Incremental Learning of a Robot Controller by
Means of Genetic Programming

Shotaro Kamio and Hitoshi Iba
Graduate School of Frontier Science, The University of Tokyo,
5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba, 277-8561, Japan.
{kam o, i ba}@ba. k. u-tokyo. ac.jp

Abstract— The acquisition of effective behaviors for real
robots requires learning not only by the simulation, but also
within the real environment. The simulator is an important
part of the learning system in that situation. This is because
a useful simulation can accelerate the overall learning.

In this paper, we propose an approach to the learning accel-
eration by the robot while behaving in the real environment.
In this approach, the simulator is constructed based on data
retrieved from the environment. The controller of the robot
is trained with the acquired simulator. We present simulation
results to show that the effective controller has been evolved
by GP successfully.

I. INTRODUCTION

The learning of robots’ behavior with the simulation has
some limitations. Because the resultant behavior cannot
easily be applied directly to a real environment. For this
reason, other techniques are consulted for the learning
by many researchers. Parker [8] described other two ap-
proaches: i.e., learning from the real environment, and
learning by using the simulation and the real environment.
The former approach takes too much time to complete the
learning. The latter, therefore, is the reasonable approach.

We have proposed real-time learning method for a robot
and showed experimental results in the prior researches [6],
[4]. This method is aimed at acquiring the fundamental be-
havior by means of GP in a simple simulation, performing
Q-learning using a real robot, and adapting the behavior
to the real environment. In [4], we performed the “box
moving” task with a humanoid robot (see Fig.1). This
robot took about 10 seconds to perform one motion. For
this reason, it is not reasonable to carry out learning until
Q-learning has converged completely.

Parker proposed punctuated anytime learning [8]. In this
method, learning was done by an evaluation function in the
computer. However, at every several generations, some of

Fig. 1. The humanoid robot “HOAP-1", the box and the goal marker.

individuals were evaluated in the real environment, and the
results thereof were incorporated in the evaluation function
in the computer. Consequently, it was possible to acquire
behavior that adapted to changes in the environment while
reducing the evaluation time in the real environment.
Although this method is very interesting, the model for
the evaluation and environment used has been greatly
simplified. Thus, it may be difficult to apply the model
to other robots without change.

We should construct a model which is enough precise
to learn the controller of the robot. Several studies dealt
with the model construction based on the data from the
real environment. Grefenstette et al. have proposed any-
time learning [2]. In this framework, the agent creates its
strategy using a simulation model. Because the agent acts
in the environment, it is possible to bring the simulation
model closer to the real environment using data acquired
in the environment. However, their research was done by
computer simulation. The input data that can be acquired
by a robot in a real environment consist of image data, and
so on, hence processing to obtain the desired data is gener-
ally complicated. Therefore, it is difficult to implement this
system to the real robot. This problem arises because the
simulation model is constructed from the human viewpoint.

The model used in these studies were applied only to
simplified problems. For the purpose of a real robot task
as shown in Fig. 1, we have to consult complex models with
more realistic conditions. In this paper, we present a control
architecture in order to incrementally acquire a simulator.
The simulator is constructed using the data retrieved by
the robot while behaving in the real environment. This
architecture enables to generate the controller of the robot
with the constructed simulator.

The organization of this paper is as shown below. The
next section describes the construction of the simulator
used in this research. Section Ill describes the setting of
the target task performed in this research. Sections IV and
V express the experiments and their results. Section V1 dis-
cusses the effectiveness of our proposed architecture. Sec-
tion VII explains related researches. Section V11 describes
future issues, and section IX gives some conclusions.

Il. PROPOSED SIMULATOR AND CONTROL
ARCHITECTURE

The simulator is generally constructed in order to express
physical interactions of robots and objects. If we focus the
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interaction of the robot and the environment, however, we
can simply define what the simulator really is. Provided
that the environment has the Markov property [9], the state
of the environment (s¢) and the action of the robot at that
time (a:) generate the resulting state by an action (s¢41).
This is written in the following mathematical form:

sgr1 = f(se,ar). ()

Therefore, we can consider the simulator (i.e., the envi-
ronmental model) as a function for predicting the effect of
an action in a state. We can estimate this function from
the generalization of experienced states. This estimation is
done by a function approximation method (two methods
were described in section IlI). If a simulator can be
obtained, we can use any learning algorithm whatever on it.
After the learning, its result (i.e., a controller of the robot)
will be transferred to the robot and control it to achieve
tasks. The overall architecture we propose is illustrated in
Fig. 2.

I1l. TASK SETTING

The target task is the “box moving” task for the “HOAP-
1” humanoid robot (Fig. 1), which was performed in our
prior research [4]. The goal of this task is to have the robot
move a box to the front of the goal marker. The robot
uses a CCD camera installed on its head to recognize the
box and the goal marker. The strength of the robot’s arms
is weak. Thus, the robot does not move the box with its
arms, but instead pushes it with its knees. Because the robot
walks on two legs, complex motion is sometimes involved
in moving the box. It is difficult to create a simulator that
can accurately express this situation.

In this research, we dealt with real data acquired when
we performed a learning of the task using the robot in the
real environment for six hours. These data consist of input
image data (2), the action selected at that time (a), and
next input data after the action (z’), recorded as one set.
The action is selected from seven actions: i.e., Forward,
Left-turn, Right-turn, Left-sidestep (one step to the left),
Right-sidestep (one step to the right), the combination of
Left-turn and Right-sidestep, and the combination of Right-
turn and Left-sidestep. The recorded input image data (z)
consist of the position of the geometrical center of the
box in the image, the position of the geometrical center
of the goal marker, and the horizontal width of the goal
marker (used to obtain the approximate distance to the goal
marker). Note that these data were measured in the real
environment and contained noise.

By using the function approximation method, the input
data after the robot moves (z’) are predicted based on the

current data < and a. The data prediction error is evaluated
as the squared error £ = |ifoy — i/eqq|” While learning
takes place based on this prediction error, the generality
of the resulting function is important. For this reason, it
is necessary not only to carry out learning using training
data, but also to evaluate the resulting function with the
test data [7]. The number of training data sets provided
was 1,210. For the test, 100 sets different from the training
data were used.

In this research, two function approximation methods for
acquiring a simulator were used for the comparison: i.e.,
a neural network and a clustering approximation method.
We used a neural network instead of GP in the previous
research [5].

A. Neural Network (NN)

The back propagation neural network can learn the
relation of inputs and outputs of a system. Therefore, we
can estimate the function f in eqg.(1) by NN. The input of
the NN is current input image data (z) and selected action
(a) at that time. The output is the difference of the input (z’)
as a result of the action. We used 12 neurons for the input
layer and five neurons for the output layer. Seven input
neurons represent seven actions, respectively. Only one of
them was given the value of 1.0 if the corresponding action
is selected. The others were set to be the value of 0.0. We
experimented with 10, 20 and 40 neurons for the hidden
layer.

B. Clustering Approximation Method

We also used the method which automatically constructs
the state space of Q-learning (“the second method” de-
scribed in [10]). This method divides data acquired from
the real environment into several clusters and constructs the
approximation model for each cluster. We call this method
as the clustering approximation.

1) Model Construction [10]: The local approximation
model for each cluster is a linear approximation of the data
as follows:

i/ = Ai+b. )

The detailed algorithm of constructing the local model is

described below, where d is a triplet data of (a, <, ¢/) and
a; 1S ith action in an action set.

1) Let C be a set of all d which contains the action a;.

2) Apply the weighted linear regression method so as
to fit the local model (2) to the above set C.

3) If the unbiased variance of its residual exceeds a
certain threshold, then

a) Divide C into two clusters (Cy, C5) using the
clustering method with the weighted Euclidean
norm as its similarity.

b) Go back to step 2) with C := C;.

¢) Go back to step 2) with C' := Cs.

Finally, each cluster has the coefficient A and the constant
b which represent the local model (2).



TABLE |
PARAMETERS OF THE NN IN THE EXPERIMENT |I.
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2) Prediction by the Local Approximation Model: We
can predict the effect of an action in unobserved input data
using the above local model. For this prediction, the nearest
cluster to the current input % is searched for and used.

IV. EXPERIMNT |: SIMULATOR CREATION BY
INCREMENTAL LEARNING

We performed experiments to create a simulator using
the two methods. Each time the robot moves, data are
obtained, making it possible to train the simulator with
an increasing amount of those data. This is what we call
an incremental learning. In a real robot, the timing at
which one set of data are acquired differs from one system
to another. Moreover, the acquired data can be utilized
immediately, or it may be possible to wait until a certain
amount of data has been accumulated. This means the
designer can decide the timing at which to increase the
training data sets.

A. Results of NN

Each experiments was started from ten sets of training
data, The rate of increasing number of training data set
were tested in three ways: four sets, five sets or ten sets
per 1,000 iterations of learning. The learning finished at the
350,000 iterations, the 250,000 iterations or the 150,000
iterations, respectively. The number of the training data
sets was not increased past 1,210. The test data always
contained 100 data sets different from training data sets.
Table | shows the parameters we used.

Figure 3 shows the obtained results. The “h” in the
figure means the number of neurons in the hidden layer
and the “inc” means the rate of increasing number of
training data sets. The horizontal axis is the number of
training iterations. It should be noted that the vertical axis
is the average prediction error in the test data (average
of 10 trials). In all cases, the prediction error in the
test data decreases along with the repetition of learning.
As can be seen, it seems that the overfitting does not
occur in the incremental learning. The final performance
is not significantly affected by the rate of increasing the
training data sets. This means the final performance does
not depend upon the way in which the number of the
training data increases.

B. Results of Clustering Approximation Method

The clustering approximation method is not an incre-
mental learning. Hence, it was experimented with fixed
training data sets. We used k-mean clustering as the clus-
tering method. k-mean clustering needs the upper bound of
the variance in a cluster for the termination condition. This
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method in the experiment I.

upper bound affects the performance (i.e., the granularity)
of clustering. We tested with the following upper bounds:
1,000, 2,000, ..., and 10,000. The numbers of training data
used were 300, 600, 900 and 1, 210.

Figure 4 shows the result. The horizontal axis is the
upper bound of the variance. With respect to the number
of training data, the error is the largest with 300 sets
of the training data (all of them were out of the range).
However, the more training data were used, the better
results were achieved. The average prediction error became
the smallest with 1,210 data sets. This proves that the
clustering approximation method is effective if sufficient
data are available for the training.

C. Summary

It was confirmed that a simulator could be acquired
for the incremental learning in which the training data
are gradually increased. In the incremental learning, the
overfitting was not found when a neural network was used.
It may be because new data are continuously added, so
that the selective pressure acts to generalize the results of
learning.

With a large amount of training data set, the performance
of the simulator by the clustering approximation method is
better than that by NN. The final performance obtained
by the NN is better than that by the GP in the previous
research [5].

The above results would seem to indicate that the
performance does not depend upon the rate at which the
number of the training data is increased in the incremental



TABLE 1l
GP FUNCTIONS AND TERMINALS FOR THE LEARNING OF THE
CONTROLLER IN EXPERIMENT I1.

an individua of GP ::= ACTION

ACTION ::=

‘("if-1t-then-el se COORD COORD ACTION ACTION ‘)’ |
‘("if-gt-then-el se COORD COORD ACTION ACTION ‘)" |

action-fwd | action-turn-1 |action-turn-r |
action-step-1 |action-step-r |
action-turn-step-| |action-turn-step-r
COORD ::=

‘(" + COORD COORD ‘)" | /(" - COORD COORD ‘)" |

‘(" * COORD COORD ‘)" | /(" / COORD COORD ‘)" |
box-x | box-y | goal -x | goal -y | goal -wi dth |
0.5|1.0]2.03.0]/4.0]|5.0/6.0]7.0[8.0]9.0

TABLE I
PARAMETERS OF GP FOR THE LEARNING OF THE CONTROLLER.
Population size 1000
Generations 50, 100, 150
Crossover rate 0.7
Mutation rate 0.1
Rate for introducing random individuals 0.1
Trials 10

learning. This means that we do not have to worry about
setting the precise rate at which the number of the training
data is increased when performing the learning using a real
robot.

V. EXPERIMENT Il: TRAINING A CONTROLLER USING
THE INCREMENTALLY IMPROVED SIMULATOR

We performed experiments to see if the useful controller
for a robot can be trained in our control architecture. The
learning of the controller was executed with the simulator
generated by the incremental learning. The box motion
characteristics in the simulation may possibly change ev-
ery time the simulator is improved. The controller of a
robot, therefore, is expected to adapt to the simulator with
learning. We tested GP and Q-learning for the purpose of
learning the controller.

As the simulator, those obtained by the NN and the clus-
tering approximation method were used. The training data
used to acquire the controller were originally the same as
those used when training the simulator. However, in these
experiments noise was added so that the data were different
from the original ones. The simulator by the NN is based
on the resulting simulator of a typical single trial (Sect. IV-
A). The simulator by the clustering approximation, which
is not an incremental learning method, was reproduced
every time the number of the training data was increased.

A. Learning the controller by GP

The used function and terminal nodes are shown in
Table Il. The parameters used are given in Table Il1l. A
trial ends when the robot either moves 30 steps or the
coordinate of the box or the goal marker gets out of the
visible zone of the camera. The fitness function is defined
as follows:

N
) 1
fitness = N Z steps;, 3)
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Fig. 5. The learning result of the controller by GP in the experiment II.
The simulator was acquired by NN.

where steps, means the number of steps to complete the ith
trial and IV is the number of sets of training data. If the task
is not be accomplished, we assign 30 + (30 — valid steps )
to steps; as a penalty. In this definition, valid steps, is the
number of steps to the point where the robot loses sight of
the box or the goal marker. The larger the number of steps
until the coordinate of the box or the goal marker gets out
of sight, the better is the fitness value. The performance in
test data is evaluated by the same fitness function.

The controller learning began at each one of the Oth, 50th
and 100th generations. We calculated the generation of
the incrementally acquired simulator by the number of the
learning iteration divided by 1,000 because the population
size of the GP is 1,000. The training data were the same
with those by the simulator acquisition; i.e., ten data sets
were available in the initial generation and the number of
the data set was increased by ten every generation.

Figure 5 shows the results with the simulator by NN. The
average steps were reduced to about seven and the success
rates were about 84% in all cases at the final generation.
Note that these results were obtained with the test data.
This indicates that the effective controllers were evolved
by GP successfully.

Figure 6 shows the results with the simulator by the
clustering approximation method. Many increases and de-
creases were observed in the results. They may be caused
by the performance of the simulator, which was reproduced
due to increased training data sets every generation. Hence,



28

' ' ' ' fr‘om Oth géneration R
¥ from 50th generation --->---
26 - i from 100th generation - 4

24
22t

20

The avg. number of steps in the test

. . .
0 20 40 60 80 100 120 140 160
Generation

(a) The average steps to achieve the task.

0.85 T T T T T T T

0.8

075

0.65

0.6 -

The avg. success rate in the test

0.55 -

i from Oth generation —+—
lfrom 50th generation  ------
frcrq 100th generation -

05 . . . .
0 20 40 60 80 100 120 140 160

Generation

(b) The average rate of successful trials.

Fig. 6. The learning result of the controller by GP in the experiment II.
The simulator was acquired by clustering approximation method.

TABLE IV
PARAMETERS USED FOR Q-LEARNING IN THE EXPERIMENT I1.

Learning rate 0.05/(1.0 + (total accumulated steps)/10°)
Discount rate 0.8

Reward (success) 1.0

Reward (failure) —0.01,-0.1

its performance is supposed to change by every reproduc-
tion. These changes will affect the controller learning with
the simulator.

B. Learning the controller by Q-learning

The state space of this Q-learning is the same as that
used in our real-time adaptation study [4]. We cannot
evaluate the controller using the same fitness function with
GP (eq. (3)) because Q-learning evaluates an agent by the
reward. Thus, we used the reward value of 1.0 for a
successful trial and the reward of —0.01 (or —0.1) for a
failure. The discount rate v was set to 0.8. In experiments,
1,000 trials in Q-learning was treated equally as one
generation in the GP because the population size of the
GP is 1,000.

Fig 7 shows the results with the simulator acquired by
NN. The number of average steps were almost equal to
that by GP controller. The success rate decreased at first
and became to 0.4 at the final generation. This is because
the simulator in the early stage present poor prediction
performance and the training data set is small amount.
Therefore, the learning of the controller was easy with
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Fig. 7. The learning result of the controller by Q-learning in the
experiment Il. The simulator was acquired by NN.

the simulator. However, at the late stage of the learning,
the situation changes. The training data set become large
amount. Moreover, the motion characteristics of the box
in the simulator changes as a result. It is difficult for the
Q-learning to learn the change properly.

Fig. 8 presents the results with the simulator acquired by
clustering approximation method. Low average steps and
low success rate were observed in the figure. Furthermore,
the lesser average steps were, the lower rate of the success
was. This fact suggests that the acquired controller could
only achieve the easy tasks which required low steps to
complete.

Compared with the results of the GP and Q-learning, we
can conclude that the performance of the controller by GP
is better than that by Q-learning.

VI. DISCUSSION

Experiments were carried out to show the validness
by using the proposed control architecture. It was found
possible to train a controller by GP while improving the
performance of simulation.

It was confirmed that an effective controller was acquired
with the simulator constructed by NN. The controller
achieved high success rate more than 80% from the 20th
generation. The number of data sets available at the 20th
generation is the same as the one acquired during the
humanoid robot’s 20 minutes learning (about 200 actions)
in our real-time adaptation [4]. This is fewer generation
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Fig. 8.  The result of learning the controller by Q-learning in the
experiment 1. The simulator was acquired by clustering approximation
method.

than that obtained result by the simulator evolved with GP
in the previous study [5]. Even when the reinforcement
learning is used, it is not possible to carry out the sufficient
learning in that time. This fact indicates that our proposed
approach is very useful for real robots.

VIl. RELATED RESEARCHES

We can regard Q-learning as an approximation method
of the function f based on a sampling by an agent. How-
ever, the model in Q-learning (i.e., the Q-value) is closely
connected to the reward. Q-learning does not necessarily
result in the progress of the learning without rewards. For
the progress, the successful trial must be repeated in early
stage of the learning. For example, some learning scheme
such as “Learning from Easy Mission” [1] will be required.
However, Our approach utilizes non-rewarded data also for
the learning of the simulator.

Sethu and Schaal developed Locally Weighted Projec-
tion Regression (LWPR) algorithm for high-dimensional
data [11]. Their algorithm can incrementally construct the
approximate function which expresses the inverse dynam-
ics of a high-dimensional robot. However, they did not
study the controller learning with their incremental model
learning.

VIIl. FUTURE RESEARCH

In this research, it was assumed that all of the past data
could be used as training data. However, the question of

how much data should be retained remains an important
problem. If all of the data are accumulated, long learning
time will be required to construct the simulator. It should be
possible to efficiently select data based on the information
criterion, such as by preferentially accumulating data with
large prediction errors.

We are working on the extension of the proposed method
for the sake of applying to multi-agent environment, in
which one agent has to predict actions of other agents.
This means that the agent has to construct a model to
predict others’ actions in observing their past actions. We
have some preliminary experimental results in the multi-
humanoid robot environment (see [3] for details).

IX. CONCLUSION

We showed that the incremental learning of the robot
controller is possible with the incrementally acquired sim-
ulator. As the results of the experiments with real data,
GP evolved useful controllers successfully. Consequently,
in spite of a relatively small amount of experiences in a
real environment, we were able to carry out the effective
controller learning, and the learning has been accelerated
satisfactorily. We will plan to perform a verification by
installing this method on a real robot and carrying out the
real-time learning.
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