
Abstract - A simple fuzzy logic controller
(FLC) is introduced to simplify the design of
the conventional FLC. It uses a single fuzzy
input variable to represent the rule
antecedent. The FLC has an adaptation
capability in itself. However additive adaptation
algorithm can more or less improve the
performance of a conventional fuzzy logic
controller. We here discuss the design of
some single-input adaptive fuzzy logic
controllers based on the concept of the
single input FLC.

. INTRODUCTIONⅠ

Most FLC's use the error and the
change-of-error as antecedent variables of
if-then rules regardless of the complexity of
the controlled plants. Either control input or
incremental control input is typically used as a
consequent variable [1]. Such FLC's are
suitable for simple lower order plants. All
process states are typically required for a
good performance of complex higher order
plants. Choi et al. proposed a single-input FLC
that uses a sole input variable consists in all
state variables [2]. It gave a useful method to
simplify the design process for a proper FLC.

A fuzzy logic system is a nonlinear
approximator. Furthermore it has an adaptation
capability in itself. The FLC has emerged as
one of the most active areas in the application
of the fuzzy set theory. They are useful in
situations where 1) there is no acceptable
mathematical model for the plant to be

controlled and 2) there are experienced human
operators who can adequately control the plant
by some qualitative control rules.

Although the FLC has a kind of adaptability
in itself, it still lacks in the case of some
complicated situations, where the operating
conditions can be subject to change. Wang
developed an adaptive fuzzy logic control
method that ensures the stability of the overall
system using a Lyapunov-based learning law
[3]. He presented here a fuzzy basis function
that provides a natural framework for
combining numerical and linguistic information
in a uniform fashion. Despite its advantages it
has some drawbacks: it can occur a kind of
high control action due to its supervisory
control input, and it must adapt itself to every
change of the reference signal. Su and
Stepanenko introduced a modified version of
this approach that incorporates a variable
structure controller to keep the system state
within defined boundaries [4]. Fischle and
Schroder [5] presented some improved stable
adaptive fuzzy control methods for resolving
some drawbacks existed in [3]. Besides these
direct adaptive FLC's, many indirect or hybrid
adaptive FLC's also published in the related
fields [6-8]. Park et al developed an indirect
adaptive control algorithm robust against the
reconstruction errors using fuzzy systems for
single input single output nonlinear systems
with unknown nonlinearities[9].

In this paper we discuss the design of some
adaptive fuzzy logic controllers equipped with
adaptation algorithms based on the stability
analysis. Some linguistic fuzzy information
from experienced human operators is
incorporated into the closed-loop control
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system through a fuzzy basis function. This is
especially useful to the complex systems with
high nonlinearities and uncertainties and
improves the control performance.

We first explain a single input FLC that
uses a sole variable in the antecedent part of
the fuzzy control rule, and then propose some
stable adaptive FLC's that automatically adjust
some parameters of the single input FLC. This
paper is organized as follows. We simply
describe the design strategy for the single
input FLC in Section . Section is a coreⅡ Ⅲ
and we here propose some adaptive fuzzy logic
controllers designed by the following schemes:
1) using a Hurwitz error dynamics, 2) utilizing
a switching function of the sliding mode control
(SMC), 3) using a gradient decent method, and
4) using a recursive least square algorithm. In
Section we represent general discussions,Ⅳ
respectively.

. SINGLE INPUT FLCⅡ

We first consider a 2-nd order system,
and then extend to a n-th order case.

Let the controlled process be a system
with n-th order (linear or nonlinear) state
equation:

(1)

with

̇ (2)

where and are partially

known continuous functions, is the

unknown external disturbance, and

and are the input and output of the

system, respectively. is the
process state vector.

The control problem is to force to
follow a given bounded reference input signal

. Let be the tracking error vector

as follows

̇ (3)

The rule form for the conventional FLC

using two fuzzy input variables of the error
and the change-of-error is as follows:

̇
,

where

and , and are the linguistic
values taken by the process state variables

, ̇ , and , respectively.

Table 1. Rule table for the conventional FLC.

̇

In Table 1, subscripts -2, -1, 0, 1, and 2
denote fuzzy linguistic values of Negative
Big (NB), Negative Small (NS), ZeRo (ZR),
Positive Small (PS), and Positive Big (PB),
respectively.

Conventional FLC's for minimum-phase
systems have skew-symmetric rule tables
similar to Table 1. Then Table 1 can be
reduced by Table 2.

Table 2. Rule table for the single input FLC.

That is, a single input FLC can be designed
from the conventional FLC with the

skew-symmetric rule table. In Table 2,

is a variable defined as follows:

̇ λ
λ

, (4)

where λ is a design parameter. And the
rule for the single input FLC has the
following form:

: ,

where is the linguistic value of in

the k-th rule.



Consider an n-input FLC with the
following rule form:

:

where , m is the number
of fuzzy sets for each fuzzy input variable

and is the linguistic

value taken by the process state variable

in the k-th rule. In

this case, the rule table is established on

n-dimensional space of , , , and .

Even this case an n-dimensional rule
table can be reduced as Table 2 if the
controlled plant has the minimum-phase

property. Here is replaced by

defined as follows:

λ λ ̇ λ

λ λ λ
(5)

. DESIGN OF ADAPTIVE FLC'sⅢ

A fuzzy IF-THEN rule can directly be
expressed by a rigorous mathematical

equation. Let be a fuzzy set in U, then
the fuzzy logic system with the singleton
fuzzifier, product inference, and the height
defuzzifier is of the following form:

μ

μ
, (6)

where is the point in R at which μ

achieves its maximum value (assume that

μ ), and K is the number of

one-dimensional control rules. And the fuzzy
basis function (FBF) is summarized as:

ξ
μ

μ
. (7)

Therefore an one-dimensional fuzzy

control rule can be expressed as a

rigorous mathematical formula:

Θ Ξ (8)

where Θ is an

adjustable parameter vector, and

Ξ ξ ξ ξ is a

regressive vector.
The control purpose is to determine a

feedback control input

Θ (9)

such that the tracking error should be as
small as possible under some constraints,

where is a control law by the single

input FLC and is an auxiliary control

input to ensure the closed-loop stability.

A. Design by Hurwitz Error Dynamics :
Θ

Let be a real

valued vector such that all roots of the

polynomial are in

the open left-half plane, where s is the
Laplace variable.

If the functions f, b, and d are known in
the controlled plant (1), then the control law
is as follows:

, (10)

where e is the tracking error vector that is
given by Eq. (3). Substituting Eq. (10) into
Eq. (1), the following error dynamics is
obtained.

. (11)

Since Eq. (11) is a Hurwitz from the
definition of the constant parameter vector c,

.

However, we don't know exact
information about the functions f, b, and d,
except for the sign of b(x,t). Substituting
Eq. (9) into Eq. (1) and adding and

subtracting in the right hand side, Eq.

(1) is summarized as follows:

(12)

It can also be rewritten as Eq. (13).



̇ (13)

where
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(14)

Now we define the optimal parameter Θ

and the minimum approximation error related

to the control input ε as follows:

Θ Θ Θ (15)

and

ε , (16)

where Θ . Furthermore ε will

maintain a very small value due to the
universal approximating property of the fuzzy
logic system [9]. That is,

ε ε (17)

where ε is a small value. Then the error
equation (12) can be rewritten as

̇ ε

Φ Ξ ε
(18)

where Φ Θ Θ and Ξ is the FBF.

Now we replace the Θ by a

fuzzy logic system (8) and develop an
adaptive law to update the parameter vector
Θ . It is obtained by the followings:

Consider a control law (10) and a stable
error dynamics (11). If we choose the
auxiliary control input as

ε , (19)

then the proposed system is stable in the
sense of the Lyapunov and the parameter
adaptation law is given as

Θ ̇ γ Ξ , (20)

where P is a positive definite symmetric
n×n matrix that satisfies the Lyapunov
equation

. (21)

Here, Q is an arbitrary positive definite
matrix. γ is a constant that determines a

kind of learning rate, and is the last

column of P.

The proposition is proved by as follows:

Consider the following Lyapunov function
candidate

γ
Φ Φ . (22)

Then,

̇ Φ Ξ ε

γ
Φ Φ ̇
γ
Φ Φ ̇ γ Ξ

ε

(23)

From Eq. (23) we can get the following
parameter adaptation law:

Φ ̇ γ Ξ . (24)

Since Φ ̇ Θ ̇ , Eq. (24) is equivalent to

the adaptation law (20). Also if we choose
the auxiliary control input such that the
given condition (19) is satisfied, then Eq.
(23) is summarized as follows:

̇ . (25)

Thus, the proposed adaptive fuzzy logic
controller is stable in the sense of the
Lyapunov.

□

B. Design by Switching Function of SMC :
Θ

A method designed above requires some
tuning parameters such as ,



and it makes the design of an adaptive FLC
somewhat difficult. So we propose another
method. It uses a switching function of the
sliding mode control. Then the number of
tuning parameters is also reduced.

Consider the following switching function
that is used in SMC:

λ λ ̇ λ

(26)

We first determine the control law when

the functions f, b, and d of the controlled
plant (1) are known. Here two cases must
independently be considered: and

.

In the case of , the control law is

easily determined by the following equation.

λ . (27)

As , the control law can be derived

from the concept of the SMC. That is, it can
be determined by the following sliding
condition:

̇ η , (28)

where η is a positive constant. From Eq.
(26),

̇ λ λ ̇
λ

(29)

Multiplying both sides of Eq. (29) by ,

̇ λ

η
(30)

From Eq. (30),

λ η

λ η

(31)

Combining Eq. (27) and (31), we obtain the
following closed form for the control law.

λ ρ η ,

(32)

where ρ and η η .

However we don't know exact information
about the controlled plant (1) except for the

sign of b(x,t). Adding and subtracting in

the right side of Eq. (29),

̇ λ

ρ η

(33)

Consider another optimal parameter Θ

and minimum approximation error related to

the control input ε :

Θ Θ Θ ,(34)

and

ε , (35)

where Θ . ε also has a very

small value due to the universal
approximating property of the fuzzy logic
system [9]. That is,

ε ε (36)

where ε is a small value. And Eq. (33)
can be rewritten as

̇ ε ρ η

Φ Ξ ε ρ η
(37)

where Φ Θ Θ and Ξ is the FBF.

Now we replace the Θ by a

fuzzy logic system (8) and develop an
adaptive law to update the parameter vector
Θ . It is obtained by the followings:

Consider a control law (32) and a
switching function (26). If we choose the
auxiliary control input as

ε . (38)

then the proposed system is stable in the



sense of the Lyapunov and the parameter
adaptation law is given as

Θ ̇ γ Ξ , (39)

where γ is a positive constant that

determines a kind of learning rate.

This proposition is also proved by the
similar process to the case of Section A.

C. Other Methods

In this Section we discuss other schemes
briefly.

In Reference [10], Lu and Chen used the
following gradient descent method as an
learning rule for updating parameters.

  ∂
∂ 

, (43)

where  is a learning gain.
In Reference [7], Feng used the following

least square algorithm as an learning rule for
updating parameters.

 
 

 

 
 

 

       

(44)

where  and I are a regressor vector and
unit matrix, respectively.

. CONCLUDING REMARKSⅣ

We first explained the single input FLC
and then proposed some adaptive FLC's. The
single input FLC was simply derived based
on the skew-symmetric property of the
control rule table for conventional FLC's.

We discussed the design of some adaptive
FLC's. We here introduced two methods
based on Lyapunov stability using the
concept of the single input FLC. One was
designed based on a Hurwitz error dynamics
and the other a switching function of the
SMC. The closed-loop stability of both
cases was ensured in the sense of the
Lyapunov.

We also addressed another two methods,
the gradient descent method and the least
square algorithm.
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