiplicative neuron (π-neuron) (Zhang, 2000) is 
defined by 

  (4) 1

,
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=
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where wi (∈ ℜ), i=1,…,m, are the weights of the model. 

Note that the model in (4) has 2 properties that may limit its 
applicability in complex problems (Iyoda et al., 2004): (i) it 
has an excessive number of parameters and (ii) decision 
surfaces generated by this model are always centered in the 
origin of the neuron’s input space ℜm. 

To expand the capabilities of the π-neuron model, the 
translated multiplicative neuron (πt-neuron) has been 
proposed (Iyoda et al., 2004). The πt-neuron model is 
defined by 

  (5) 1

( )
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m
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=

= −

=

∏ ,

where the parameters ti (∈ℜ), i=1,…,m, represent the 
coordinates of the center of the decision surface generated 
by the model, and b (∈ℜ) is a scaling factor. The πt-neuron 
model has 2 advantages, when compared to the traditional 
multiplicative neuron: (i) it has a meaningful set of 
adjustable parameters and (ii) the decision surfaces 
generated by this model can be placed in any point of its 
input space. 

The πt-neuron model has been tested in some supervised 
learning problems, including nonlinear regression (Iyoda et 
al., 2004) and pattern classification (Iyoda et al., 2003a). In 
most of these problems, neural networks employing 
πt-neurons could achieve better performance than classical 
neural network models. It has also been shown that a single 
πt-neuron can solve the N-bit parity problem (Iyoda et al., 
2003b). These results confirm that the πt-neuron has 
expanded information processing capabilities when 
compared to the classical additive neuron model. These 
capabilities seem to be more evident when the data to be 
approximated has a high degree of nonlinearity. 

Because typical digital images are mappings containing 
high degree of nonlinearity, a neural network should have 
improved nonlinear processing capabilities to realize the 
mapping in (1) using the smallest amount possible of 
computational resources (i.e., number of hidden neurons and 
connection weights). Since networks using πt-neurons have 
expanded nonlinear processing abilities, a neural network 
architecture containing πt-neurons as processing elements is 
proposed for digital image compression and reconstruction 
problems. The proposed network is described in detail in 
section 4. 
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Fig. 1. Construction of neural network training data set. Here, 
l = (M⋅N)/(m⋅n). 

 
4. THE PIt-SIGMA (πtσ) NEURAL NETWORK 

 
The pit-sigma (πtσ) neural network used for image 

compression and reconstruction is depicted in fig. 3. The 



πtσ is a feedforward neural network, composed of an input 
layer with l nodes, a hidden layer of K σ-neurons, and an 
output layer of l πt-neurons. The network's output yp (∈ℜ), 
p=1,…,l, is given by 

  (6) 0
11

( )
K l

p p ij j j pi
ji

y b f w x w t
==

⎛ ⎛ ⎞
= −⎜ ⎜ ⎟⎜ ⎝ ⎠⎝

∑∏ ,
⎞

− ⎟⎟
⎠

where wij (∈ℜ), i=1,…,K, j=1,…,l, is the weight connecting 
the input xj to the hidden neuron i and w0j (∈ℜ) is the 
weight connecting the bias term x0=+1 to the i-th hidden 
neuron. The parameters bp (∈ℜ) and tpi (∈ℜ), p=1,…,l, 
i=1,…,K, are the parameters of the πt-neurons in the output 
layer of the network. 

The σ-neurons in the hidden layer work as a feature 
extractor, thus reducing the dimensionality of the input 
space. Because of the multiplicative characteristic of the 
πt-neuron model, the output layer of the pts network is able 
to (indirectly) detect higher-order correlations in the 

learning data. In other words, it has expanded information 
processing capabilities in comparison with the classical 
MLP model. Therefore, the πtσ network has the potential to 
better describe the true input-output mapping using a 
smaller number of hidden neurons. 

 
(a) 

 
 (b) (c) 

Fig. 4. Comparison of proposed learning algorithm. (a) 
Original image. (b) Compressed and reconstructed with SCG 

only. (c) Compressed and reconstructed with GA+SCG. 

The πtσ network can be considered as an extension of 
the pi-sigma neural architecture (Ghosh and Shin, 1992), 
which employs the π-neuron model defined in (4) in its 
output layer. Since the original pi-sigma neural architecture 
has the universal approximation property, it is clear that the 
πtσ network is also a universal approximator. 

 
4.1. LEARNING ALGORITHM OF πtσ NEURAL 

NETWORK 
 
Although there are numerous heuristics and strategies to 

initialize classical MLP networks (Haykin, 1999, ch. 4), 
strategies to initialize the weights of networks containing of 
πt-neurons have not been established yet. During the initial 
experiments stage, the Scaled Conjugate Gradient (SCG) 
algorithm (Møller, 1993) was used to train πtσ networks, 
but convergence to poor local optima was observed very 
often. 

To avoid the premature convergence problem, a 
two-stage learning procedure is adopted. First, a Genetic 
Algorithm (GA) is used to find a suboptimal solution. After 
the termination of the genetic search, the SCG is used to 
fine-tune the solution found by GA. 

The standard GA (Michalewicz, 1996) is employed and 
its main characteristics are as follows. 
• Codification: a chromosome is a floating-point vector p 

of dimension (l+1)K+(K+1)l, where each element of the 
vector represents an adjustable parameter (wij, bp, and tpi) 
of the network described in (6) and depicted in fig. 3. 

• Fitness function: each chromosome is evaluated by 

 
1( ) ,

( )
fit

MSE
=p

p
  

where MSE(p) is the mean squared error of the network 
codified by p, defined as 

 ( )2( ) ( )

1 1

1( ) ,
2

m n l
i i

j j
i j

MSE y x
m n

⋅

= =

=
⋅ ∑∑p −  (7) 

 
where  is the j-th network output for i-th training 

pattern, and 

( )i
jy

( )i
jx  is its corresponding target value. 

• Selection operator: chromosomes are selected for the next 
generation using the roulette wheel operator, which 
assigns selection probabilities proportional to the fitness 
of the individual. 
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Fig. 3. The Pit-Sigma (πtσ) neural network architecture. 

• Crossover operator: uniform crossover, where the 
elements of 2 parent chromosomes are exchanged with a 
certain probability. 

• Mutation operator: gaussian mutation, where an element 
pi of a chromosome selected for mutation is modified 
according to 
 (0,1)i ip p N= + , 

where N(0,1) is a gaussian random variable with 0 mean 
and standard deviation 1. 

The SCG algorithm is chosen because it does not 
require any line search procedure and does not have any 
critical user defined parameter. Details about SCG can be 
found in Møller (1993). 

To confirm the efficacy of the proposed learning 
scheme, a simple compression/reconstruction experiment is 



Table 1. Mean squared error for SIDBA reconstructed images. 

 Number of hidden neuron 
4 5 6 7 Image 

MLP πtσ MLP πtσ MLP πtσ MLP πtσ 
Airplane 0.0478 0.0185 0.0285 0.0141 0.0461 0.0111 0.0353 0.0095 
Barbara 0.0741 0.0222 0.0337 0.0156 0.0308 0.0122 0.0335 0.0082 
Boat 0.0189 0.0089 0.0175 0.0054 0.0170 0.0045 0.0220 0.0043 
Bridge 0.0830 0.0412 0.0606 0.0322 0.0494 0.0271 0.0370 0.0243 
Building 0.0335 0.0135 0.0427 0.0103 0.0255 0.0066 0.0245 0.0065 
Cameraman 0.0397 0.0232 0.0336 0.0188 0.0401 0.0147 0.0418 0.0145 
Girl 0.0214 0.0072 0.0164 0.0064 0.0164 0.0049 0.0107 0.0043 
Lax 0.0732 0.0434 0.0494 0.0333 0.0543 0.0285 0.0641 0.0243 
Lenna 0.0250 0.0111 0.0201 0.0091 0.0285 0.0081 0.0170 0.0063 
Lighthouse 0.0688 0.0322 0.0457 0.0294 0.0326 0.0204 0.0474 0.0165 
Text 0.0302 0.0294 0.0305 0.0204 0.0274 0.0178 0.0299 0.0151 
Woman 0.0268 0.0116 0.0390 0.0085 0.0208 0.0068 0.0237 0.0061 

performed using the benchmark image lenna. In this 
experiment, the performance of a πtσ neural network with 5 
hidden neurons trained using SCG only is compared to a πtσ 
network trained by the proposed GA+SCG learning 
algorithm. The parameters of the GA are as follows: 
• Population size: 150; 
• Maximum number of generations: 10000; 
• Crossover probability: 0.8; 
• Mutation probability: 0.0001. 
For the SCG, the maximum number of epochs is set to 
10000, whereas the stop criterion is defined as norm of error 
gradient smaller than 0.001. 

The images compressed and reconstructed by the 

compared learning algorithms are shown in figs. 4(b) and 
4(c). The MSE of the image obtained using SCG only is 
0.027, whereas the MSE of the image obtained by GA+SCG 
is 0.007. Therefore, the efficacy of the proposed GA+SCG 
learning algorithm is confirmed. 
 
5. COMPRESSION AND RECONSTRUCTION OF 

THE STANDARD IMAGE DATABASE AND 
INFRARED SATELLITE IMAGES 

 
To confirm the validity of the proposed approach, 2 

experiments are performed. In the first experiment, images 
from the Standard Image Database (SIDBA) are employed 
to evaluate the approximation capability of the proposed πtσ 

neural network. In the second experiment, the generalization 
capability of πtσ neural network is investigated using 
infrared images taken by a Geostationary Synchronous 
Satellite. In both experiments, the performance of πtσ 
network is compared to that of classical multilayer 
perceptrons. 

 
5.1. COMPRESSION AND RECONSTRUCTION OF 

THE STANDARD IMAGE DATABASE 
 
The Standard Image Database (SIDBA) is composed of 

12 grayscale images, some of them widely used to test the 
performance of image processing algorithms. All the images 
are of size 256×256, i.e., N=M=256. To construct the 
training data set for the neural networks, all the images are 
divided in blocks of size 4×4, i.e., n=m=4. Therefore, the 
dimension of the input space is l=16 and there are 16556 
training patterns. The images of the SIDBA can be 
downloaded from 
http://www.sp.ee.musashi-tech.ac.jp/app.html. 

Two neural architectures are compared: 

 

 
 (a) (b) 

Fig. 5. Woman image compressed and reconstructed by: 
(a) MLP; (b) πtσ network. Both networks have 5 hidden 

neurons. 

(i) Multilayer Perceptron (MLP) with sigmoidal activation 
function in the hidden neurons and linear activation 
function in the output neuron. The MLP is trained 
using the SCG algorithm. The maximum number of 
epochs is set to 10000 and the stop criterion is norm of 
error gradient smaller than 0.001. 

(ii) Pit-sigma (πtσ) neural network, with logistic activation 
function in the hidden neurons and linear activation 
function in the output neurons. The parameters for the 
GA are as follows: 

• Population size: 150; 
• Maximum number of generations: 10000; 
• Crossover probability: 0.8; 
• Mutation probability: 0.0001. 

For the SCG, the maximum number of epochs is 10000, 
whereas the stop criterion is norm of error gradient 
smaller than 0.001. 

For each neural architecture, the number of hidden neurons 
is varied between 4 and 7. 
 

Table 1 shows the mean squared error of the images 
compressed and reconstructed by MLP and πtσ networks. 
For all the cases the proposed πtσ network obtained better 
performance than traditional MLP. Fig. 5 shows an example 
of images compressed and reconstructed by the two neural 



networks considered. From these figures, it is possible to 
notice the higher quality of the images reconstructed using 
the proposed method. 

 
From the results it is confirmed that, using the same 

number of hidden neurons, the proposed πtσ network can 
achieve better performance than the classical MLP.  
 
5.2. COMPRESSION AND RECONSTRUCTION OF 

INFRARED SATELLITE IMAGES 
 
To evaluate the generalization capability of the proposed 

πtσ neural network, a set of infrared images taken by a 
Geostationary Operational Environmental Satellite (GOES) 
orbiting Japan is used. The images generated by this satellite 
are grayscale, of size 800×800, i.e., M=N=800. Six images 
taken in January, 2000 are chosen for this experiment; 1 
image is used for to train the neural networks considered 
and the other 5 images are used to test their generalization 
ability.  

To construct the training data set, the training image is 
divided in blocks of size 8×8, i.e., m=n=8. Thus, the training 
data has dimension l=64 and there are 10000 training 
instances. 

Two neural architectures are compared: 
(i) Multilayer Perceptron (MLP) with 8 hidden neurons 

using logistic activation function and output neurons 
using linear activation function. The MLP is trained 
using the SCG algorithm. The maximum number of 
epochs is set to 10000 and the stop criterion is norm of 
error gradient smaller than 0.001. 

(ii) Pit-sigma (πtσ) neural network, with logistic activation 
function in the hidden neurons and linear activation 
function in the output neurons. The parameters for the 
GA are as follows: 

• Population size: 150; 
• Maximum number of generations: 10000; 
• Crossover probability: 0.4; 
• Mutation probability: 0.0001. 

For the SCG step, the maximum number of epochs is 
10000, whereas the stop criterion is norm of error 
gradient smaller than 0.001. 

Table 2 compares the results obtained by MLP and πtσ 
neural networks. The performance measured used is the 
mean squared error, defined in (7). In this experiment, πtσ 
neural network can again achieve better performance than 
classical MLP, in all the images considered. The results of 
this experiments show that, besides having better 
approximation properties, πtσ network has also better 
generalization capability than the traditional MLP. 

 

6. CONCLUSIONS 
 
A neural architecture called Pit-Sigma (πtσ) neural 

network is proposed for digital image compression and 
reconstruction. The πtσ neural network is composed of an 
input layer, a hidden layer of additive neurons, and an 
output layer of translated multiplicative neurons 
(πt-neurons) (Iyoda et al., 2004). The multiplicative 
characteristic of πt-neuron model enables the proposed πtσ 
network to extract (indirectly) high-order information from 
the training image data. 

The learning algorithm of πtσ network is composed of 2 
stages. First, a floating-point Genetic Algorithm (GA) is 
used to avoid local minima in the network’s error surface. 
After the evolutionary process, the Scaled Conjugate 
Gradient (SCG) (Møller, 1993) is used to fine-tune the 
solution found by GA. Experiment results show that the 
combined GA+SCG learning algorithm produces 
reconstructed images with Mean Squared Error (MSE) 
about 20% lower than that produced using SCG only. 

To evaluate the performance of πtσ network in image 
compression and reconstruction problems, 2 experiments 
are conducted. In the first experiment, images from the 
Standard Image DataBase (SIDBA) are used to evaluate the 
approximation capability of πtσ network. The images 
compressed and reconstructed using the πtσ network have 
MSE about 57% lower than those obtained using classical 
Multilayer Perceptrons (MLP).  

The generalization capability of πtσ network is 
evaluated using a set of infrared images obtained by a 
Geostationary Operational Environmental Satellite (GOES). 
The set is composed of 6 images, where 1 is used for 
training and the remaining 5 are used for testing. The test 
images compressed and reconstructed by πtσ network have 
an MSE 55% smaller than those obtained by MLP. 

The results confirm that the proposed πtσ network has 
better nonlinear approximation and generalization 
capabilities than the classical MLP architecture. They also 
confirm the suitability of the proposed network to digital 
image compression and reconstruction problems. 

The proposed method requires long training times, due 
to the burden imposed by the GA and the big size of the 
training data. Since the proposed approach operates offline, 
this does not limit the applicability of the method. 
Furthermore, with the rapid advance of hardware 
computational power, it is certain that the proposed method 
will be running much faster in the near future. Another way 
to shorten the training time is to develop smart heuristics for 
initializing a πtσ network, thus eliminating the need for GA. 
This is certain a topic for future research. 

Another future research direction is to investigate the 
performance of πtσ network will in compression and 
reconstruction of color images. Furthermore, the 
applicability of πtσ network in video compression problems 
will also be considered. 
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