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abstract

We propose a texture feature extraction method using
mask patterns of several sizes. A mask of each size has 223
patterns. A maximum of 233 features, including the 10 ad-
ditional features, are extracted from each mask. We con-
struct multi-resolution features by combining the features
extracted from masks of different sizes. The calculated fea-
ture value corresponds to the power spectrum of a mask
pattern within the image. This method is equivalent to
expressing the basis functions in frequency analysis by the
mask patterns. Texture classification experiments demon-
strate that our proposed features outperformed other fea-
tures such as Gabor. They also worked well in a test where
the images to be classified were captured under different
illuminants from training images. These results indicate
a high practicality of the proposed method. This paper
also shows that applying a feature selection method to the
proposed features provides high recognition rates with a
small number of features.

1 Introduction

Texture analysis is important in many applications like
medical imaging and remote sensing. It is also used for seg-
mentation to extract target objects from an image. The
edge detection algorithm, by calculating the gradient, can
also be used for segmentation. However, this algorithm
does not always produce closed target regions. Moreover,
it has difficulty in distinguishing the edges inside the re-
gion and on the boundary. On the other hand, obtained
boundaries are always closed and each region is character-
ized by value when texture analysis is used.
In most image analyses, including those of robot vi-

sion and road sign recognition systems, which are both
researched actively, the first procedure of image process-
ing is the extraction of target objects. This step should
be performed with high accuracy because its results affect
the subsequent analytical procedures. This aspect indi-
cates the greater importance of texture analysis and great
demand for high-precision methods.
Texture features that are used for analysis have a great

influence on performance. Analytical methods are usually

divided into two approaches: structural approaches and
statistical approaches. Structural approaches are applied
to regular textures. They represent such textures by their
elements and the arrangements of those elements. In con-
trast, statistical approaches are used for analysis of tex-
tures that have fine and irregular structures. They char-
acterize such structures by the distribution of intensity.
Statistical approaches include methods based on local fea-
tures such as Higher order local autocorrelations (HLAC),
Gaussian Markov Random Field (GMRF), and Local Bi-
nary Pattern (LBP), in addition to methods based on fre-
quency analysis like Fourier transform and Gabor filters.
This paper proposes a statistical feature extraction

method based on local regions. It uses mask patterns of
various sizes and configurations. These features are shift-
invariant (they can classify the texture images regardless
of their positions). The calculated feature values represent
a power spectrum of each mask pattern within the image.
To yield more effective features, we apply a basic fea-

ture selection method to the proposed features. Experi-
mental results described in this paper demonstrate that
this approach raises recognition accuracy while reducing
the number of features markedly. The selection proce-
dures are performed by the system automatically without
a tedious manual operation.
The proposed method can calculate the feature values

simply. Furthermore, hardware implementation is easy.
Moreover, it is robust against illumination changes. All of
these features underscore the practical effectiveness of this
proposed method.

2 Features

2.1 Mask Patterns

We propose a texture feature extraction method using
mask patterns. The approach of creating various mask
patterns is considered to enhance the discrimination power
of the features. Unless patterns are created appropriately,
however, the number of obtained patterns will be enor-
mous. In this study, we first restrict the size of the mask
within a 3 × 3 pixel region, the center of which is the
observing point and the eight neighboring pixels are the



Figure 1: 223 mask patterns (3 × 3)

reference points. In this case, 28 patterns are created. By
eliminating the patterns which are equivalent by the shift,
the 223 mask patterns shown in Fig. 1 are obtained.

Feature values are calculated by scanning the image
with the 223 mask patterns and by computing the sums of
the products of the intensities of the corresponding pixels.
Thereby, 223 features (a 223-dimensional feature vector)
are extracted from one image. The features are obviously
shift-invariant. Although we can compute the sum or dif-
ference of the intensities instead of the product, calculating
the product showed the highest accuracy in a preliminary
experiment.

The features extracted from 3 × 3 mask patterns consist
of high frequency components of the image. The features
of low frequency components can be obtained by enlarg-
ing the mask size. However, if all combinations of reference
points are simply considered in a large region, the number
of created mask patterns becomes huge, e.g., 224 mask pat-
terns in a 5 × 5 region. To avoid this situation, as shown in
Fig. 2, the positions of the reference points are restricted
to eight points that are located on the outer frame of masks
at equal intervals. Mask patterns are created with com-
binations of these eight points. This approach allows the
extraction of features of the low frequency components
from the masks of various sizes without a deviation in the
direction. It avoids an explosion in the number of patterns.

This study constructs multi-resolution features by con-
catenating the feature vectors that are extracted from each
of three masks, 3 × 3, 5 × 5 1°, and 7 × 7 1°. Any number
and combination of masks can be used. It is also possible
to combine the masks 1° and 2° of the same size. How-
ever, the features extracted from the masks of different
sizes comprise different frequency components. For that
reason, they are considered to have low correlations and

to be more useful for a recognition task. Therefore, this
method uses masks of different sizes.
The reason that the mask 1° is adopted out of the same

size masks 1°, 2° is that the patterns of the mask 1° were
easily producible based on the 3 × 3 mask patterns, setting
the positions of the reference points at intervals of one
or two. In addition, a preliminary experiment did not
indicate the difference in the discrimination power of the
same-sized masks.
The feature values calculated by the proposed method

represent a power spectrum of each mask pattern within
the image. It is equivalent to expressing the base set of
functions in the frequency analysis by the mask patterns.
Compared with basis functions of the Fourier transform,
the frequency and direction components correspond to the
sizes and patterns of masks, respectively. The proposed
method can analyze local regions in detail because it uses
various two-dimensional patterns as well as directions.
The proposed method performs discrimination tasks us-

ing features described above along with “additional fea-
tures” presented in 2.3.

2.2 Higher Order Local Autocorrelation Fea-

tures

The N -th order autocorrelation functions, extensions of
autocorrelation functions, are defined as

x(a1, a2, · · · , aN ) =
Z
f(r)f(r + a1) · · · f(r + aN )dr, (1)

where f(r) denotes the intensity at the observing pixel r,
and (a1, a2, · · · , aN ) are Ndisplacements within a neigh-
borhood. The original higher order local autocorrelations



Figure 2: Positions of the reference points in masks of
various sizes

that were used as image features were restricted to second-
order and within a local 3 × 3 region[8]. They are rep-
resented as 25 mask patterns with 0, 1, and 2 reference
points, which are identical to the first 25 patterns within
the 223 mask patterns presented in Fig. 1. In terms of
autocorrelation features, the 223 mask patterns are equiv-
alent to the eighth-order autocorrelation features, where
the reference positions and those numbers correspond to
the displacements and the orders, respectively.
Utilization of the pyramidal images[4] and the multi-

resolution approach using masks 1° shown in Fig. 2[3] were
proposed as improvements of the original higher order lo-
cal autocorrelation features. In another technique, which
allows the duplication of displacement (a1, a2, · · · , aN ) in
Eq. (1), the values were extracted from the same refer-
ence point of the mask pattern. All the autocorrelation
features described above have been restricted to second-
orders, mainly due to the high computational costs.
An approach which avoids explicitly computing the

autocorrelations by exploiting the useful form of the
inner products of autocorrelation functions has been
proposed[9]. However, only two classes can be classified at
one time by this technique because it uses a support vec-
tor machine. In [9], despite dealing with sixth-orders and
a 9 × 9 region, the larger masks yielded lower accuracy
rates: the best score was achieved with a 3 × 3 region.
The main reason for this deterioration may be that the
features became too numerous for the task because this
technique created mask patterns with all the combination
of the reference points in a large region. A huge number of
features tend to include redundant and ineffective features,
engendering lower recognition accuracy.
On the other hand, our proposed method prevents fea-

tures from becoming too numerous: it restricts the number
and positions of the reference points in a large mask.

2.3 “Additional Features”

In [3], features which have the same displacements
within (a1, a2, · · · , aN ) in Eq. (1), were used for classi-
fication. Those features were calculated by applying the
reference operations (product operations of the intensity)
to the same pixels, including the central observing point
of a mask pattern. The feature calculation formulae of
masks with a 0 or 1 reference point are shown in Table
1, where f(0) and f(1) denote the intensities of the cen-
tral observing point and the neighboring reference point,
respectively.

Table 1: Feature calculation formulae of a mask pattern
with a 0 or 1 reference points

Number of reference points
0 1

f(0) f(0)× f(1)
“Additional features” f(0)× f(0) f(0)× f(0)× f(1)
“Additional features” f(0)× f(0)× f(0) f(0)× f(1)× f(1)

f(0): Intensity of the central observing point
f(1): Intensity of the neighboring reference point

Because these features were revealed to be useful in this
study, we apply them for classification tasks as “additional
features” in combination with the proposed features pre-
sented in 2.1. The number of reference operations is re-
stricted to within twice to avoid rapid expansion of the
number of “additional features” which result from the in-
crease of operations. In all, 10 “additional features” are
obtained from the first five mask patterns in Fig. 1 which
have a 0 or 1 reference point (two features from each pat-
tern). Therefore, 233 features (combined 223 features in
2.1 and 10 “additional features”) can be extracted from
each mask.

2.4 Feature Selection Method

Various features can be constructed by altering the com-
bination of the mask patterns which are used for feature
extraction. However, it is difficult to know the optimal
features in advance because they depend on the task. It
is also complicated and inefficient to search for the op-
timal features manually. For those reasons, we estimate
the effective feature set based only on the given training
samples. We apply a basic feature selection method. We
use a total of 699 features, including “additional features,”
as the selection candidate features (“Original feature set”)
which are extracted from three masks, 3 × 3, 5 × 5 1°, 7 ×
7 1°. The algorithm of feature selection from the “Original
feature set” is shown below.

Step 1). Extract the “Original feature set” from each
training sample image; then initialize the number of
elements of the “Selected feature set” to 0.

Step 2). For each feature which has yet to be selected
among the “Original feature set,” calculate the class
separability J of the training samples, when adding it
to the existing “Selected feature set.”

J = tr(Σ−1W ΣB) (2)

ΣW : Within-class covariance matrices
ΣB : Between-class covariance matrices

Step 3). Add the feature which maximizes the class sepa-
rability calculated in Step 2 to the existing “Selected
feature set.”

Step 4). Repeat Step 2 and 3 until the [STOP POINT]
mentioned below, and then, output the “Selected fea-
ture set.”



Table 2: Details of experiment data

Image Number of samples
Test Classes size Training Test
00 24 128×128 240(24×10) 240(24×10)
01 24 64×64 1056(24×44) 1056(24×44)
14 68 128×128 680(68×10) 1360(68×10×2)

Figure 3: Examples of texture images

[STOP POINT] Classify the given training samples by
M “Selected feature sets,” which have elements of i
to i+M −1 (i = 1, 2, · · ·), and calculate theM recog-
nition rates. Approximate a sequence of the M rates
using a regression line; then compute its slope. Set
the STOP POINT as that point just before the slope
becomes zero.In this study, we set M = 40, based on
a preliminary experiment.

3 Experiments

We performed texture classification experiments to as-
sess the ability of the proposed features and the effective-
ness of applying a feature selection method. We also ex-
amined the availability of the features in the real world
through classification of the texture images that are illu-
minated with different light sources.
In these experiments, we used linear discriminant analy-

sis for classification. Features were scaled so that the mean
value of training samples was 1 in each dimension.

3.1 Image Data

We used the “Outex” texture database[6], which
is a publicly available framework for experi-
mental evaluation of texture analysis algorithms
(http://www.outex.oulu.fi/outex.php). From Outex,
we selected three test suites, Outex TC 00000，00001
and 00014 (Test00, Test01, and Test14). Table 2 shows
details of those test suites. In each test suite, test samples
were different from training samples. Examples of texture
images are shown in Fig. 3.
Test00 and Test01 have 100 classification problems with

the different set of training and test samples. Evalu-
ations are performed by each average recognition rate.
In Test14, to assess the robustness against illumination
changes, three different illuminants were utilized. An illu-
minant “2856K incandescent CIE A” was used to capture
training sample images; the others (“2300K horizon sun-
light” and “4000K fluorescent TL84”) were used for test
sample images.

Figure 4: Classification by the multi-resolution features
with a different number of reference points (Test01)

Table 3: Classification rates by the multi-resolution fea-
tures with different number of reference points (Test01)

Mask Number of reference points [%]
sizes 2 3 4 5 6 7 8

3(−) 93.4 97.5 98.8 98.9 98.9 98.8 98.7
3 94.7 97.9 98.9 99.0 98.9 98.8 98.8
3,5 97.0 98.6 99.2 99.1 99.2 99.2 99.1
3,5,7 97.5 98.9 99.3 99.2 99.0 99.1 99.0

3(−): Features without the “additional features”

All samples were grayscale images (original color images
of Test14 were transformed). Each of them was normal-
ized to have an average intensity of 128 and a standard
deviation of 20.

3.2 Classification by The Proposed Features

Figure 4 and Table 3 show results of Test01 performed
by the features which have resolutions of 1 to 3 and are
constructed by the proposed masks with reference points
of 2 to 8, including the “additional features.” In these ex-
periments, we set the number of reference points as equal
between masks of different size that are used together.
Figure 4 illustrates the tendency for the recognition rate

to rise concomitant with the increase in the number of ref-
erence points and the number of resolution levels used.
The single resolution features extracted from the 3 × 3
mask patterns which have up to two reference points, with-
out the “additional features,” are equivalent to the original
25-dimensional autocorrelation features[8]. Their recog-
nition rate became 93.4%. The result of their improved
method[3, 4], which adds the “additional features” to the
original features and constructs the multi-resolution fea-
tures, was 97.5%.
The proposed features, which offer more reference points

than conventional methods, improved the accuracy re-
markably. Single resolution features of five reference points
obtained 99.0%; the three-resolution features of four ref-
erence points achieved the best rate of 99.3%.
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Figure 5: Comparison results of the proposed features with
other features

Table 4 and Fig. 5 show results of Test00, Test01,
and Test14 for several features: proposed features
(Proposed), original higher order local autocorrelations
(Original-HLAC), conventional improved features of them
(Improved-HLAC), and other features (GMRF, LBP, Ga-
bor) reported by [5, 6, 7]. Classifications were per-
formed by linear discriminant analysis for Proposed,
Original-HLAC and Improved-HLAC. The reported fea-
tures adopted the 3-NN method (dissimilarity measures
were log-likelihood for LBP and the Mahalanobis distance
for Gabor.)

In all three tests, the proposed method achieved the
best rates, 99.7% (99.6% with Improved-HLAC) in Test00,
99.3% (98.6% with Gabor) in Test01, 74.8% (71.4% with
Improved-HLAC) in Test14. The high accuracy of the
proposed features in Test14, where different illuminants
were utilized, indicates the proposed method’s feasibility
for use in the real world.

The proposed method allows more detailed analysis
than the conventional autocorrelation features because it
uses a wider variety of mask patterns. Moreover, analysis
of a larger region is achieved by this multi-resolution ap-
proach. These techniques raise the recognition accuracy
and produce better results than other methods.

Table 4: Comparison results of the proposed features with
other features

Test00 Test01 Test14
Proposed 99.7% 99.3% 74.8%

Multi-resolutions 2 3 2
Reference points 3 4 8
Original-HLAC 97.2% 93.4% 64.1%
Improved-HLAC 99.6% 97.5% 71.4%

GMRF 96.1% 95.1% N/A
LBP 99.5% 95.5% 69.0%
Gabor 99.5% 98.6% 66.0%

HLAC: Higher order local autocorrelations
GMRF: Gaussian Markov Random Field
LBP: Local Binary Pattern

3.3 Applying a Feature Selection Method

We assessed the ability of the features which are selected
from the proposed features by the method mentioned in
2.4, using the same three tests as in 3.2. As described in
2.4, 699 features in all were used as the selection candidate
features (“Original feature set”). In Test00 and Test01,
we performed feature selection and classification test 100
times; then evaluated the average recognition rates.
Fig. 6 shows the transition of the recognition rates of

traininig samples and test samples, when adding selected
features one by one in the first problem of Test01. For
reference, although the algorithm described in 2.4 halted
feature selection at the point of the □ mark, this figure
shows the whole transition until all 699 features have been
added. The x-axis (horizontal) and y-axis (vertical) indi-
cate the number of features used for classification and the
obtained recognition rate, respectively.
As features are added, the recognition rate of the train-

inig samples continues to rise. On the other hand, the
recognition rate of the test samples also rises at the be-
ginning of feature addition, but from a certain point, it
shows a declining tendency. This is considered to result
from adding redundant and ineffective features.
Although it is appropriate to halt feature selection just

before the recognition rate of the test samples falls, es-
timating the optimal stop point only from the training
samples is difficult. In the example of Fig. 6, the feature
selection stoped at the point of the □ mark, where the
original 699 features were reduced to 157 and recognition
rate rose to 99.1% from 98.3%.
The line with ● marks in Fig. 6 shows the recogni-

tion result of the features which were constructed without
selection. Those features were three-resolution features
and were extracted by the masks with 2 to 8 reference
points. They also included the “additional features.” Each
● mark corresponds to the features of 2 to 8 reference
points. Table 5 shows the correspondence of the number
of reference points and the number of features obtained.
As shown in Table 6 and Fig. 7, applying a feature selec-

tion method raised the recognition rates in all three tests.
The number of features were reduced from original 699 to
70 in Test00, 154 in Test01, and 200 in Test14. These
improvements are considered to be led by deleting the re-



Figure 6: Transition of the recognition rate by applying
the feature selection method (Test01)

Figure 7: Results of applying the feature selection method

dundant features included in the “Original feature set,”
and using the effective features efficiently. It is also con-
sidered that reduction of the features avoids the “Hughes
phenomenon,”[2], i.e., the classification accuracy declines
as the number of features becomes excessive to the fixed
number of samples.

The selected features differed with each problem. The
numbers of those features also differed. This indicates
that the appropriate feature selections were carried out
for every problem. In Test14, although the features were
selected under the different illuminant, classification task
was executed well. Decreasing the number of features re-
duces the computational cost and memory required to cal-
culate the feature values.

Table 5: Correspondence of the number of reference points
and the number of three-resolution features

P 2 3 4 5 6 7 8
N 105 240 426 588 672 696 699

P: Number of reference points
N: Number of three-resolution features

Table 6: Results of applying the feature selection method

Test00 Test01 Test14
rate% N rate% N rate% N

Original 99.7 699 99.0 699 71.1 699
Selected 99.7 70 99.1 154 73.4 200

N: Number of features

4 Conclusion

We proposed a simple feature extraction method that
is easy for hardware implementation. Mask patterns of
3 × 3 pixel size are represented by 223 patterns. They
include second-order autocorrelation features. In the pro-
posed method, mask patterns of several sizes which are
based on the 3 × 3 mask are created. By combining those
features, we construct multi-resolution features. In tex-
ture classification tests, the proposed features performed
better than the second-order autocorrelations, Gabor, and
other features. The proposed features also performed well
in a test in which different illuminants are utilized to cap-
ture the images. These results indicate that the proposed
method offers high practicality in the real world. More-
over, improvement of the recognition accuracy and consid-
erable reduction of the number of features were realized
through application of a feature selection method. Un-
til now, the autocorrelation features have been applied to
character recognition[8], facial discernment[1, 4], etc. The
proposed method is also expected to demonstrate its high
performance in various tasks.
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