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Abstract- This paper deals with a balanced model 
reduction for a class of nonlinear systems with uncertain 
time varying parameters using a T-S(Takagi-Sugeno) fuzzy 
approach. We define a generalized controllability gramian 
and a generalized observability gramian for a stable T-S 
fuzzy systems with uncertainties. We obtain a balanced 
state space realization using the generalized controllability 
and observability gramian and obtain a reduced model by 
truncating not only states but also time varying uncertain 
parameters from the balanced state space realization. We 
also present an upper bound of the approximation error. 
The generalized controllability gramian and observability 
gramian can be computed from solutions of linear matrix 
inequalities. We demonstrate the efficacy of the suggested 
method by illustrating a numerical example.  

 

I. Introduction 
For linear finite dimensional systems with high orders, 

optimal control techniques such as linear quadratic 
gaussian and H∞  control theory, usually produce 
controllers with the same state dimension as the model. 
Lower dimensional linear controllers are normally 
preferred over higher dimensional controllers in control 
system designs for some obvious reasons : they are easier 
to understand, implement and have higher reliability. 
Accordingly the problem of model reduction is of 
significant practical importance in control system design 
and has been a focus of a wide variety of studies for recent 
decades(see [1-4] and the references therein).  
  Model reduction techniques have been developed for 
linear uncertain systems as well. Using LMI machinery, 
Beck suggested a balanced truncation method for linear 
uncertain discrete systems with related error bounds[5], 
Model reduction techniques for linear parameter varying 
systems were also reported by several researchers [6,7,8]. 
However, comparatively little work has been reported for 
the model reduction for nonlinear systems. 

In recent years, a controller design method for nonlinear 
dynamic systems modeled as a T-S(Takagi-Sugeno) fuzzy 
model has been intensively addressed[9,10,11]. Unlike a 

single conventional model, this T-S fuzzy model usually 
consists of several linear models to describe the global 
behavior of the nonlinear system. Typically the T-S fuzzy 
model is described by fuzzy IF-THEN rules. Based on this 
fuzzy model, many researchers use one of control design 
methods developed for linear parameter varying system. In 
order to alleviate computational burden in design phase and 
simplify the designed fuzzy controller, the state dimension 
of the T-S fuzzy model should be low.     
  In this paper, using a fuzzy approach we develop a 
balanced model reduction scheme for T-S fuzzy systems 
with norm bounded time varying uncertain parameters. In 
section II, we define the T-S fuzzy system with time 
varying uncertain parameters. A generalized controllability 
gramian and a generalized observability gramian are 
defined and a balanced realization of T-S fuzzy system 
using the generalized controllability and observability 
gramian is also presented in section III.  A model 
approximation bound is derived and a suboptimal 
procedure is described to get a less conservative error 
bound in section IV. Section V demonstrates a numerical 
example and finally some concluding remarks are given in 
section VI.  
  The notation in this paper is fairly standard. nR denotes 
n dimensional real vector space and n mR × is the set of real 
n m× matrices. TA denotes the transpose of a real matrix 
A . 0 and I  denote  zero matrix and identity matrix 

respectively. 0M > means that M  is a positive definite 
matrix. In a block symmetric matrix, *  in ( , )i j  block 
means the transpose of the matrix in ( , )j i block. Finally 

∞
⋅ denotes the H∞ norm of the system.  

 

II. T-S Fuzzy System 
  We consider the following fuzzy dynamic system with 
uncertain time varying parameters.  
 
Plant Rule i  ( 1, ,i r= ) :  
IF  1( )tρ  is 1iM  and  and ( )g tρ is igM ,  
THEN  



( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

i i i

i i

i i i

x t A x t Fw t Bu t
z t H x t J u t
y t C x t G w t Du t
w t t z t

= + +
= +
= + +
= Θ

              (1)  

 
where r  is the number of fuzzy rules. ( )j tρ and 

ijM ( 1, ,j g= ) are the premise variables and the fuzzy set 
respectively. ( ) nx t R∈  is the state vector, ( ) mu t R∈ is the 
input, ( ) py t R∈ is the output variable and 

( ) , ( )q qw t R z t R∈ ∈ are variables related to uncertain 
parameters. ,, ,i i iA F D are real matrices with compatible 
dimensions. ( )tΘ  is an uncertain parameter matrix defined  
as follows: 
 

1 1 2 2( ) ( ( ) , ( ) , , ( ) ),q q s qst diag t I t I t Iθ θ θΘ =      (2) 

( ) ( )T t t IΘ Θ ≤ , 1 2 sq q q q= + + + . 
 
Let ( ( ))i tµ ρ , 1, ,i r= ,be the normalized membership 
function of the inferred fuzzy set ( ( ))ih tρ ,  

 

1

( ( ))( ( ))
( ( ))

i
i r

i
i

h tt
h t

ρµ ρ
ρ

=

=

∑
                  (3)  

where 

1

( ( )) ( ( ))
g

i ij j
j

h t M tρ ρ
=

=∏ , 

 1 2( ) ( ) ( ) ( )
T

gt t t tρ ρ ρ ρ =   .        (4)  

 
In this paper, assuming for all i , ( ( )) 0ih tρ ≥  and 

1
( ( )) 0

r

i
i
h tρ

=

>∑  we obtain        

( ( )) 0,i tµ ρ ≥   
1

( ( )) 1
r

i
i

tµ ρ
=

=∑ .          (5)  

 
For simplicity, by defining ( ( ))i i tµ µ ρ= and 

1
T

rµ µ µ=     the uncertain fuzzy system (1) can be 
written as follows : 

1

1

1

( ) ( ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

r

i i i i
i

r

i i i
i

r

i i i i
i

x t A x t Fw t Bu t

Ax t F w t B u t

z t H x t J u t

H x t J u t

y t C x t G w t Du t

C x t G w t D u t
w t t z t

µ

µ µ

µ

µ µ

µ

µ µ µ

=

=

=

= + +

= + +

= +

= +

= + +

= + +
= Θ

∑

∑

∑
        (6)  

In a packed matrix notation, we express the fuzzy system 
(6) as follows : 

 

( ) ( ) ( )
( ) 0 ( )
( ) ( ) ( )

A F B
G H J

C G D

µ µ µ
µ µ
µ µ µ

Θ

 
 

=  
 
 

           (7)  

 

III.  A Balanced Realization 
  In this section we present a balanced realization for the 
uncertain fuzzy system (7) using generalized controllability 
and observability gramians. First we define generalized 
controllability and observability gramians.  
 
Lemma 1 : (Generalized controllability and observability 
gramians) 
1) Suppose that there exist 0TQ Q= >  and 

0,TR R= > 1( , , ),sR diag R R=  ( 1, , )i iq q
iR R i s×∈ =  

satisfying LMI (9), then the output energy is bounded 
above as follows : 

 
0

( ) ( ) (0) (0)T Ty t y t dt x Qx
∞

<∫  for ( ) 0u t ≡ .    (8) 

* * *
* *

0, 1, ,
0 *
0

T
i i

i
oi T

i

i i

A Q QA
RH R

L i r
F Q R
C G I

 +
 

− = < = −
 

−  

   (9)  

2) Suppose that there exist 0TP P= >  and 
0,TS S= > 1( , , ),sS diag S S= ( 1, , )i iq q

iS R i s×∈ =  
satisfying LMI (11),  the input energy transferring from 

( ) 0x −∞ =  to 0(0)x x=  is bounded below as follows :  

0 1
0 0( ) ( )T Tu t u t dt x P x−

−∞
>∫            (10) 

* * *
* *

0, 1, ,
0 *

0

T
i i

i
ci T

i
T T
i i

PA AP
H P S

L i r
SF S
B J I

 +
 

− = < = −
 

−  

  (11) 

(proof) The proof is omitted due to space limitation. 
 
  As in [6], we say Q  and P ,solutions of LMI's (9) and 
(11), are generalized observability gramian and 
controllability gramian respectively. While the 
observability and controllability gramian in linear time 
invariant systems are unique, the generalized gramians of 
the fuzzy system (7) are not unique. But the generalized 
gramians are related to the input and output energy as can 
be seen in lemma 1.  
  Using the generalized gramians, we suggest a balanced 
realization of the uncertain fuzzy system (7). We obtain a 
transformation matrix T  and W satisfying 



1
1 2

1 2

( , , , ) T T
n

n

diag T QT T PTσ σ σ
σ σ σ

− −Σ = = =
≥ ≥ ≥

 

1 2 1 2
1

1 2

( , , , ) ( , , , )

( ) ( ) ( )

s q
T T

s

diag diag
W RW W SW
tr tr tr

π π π
− −

Π = Φ Φ Φ =
= =

Φ ≥ Φ ≥ ≥ Φ
  (12)  

With T  and W defined in (12), the change of coordinates 
in the fuzzy system (7) gives  
 

( ) ( ) ( )
( ) 0 ( )
( ) ( ) ( )

b

b b b

b b

b b b

A F B
G H J

C G D

µ µ µ
µ µ
µ µ µ

Θ

 
 

=  
 
 

 

1 1 1

1 1

( ) ( ) ( )
( ) 0 ( )

( ) ( ) ( )

T A T T F W T B
W H T W J
C T G W D

µ µ µ
µ µ

µ µ µ

− − −

− −

 
 

=  
 
 

      (13)  

where 1( ) ( )b t W t W−Θ = Θ . 
One can easily observe that the state space realization of 

(13) satisfy following LMI's (14) and (15). 
 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
* *

* 0
0 ( ) ( )

T T
b b b b

o b
T T

b b b

T
b b

A A C C
L H

G C F

G G

µ µ µ µ
µ µ

µ µ µ

µ µ

 Σ + Σ +


= Π
 + Σ


−Π <
−Π

    (14)  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
* *

( ) ( ) * 0
0

T T
b b b b

T
c b b b

T
b

T
b b

A A B B
L H J B

F

J J

µ µ µ µ
µ µ µ µ

µ

µ µ

Σ + Σ +


= Σ +
 Π


−Π <
−Π

       (15)  

 
From this reason, we say that the realization (13) is a 

balanced realization of the fuzzy system (7) and Σ  is a 
balanced gramian.  
 

IV. Balanced Model Reduction 
  In this section, we develop a balanced model reduction 
scheme using the balanced gramian defined in section III. 
We also derive an upper bound of model approximation 
error. We assume that the fuzzy system (7) is already 
balanced and partitioned as follows :  

 
11 12 11 12 1

21 22 21 22 2

11 12 1

21 22 2

1 2 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) 0 0 ( )
( ) ( ) 0 0 ( )

( ) ( ) ( ) ( ) ( )

A A F F B
A A F F B
H H JG
H H J
C C G G D

µ µ µ µ µ
µ µ µ µ µ
µ µ µ
µ µ µ
µ µ µ µ µ

Θ

 
 
 
 =
 
 
 
 

 

,11 ,12 ,11 ,12 ,1

,21 ,22 ,21 ,22 ,2

,11 ,12 ,1
1

,21 ,22 ,2

,1 ,2 ,1 ,2

1 1 1

2 2 2

0 0
0 0

( ) ( ) 0 ( )
( )

( ) 0 ( ) ( )

i i i i i

i i i i ir

i i ii
i

i i i

i i i i i

A A F F B
A A F F B
H H J
H H J
C C G G D

w t t z t
w t

w t t z t

µ
=

 
 
 
 =
 
 
 
 

Θ     
= =     Θ     

∑
        (16)  

 
where 11( ) k kA Rµ ×∈ , and the other matrices are compatibly 
partitioned.   

From (16) we obtain a reduced order model by 
truncating n k− states and q v−  uncertain parameters as 
follows :  
 

1

11 11 1 ,11 ,11 ,1

11 1 ,11 ,1
1

1 1 ,1 ,1

1 1 1

( ) ( ) ( )
( ) 0 ( ) 0
( ) ( ) ( )

( ) ( ) ( )

i i ir

i i i
i

i i i

A F B A F B
G H J H J

C G D C G D
w t t z t

µ µ µ
µ µ µ
µ µ µ

Θ
=

   
   

= =   
   
   

= Θ

∑  (17)  

 
Theorem 2 : The reduced order system (17) is 
quadratically stable and balanced. Moreover the model 
approximation error is given by  
 

1
1 1

2( )
qn

j j
j k j v

G G σ πΘ Θ ∞ = + = +

− ≤ +∑ ∑       (18)  

(proof) We partition 1 2( , )diagΣ = Σ Σ and 1 2( , )diagΠ = Π Π  
where 1

k kR ×Σ ∈ , 1
v vR ×Π ∈ . Then the reduced order system 

(17) satisfies LMI's (19) and (20).  
 

11 1 1 11 1 1

1 11

1 1 11 1

1

1 1 1

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
* *

* 0
0 ( ) ( )

T T

T T

T

A A C C
H

G C F

G G

µ µ µ µ
µ

µ µ µ

µ µ

 Σ + Σ +


Π
 + Σ


−Π <
−Π 

      (19)  

1 11 11 1 1 1

11 1 1 1

1 11

1 1 1

1

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
* *

( ) ( ) * 0
0

T T

T

T

T

A A B B
H J B

F

J J

µ µ µ µ
µ µ µ

µ

µ µ

Σ + Σ +


Σ +
 Π


−Π <
−Π 

        (20)  

Hence the reduced order system is quadratically stable and 
balanced. Without loss of generality we consider 2 cases. 
Case1 : ( 1,k n v q= − = ) 
Note that in this case 12 ( )F µ , 22 ( )F µ , 21( )H µ , 22 ( )H µ , 

2 ( )J µ  and 2 ( )G µ  are empty matrices. Hence a state space 
realization of the error system 

1e

eG G G
Θ Θ Θ= −  can be 

written by  



11 11 1

11 12 11 1

21 22 21 2

11

11 12

1 1 2

( ) ( ) ( )

( ) 0 ( )

( ) ( ) 0

( ) 0 0 ( ) 0 ( )
0 ( ) ( ) 0 ( ) ( )
0 ( ) ( ) 0 ( ) ( )
( ) 0 0 0 0 ( )

0 ( ) ( ) 0 0 ( )
( ) ( ) ( ) ( ) ( ) 0

e

e e e

e
e e

e e

A F B

G H J

C G

A F B
A A F B
A A F B

H J
H H J

C C C G G

µ µ µ

µ µ

µ µ

µ µ µ
µ µ µ µ
µ µ µ µ

µ µ
µ µ µ

µ µ µ µ µ

Θ

 
 
 =
 
  
 
 
 
 
 =



− − 






  (21) 

 

where ( ) ( ( ), ( ))e t diag t tΘ = Θ Θ .  
The change of coordinate in the error system gives  

 

1 1 1

( ) ( ) ( )
( ) 0 ( )
( ) ( ) 0

( ) ( ) ( )
( ) 0 ( ) ,
( ) ( ) 0

e

e e e
e

e e

e e

e e e

e e

e e

A F B
G H J

C G

M A M M F M B
H M J
C M G

µ µ µ
µ µ
µ µ

µ µ µ
µ µ
µ µ

Θ

− − −

 
 

=  
 
 
 
 

=  
 
 

  (22) 

 
where 
  

0
0 ,

0 0

I I
M I I

I

 
 = − 
  

 
1

2

( )
( ) 0 ,

( )
e

B
B

B

µ
µ

µ

 
 =  
  

 

11 12

11 12

21 21 22

( ) 0 ( ) / 2
( ) 0 ( ) ( ) / 2 ,

( ) ( ) ( )
e

A A
A A A

A A A

µ µ
µ µ µ

µ µ µ

 
 = − 
 − 

 

 
11 11

11 11

21

( ) / 2 ( ) / 2
( ) ( ) / 2 ( ) / 2 ,

0 ( )
e

F F
F F F

F

µ µ
µ µ µ

µ

 
 = − 
  

 

[ ]

[ ]

11 11

11 11 12

1 2

( ) ( ) 0
( ) ,

( ) ( ) ( )
( )

( ) , ( ) 0 2 ( ) ( ) ,
( )

( ) ( ) ( ) .

e

e e

e

H H
H

H H H
J

J C C C
J
G G G

µ µ
µ

µ µ µ
µ

µ µ µ µ
µ

µ µ µ

 
=  − 

 
= = − 
 

= −

 

 
It is well known that the existence of 0T

e eΣ = Σ >  and 
0T

e eΠ = Π >  ( ) ( )e e e et tΠ Θ = Θ Π  satisfying  following 

LMI  (23) guarantees 
e

eG γΘ ∞
≤ . 

 

 

11

2

33

( ) ( ) ( )
( ) ( ) ( )

* *
( ) ( ) * 0,

0

T
e e e e
T T

e e e e e e

T
e e e

H J B
F G C

J J

µ µ µ
µ γ µ µ

µ µ

−

Γ
 Σ +
Π + Π Σ


−Π <
Γ 

      (23)  

 
where 
  

11
2
( ) ( ) ( ) ( )

( ) ( )

T T
e e e e e e

T
e e e e

A A B B
C C

µ µ µ µ
γ µ µ−

Γ = Σ + Σ +
+ Σ Σ

 

2
33 ( ) ( ) .T

e e e e eG Gγ µ µ−Γ = Π Π −Π  
 
Let 2 1

1 12 , ( , , 2 )n e n ndiagγ σ σ σ−= Σ = Σ Σ  and  
2 1 2 1

2 1 2 1
n n

e
n n

σ σ
σ σ

− −

− −

 Π + Π Π − Π
Π =  

Π − Π Π + Π 
.  Then LMI (23) can be 

expressed as follows :  
 

 
1 1

2 2

2 2

0 0 0 0
0 0 ( ) 0 0
0 0 0 0

T

T
c

T

U U
L U L U

U U
µ

   
   

=    
   
   

 

  
1 1

2 2

2 2

0 0 0 0
0 0 ( ) 0 0 0
0 0 0 0

T

T
o

T

V V
V L V

V V
µ

   
   

+ <   
   
   

    (24)  

 
where  
  

1 2

11
1

1 2 1

0 0
, ,

0 0
0 0

, .
0 0

T

T nn

n

I I
U U

I I

V V
I

σσ
σ

−−

−

   
= =   
   

   ΠΣ
= =    − Π−   

 

 
Case 2 : ( , 1k n v q= = − ) 
In this case, 12 ( )A µ , 21( )A µ , 22 ( )A µ , 21( )F µ , 22 ( )F µ , 

12 ( )H µ  and 22 ( )H µ  are empty matrices so that the error 
system becomes 

         

11

11 12

11 1

11 1

21 2

1 1 2

( ) ( ) ( )
( ) 0 ( )

( ) ( ) 0

( ) 0 ( ) 0 0 ( )
0 ( ) 0 ( ) ( ) ( )
( ) 0 0 0 0 ( )

,0 ( ) 0 0 0 ( )
0 ( ) 0 0 0 ( )
( ) ( ) ( ) ( ) ( ) 0

e

e e e
e

e e

e e

A F B
G H J

C G

A F B
A F F B

H J
H J
H J

C C G G G

µ µ µ
µ µ

µ µ

µ µ µ
µ µ µ µ

µ µ
µ µ
µ µ

µ µ µ µ µ

Θ

 
 

=  
 
  

 
 
 
 
 =
 
 
 
− −  

 (25)          

 



where 1( ) ( ( ), ( ))e t diag t tΘ = Θ Θ . The change of coordinate 
in the error system gives 
 

1 1 1

( ) ( ) ( )
( ) 0 ( )
( ) ( ) 0

( ) ( ) ( )
( ) 0 ( ) ,
( ) ( ) 0

e

e e e
e

e e

e e

e e e

e e

e e

A F B
G H J

C G

M A M M F M B
H M J
C M G

µ µ µ
µ µ
µ µ

µ µ µ
µ µ
µ µ

Θ

− − −

 
 

=  
 
 
 
 

=  
 
 

  (26) 

 
where  

11 11 12

11 11 12

11 11 1

11 11 1

21 21 2

( ) 0 ( )
, ( ) , ( ) ,

0 ( ) 0
( ) / 2 ( ) / 2 ( ) / 2

( ) ,
( ) / 2 ( ) / 2 ( ) / 2
( ) ( ) ( )

( ) ( ) ( ) , ( ) ( )
( ) ( ) ( )

e e

e

e e

I I A B
M A B

I I A
F F F

F
F F F
H H J

H H H J J
H H J

µ µ
µ µ

µ
µ µ µ

µ
µ µ µ
µ µ µ

µ µ µ µ µ
µ µ µ

     
= = =     −     

 
=  − − 
   
  = − =  
  −  

[ ]
[ ]1 1 2

,

( ) 0 2 ( ) ,
( ) ( ) ( ) ( ) .

e

e

C C
G G G G

µ µ
µ µ µ µ





= −
= −

 

 
We define 2 qγ π=  and  

1
2 1

2 1 2 1
1 1 1 1

2 1 2 1
1 1 1 1

0 0
, ,

0 0

0
0 .

0 0 2

e
q q

q q

e q q

q

π π

π π
π π

π

−

− −

− −

Π Σ   
Π = Σ =   Σ   

 Π + Π Π − Π
 

Π = Π − Π Π + Π 
 
 

 

 
Then LMI (23) can be written as 

 
1 1

2 2

2 2

1 1

2 2

2 2

0 0 0 0
0 0 ( ) 0 0
0 0 0 0

0 0 0 0
0 0 ( ) 0 0 0
0 0 0 0

T

T
c

T

T

T
o

T

U U
L U L U

U U

V V
V L V

V V

µ

µ

   
   

=    
   
   
   
   

+ <   
   
   

      (27) 

 
where  
  

[ ] 1
1 2 1

1 1
1 1

2

0
0 , , 0 ,

0 0
0

.
0 0

q

q q

I I
U I U V

I

V
I

π

π π

−

− −

   = = = Σ    
 Π − Π

=  
− 

 

 
This completes the proof. 
 

In theorem 2, we have derived an upper bound of the 
model reduction error. In order to get a less conservative 
model reduction error bound, it is necessary for n k−  

smallest eigenvalues of Σ  and q v−  smallest 
eigenvalues of Π  to be small. Hence we choose a cost 
function as ( ) ( )J tr PQ tr RSα= +  for a positive constant 
α . Thus, we minimize the non-convex cost function 
subject to the convex constraints (9) and (11). Since this 
optimization problem is non-convex, the optimization 
problem is very difficult to solve it. So we suggest an 
alternative suboptimal procedure using an iterative method. 
We summarize an iterative method to solve a suboptimal 
problem.  
 
step 1 : Set 0i = . Initialize iP , iQ , iR  and iS  such 
that  ( ) ( )i i i itr P Q tr R Sα+ + +  is minimized subject to 
LMI's (9) and (11).  
step 2 : Set 1i i= + .  
    1) Minimize 1 1( ) ( )i i i i iJ tr P Q tr R Sα− −= +  subject to 
LMI (9).  
    2) Minimize ( ) ( )i i i i iJ tr PQ tr R Sα= +  subject to LMI 
(11).  
step 3 : If 1i iJ J −−  is less than a small tolerance level, 
stop iteration. Otherwise, go to step 2.     
 

V.  A Numerical Example 
  We consider following nonlinear system : 
  

(3) 3( ) 3 ( ) 3 ( ) ( )sin( ( )) 17 ( )
7 ( ) (0.1cos( ( )) sin( ( )) ( )

( )

y t y t y t y t y t y t
y t y t y t y t
u t

= − − + −
− + +
+

  (28) 

Assuming that ( ) 1y t ≤ , we rewrite (28) in a T-S fuzzy 

system with time varying uncertain parameters.  
 
Plant Rule i ( 1,2i = ) :  
IF ( )y t  is 1iM   

THEN  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

i i i

i i

i i

x t A x t Fw t B u t
z t H x t J u t
y t C x t G w t
w t t z t

= + +
= +
= +
= Θ

         (29)  

 
where  

2 2
11 21 1 21 ( ) , ( ) , ( ) ( ( ), ( ))M y t M y t t diag t tθ θ= − = Θ = , 

1( ) cos( ( ))t y tθ = , 2 ( ) sin( ( ))t y tθ =  and 

1

2 1 2

( ) 0 1 0
( ) ( ) , 0 0 1 ,

( ) 3 7 17
0 1 0 0
0 0 1 , 0 ,
6 7 17 1

y t
x t y t A

y t

A B B

   
   = =   
   − − −   

   
   = = =   
   − − −   

 



[ ] [ ]

1 2 1 2

1 2

1 2 1 2

0 0
0 0 1

0 0 , ,
1 0 1

0.1 1
0

,
0

1 0 0 , 0 0 .

F F H H

J J

C C G G

 
  = = = =       

 
= =  

 
= = = =

 

We choose 1α =  for convenience. Using the iterative 
method described in section IV, we obtain suboptimal 
solutions , , ,P Q R S . From , , ,P Q R S , we obtain the 
balanced gramian (0.6300,0.65260,0.0390)diagΣ =  and 

(0.4608,0.1722)diagΠ = . In the balanced system, the time 
varying parameter matrix becomes 

1
2 1( ) ( ) ( ( ), ( ))b t W t W diag t tθ θ−Θ = Θ = . By truncating 1 

state and 1 parameter in the balanced system, we obtain 
following reduced T-S fuzzy system (30). 
 

Plant Rule i ( 1,2i = ) :  

IF ( )y t  is 1iM   

THEN  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ),

ri ri ri

ri ri

ri ri

r

x t A x t F w t B u t
z t H x t J u t
y t C x t G w t
w t t z t

= + +
= +
= +
= Θ

           (30)  

where 

 2 2
11 21 21 ( ) , ( ) , ( ) ( )rM y t M y t t tθ= − = Θ = , 

2 ( ) sin( ( ))t y tθ =  and 

 

1 2

0.1082 0.3754 0.2978 0.5611
, ,

0.3752 0.2912 0.5622 0.1080r rA A
− −   

= =   − − − −   
 

[ ]

[ ]

1 2 1 2

1 2

1 2 1 2

1 2

0.2504 0.2270
, ,

0.2470 0.2239
0.2343 0.2069 ,
0, 0,

0.2523 0.2472 .

r r r r

r r

r r r r

r r

B B F F

H H
J J G G

C C

   
= = = =   

   
= = −
= = = =

= = −

 

 
From theorem 2, we can expect the model reduction 

error is bounded by 0.4224.  
 

VI.  Concluding Remark 

 
  In this paper, we have studied a balanced model reduction 
problem for T-S fuzzy systems with time varying 
parameters. For this purpose, we have defined generalized 
controllability and observability gramians for the uncertain 
fuzzy system. This generalized gramians can be obtained 

from solutions of LMI problem. Using the generalized 
gramians, we have derived a balanced state space 
realization.  We have obtained the reduced model of the 
fuzzy system by truncating not only some state variables 
but also some uncertain parameters. 
 
This work was supported by the Daegu University Brain 
Korea 21 IT Division in 2004. 
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