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Abstract— In this paper, we propose the Multi-Agent Oriented
Distributed Computing (MAO-DC) approach to efficiently using
the surplus resources of personal computers (PCs) connected to
a network such as the Internet.

Agents of MAO-DC transfer from one PC to the next through a
network sequentially, and they process distributed tasks by using
the surplus resources of the PCs. As an optimization algorithm for
MAO-DC, we use Dynamically Separating GA (DS-GA), which is
one of the effective learning algorithms for a multi-agent system.
By applying DS-GA, an agent that senses not global information
but local information can obtain the global optimality. In other
words, DS-GA has a feature that allows “Swarm-Sensing” to
emerge in DS-GA.

We verified experimentally that MAO-DC is optimized by DS-
GA, thus maximizing the collective performance of the agents
that use the surplus resources in MAO-DC.

I. INTRODUCTION

In recent years, the use of personal computers (PCs) has
become widespread, and the ability of these PCs is increasing
every year. However, the collective capability of these PCs is
not fully used. For example, many computers do not work in
the place of the night on the earth. Accordingly, various types
of distributed computing have been studied for effectively
using these surplus computer resources on networks [1][2].
Some of them are already in use [3][4].

Almost all the conventional research on distributed comput-
ing is based on a task transfer, where a host computer passes
distributed tasks to each computer and then receives the results
of the tasks. In other words, distributed computing typically
involves master-slave computations in wide-area distributed
environments. In this paper, we aim at optimization of load
balancing that is realized by scheduling management of task-
processing, in an extended distributed computing that can use
the surplus resources among PCs without task control by a
master computer. Then, we consider an extended situation,
where distributed tasks are transferred from one PC to the
next through a network sequentially to process the tasks. We
focus on a multi-agent-oriented approach [5] [6] for the above
type of distributed computing, and thus we propose Multi-
Agent Oriented Distributed Computing (MAO-DC). MAO-DC
realizes distributed computing by many software agents. Each
agent holds a distributed task that consists of programs to
process and data to be processed. It transfers from one PC to
the next sequentially, and executes the programs with the data

for processing a distributed task by using the surplus resources
of the PCs. In MAO-DC, the load balancing is determined by
the state-action strategy included by each agent. In this paper,
the state-action strategy is represented by a transference table
that describes the transference PC according to the current
state.

In a large-scale network such as the Internet, it is difficult
to grasp all of the characteristics of a network or its attached
computers. Furthermore, these characteristics are various and
change dynamically. Applying a learning algorithm of agents
that only have local information for global optimization is an
effective approach under the above environment. Therefore,
we apply the Dynamically Separating Genetic Algorithm (DS-
GA)[7] as a learning algorithm of agents based on local in-
formation to MAO-DC. DS-GA is the optimization algorithm
for a multi-agent system. DS-GA has the ability to increase
system-level optimality by autonomous learning of agents
based on the local information. In short, “Swarm-Sensing,”
which is defined below, emerges from agent-sensing in DS-
GA.

Swarm-Sensing: Swarm Intelligence is defined as any
attempt to design algorithms or distributed problem-solving
devices inspired by the collective behavior of the social insect
colonies and other animal societies [8]. On the other hand,
Swarm-Sensing is the property of swarmed simple units and
their smart cooperation. Upper-class sensing emerges from
collective simple sensing. Even if certain information cannot
be sensed by a simple unit alone, the swarmed units with
Swarm-Sensing can sense the information by the local inter-
action of units. Swarm-Sensing provides a basis for exploring
distributed problem solving without centralized control or
global information.

In DS-GA, agents are separated into colonies, and an agent
has limited interaction within the colony. By this separation,
System-level information emerged from collective agent-level
information. By applying DS-GA, we have conducted research
on the optimal route acquisition [9] and the optimal task
distribution [10] for using surplus resources of PCs on a
network. However, we have not taken into consideration the
restriction of network resources in this research. Particularly
in a large-scale network such as the Internet, not computer
resources but network resources become the bottleneck of
distributed computing in many cases.



In this paper, we verify experimentally that the total amount
of task-processing in the entire MAO-DC is maximized by
DS-GA even if network resources are unknown and change
dynamically.

II. MULTI-AGENT ORIENTED DISTRIBUTED COMPUTING

(MAO-DC) WITH DS-GA

A. Outline of MAO-DC

PCs and network links on a network provide a MAO-DC
with their arbitrary surplus computer and network resources
(Fig. 1), and the type or quantity of these resources need not
be uniform.
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Fig. 1. Multi-Agent Oriented Distributed Computing (MAO-DC).

MAO-DC has many transference agents to process the
distributed tasks. An agent executes the programs with the
data in using the surplus computer resources of the current PC.
Unlike a computer virus, an agent works only on the provided
surplus computer resources. The agent acts according to its
state-action strategy. In this paper, since the actions on the
state-action strategy are restricted to transference to the next
PC according to its current state, only a transference table is
used as a state-action strategy.

In this model, the determination of the task-processing
scheduling is equivalent to the determination of the transfer-
ence tables of all agents. Therefore, in order to maximize the
total quantity of task-processing in MAO-DC, the transference
table of each agent should be optimized.

B. Outline of DS-GA

We apply DS-GA as a learning algorithm to determine the
transference table of each agent. The basic idea of the DS-

GA is as follows. The DS-GA separates agents into colonies.
An agent cannot contact any agent in the other colonies. An
agent with a high evaluation value is split into two agents,
and an agent with a low evaluation is extinguished. A colony
changes dynamically according to the number of agents in the
colony. A colony is divided into two halves when the number
of agents in the colony increases, a colony is extinguished
when the number of agents it contains becomes 0. Each agent
can transfer to another colony according to a certain migration
probability. In this paper, a channel corresponds to a colony.
Figure 2 shows a schematic representation of the channel.
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Fig. 2. Conceptual representation of channels.

By acting on the above dynamic separation, DS-GA permits
an agent with only local information to learn the global
optimality.

C. Implementation to MAO-DC of DS-GA

We apply DS-GA to optimize the transference tables of the
agents in the MAO-DC, since swarm-sensing emerges from
agent-sensing in DS-GA. To apply DS-GA to MAO-DC, we
add a self-evaluation value and a channel parameter to each
agent in MAO-DC. Agent a consists of not only a transference
table Tabtransference(a) for a part of MAO-DC, but also a
self-evaluation value EA(a, t) and a channel parameter for a
part of DS-GA. The learning algorithm for MAO-DC with
DS-GA is as follows.
(1) Initialization: We define the surplus computer resources

provided to MAO-DC as the shared field. The shared
field is separated into NC(0) channels. The NLim

agents are created in each channel. The self-evaluation
value of agent a is EA(a, 0), and its transference table
Tabtransference(a) is initially randomly chosen.

(2) Processing algorithm by MAO-DC:
(2-1) Task acquisition: An agent is passed a distributed

task by a PC, when the PC has the task and the
agent has no task.

(2-2) Agent transference: An agent transfers to the next
PC with the task according to the transference table.

(2-3) Task processing: An agent processes a task in the
separated shared field for the channel.

(2-4) Task completion: the PC receives the completed task
from the agent when the agent has the completed
task.



(3) Learning algorithm by DS-GA:
(3-1) Increase and Decrease of Agent’s Evaluation: The

evaluation value of an agent increases by some
value (10) when the agent completes the task. The
evaluation value of an agent decreases by some value
(0.5) at every time step.

(3-2) Split and Extinction of Agents: An agent is split
into two agents when the evaluation value becomes
more than twice the initial value (EA(a, 0)). The
two agents inherit half of the original agent’s value.
A transference table is mutated according to the
mutation probability Pmut. An agent is extinguished
when the evaluation value becomes less than zero.

(3-3) Migration of Agent: An agent migrates to a randomly
chosen channel according to the migration probabil-
ity Pmig .

(3-4) Dynamic Separation of Channels: When the number
of agents in a channel exceeds the limit NLim, the
agents are separated into two channels of almost
equal size.

(3-5) Elimination of Channel: All of the agents in a
channel chosen at random are eliminated with the
channel when the total number of channels in MAO-
DC becomes greater than the initial NC(0).

(4) Time Step Loop: Time step t is added 1 by a complete
run from step (2) to (3). The above steps are performed
until a stop criterion is reached.

For the experiments in this paper, the number of initial
channels was set to NC(0) = 50, 000, the limit number of
agents in a channel was set to NLim = 20, the mutation
probability Pmut = 0.05, the migration probability Pmig =
0.01, and the initial evaluation value EA(a, 0) = 10 for all
agents. Furthermore, 100 runs were performed with different
random seeds.

III. VERIFICATION OF SWARM-SENSING

MAO-DC needs information on all of the surplus net-
work resources in order to use the surplus network resources
optimally. However, each agent cannot perceive all of the
information. We apply DS-GA to MAO-DC, since the swarm-
sensing feature it provides allows each agent to perceive all
information.

This section shows experimentally that each agent acquires
the optimal transference table for the whole by using the
swarm-sensing capability of DS-GA.

A. Experimental model

In order to investigate “Swarm-sensing” in a MAO-DC, we
conducted experiments on the simple network model shown
in Fig. 3.

The network model consists of four PCs, PC{A,B,C,D}, and
five network links. The four PCs have different characteristics
of surplus computer resources, where PCA can requests a
task and PC{B,C,D} can process a task. PCB,C can execute
Program1 but cannot execute Program2. PCD can execute
Program2 but cannot execute Program1. Five network links
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Fig. 3. Conceptual representation of Network Structure and Surplus Network
Resources. The number in the figure expresses the quantity of surplus network
resources.

have different quantities of surplus network resources. Net-
work links AB, AC, AD, BD and CD have limited quantities
of surplus network resources, 2, 1, 3, 1, and 2, respectively.
Network link BC has no surplus resource.

We assume two types of tasks: Task X and Task Y. PCA

requests Task X and Task Y at the same ratio. Task X consists
of Program1, Program2 and Data X. Task Y consists of
Program1, Program2 and Data Y. Task X and Task Y are
processed by Program1 and Program2 in order. The states of
Task X and Task Y are changed by Program1 from State0 to
State1 and by Program2 from State1 to State2.

The sizes of tasks are changed by processing as shown by
TABLE I (A). The sizes of Task X on State0, on State1, and
on State2 are 2, 1, and 2, respectively. The sizes of Task Y on
State0, on State1, and on State2 are 1, 2, and 1, respectively.

In this experimental model, the transference table indicates
the next PC that the agent should transfer to, based on the
current state of the agent determined by the type of its task
and current state of the task as shown in TABLE I (B).

TABLE I

SIZE OF TASK AND TRANSFERENCE TABLE OF AGENT.

Task X
TPC(X,0)

Task Y
State 0
State 1

StateTask

TPC(*,*)     {A,B,C,D}

TPC(X,1) TPC(Y,1)
TPC(Y,0)

State 2 TPC(X,2) TPC(Y,2)

Task X
2

Task Y
State 0
State 1

StateTask

1 2
1

State 2 2 1

(A) Size of Task (B) Transference Table of Agent

The self-evaluation value is added when the agent has
completed a task that is State2 and the agent returns to the
requested PC. In the model, when the quantity of agents’
transference on a network link exceeds a limited quantity, the
agents chosen at random can transfer less than the limited
quantity. An agent with Task X achieves high-efficiency use
of the surplus network link resources by transferring along
the route of A → B → D → A (Fig. 4(A)), an agent
with Task Y has high-efficiency use of network resources by
transferring along the route of A → C → D → A (Fig.
4(B)). However, each agent does not sense network resources
or computer resources.
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Fig. 4. Optimal routes of task X and task Y.

B. Experiments

For the 100 runs performed, the results were as follows. In
simple GA or DS-GA, TPC (X, 0) and TPC (Y, 0) converged
on ”B” or ”C”, TPC (X, 1) and TPC (Y, 1) converged on
”D”, and TPC (X, 2) and TPC (Y, 2) converged on ”A.”
Consequently, most of the agents pass along the course of
A → B → D → A or A → C → D → A.

As experimental results, the histories of the population ratio
of each transference table by simple GA and by DS-GA are
shown in Fig. 5 and Fig. 6, respectively. The history of the
average performance of all agents is shown in Fig. 7.
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Fig. 5. History of the population ratio of each transference table by simple
GA. Each area between the lines corresponds to the ratio of the corresponding
parameters of the transference table.
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Fig. 6. History of the population ratio of each transference table by DS-GA.

In the experimental model, the agent completes processing
in the shortest time with the learned route A → B → D → A
or A → C → D → A. Furthermore, an agent can use the
network resources efficiently when it uses PCB for Task X
and PCC for Task Y.

In the experimental results of simple GA and DS-GA, agents
learned the route A → B → D → A or A → C → D → A
before 50 time steps. After that, only in DS-GA did the agents
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Fig. 7. History of average performance. The solid line corresponds to the
average performance of DS-GA. The broken line corresponds to the average
performance of simple GA.

learn the optimal transference tables. As a result, the agents
in DS-GA achieve higher collective performance.

C. Discussion

In this experiment, an agent can complete the task only with
the route A → B → D → A or A → C → D → A. An agent
cannot perceive which route is better, since the agents acquire
the same rewards for the two routes ABDA and ACDA. Then
even if agents have optimal routes for collective performance,
there is no increase in the agents that learn based only on
agent-sensing.

In DS-GA, if the agents in a channel have higher collective
performance than agents in the other channels, the agents in
the channel increase. In other words, swarm-sensing emerges
in DS-GA. Consequently, agents that have optimal routes for
collective performance increase by DS-GA learning.

IV. APPLICATION OF SWARM-SENSING

In the previous section, we investigated “Swarm-sensing”
on a simple network model. Here, we show experimentally
that the agents learn the optimal routes that we calculated
beforehand without perceiving the global information on a
more complicated network model.

A. Experimental model

In order to verify “Swarm-sensing” in MAO-DC, we exper-
iment on the more complicated network model shown in Fig.
8.
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Fig. 8. Conceptual representation of Network Structure and Surplus Network
Resources. The parameters in a figure show quantity of network resources.

The network model consists of five PCs, PC{A,B,C,D,E},
and ten network links. The Five PCs have different character-
istics of surplus computer resources, where PCA can request



a task. PCB , PCC , PCD, and PCE can execute Program
B, C, D, and E, respectively, to process a task as shown in
TABLE II(A). Ten network links have different quantities of
surplus network resources as shown in Fig. 8.

We assume one type of task: Task Z. Task Z consists of
four programs, Program B, C, D, E, and Data Z. Task Z is
processed by Program B, C, D and E without an order in this
model,

TABLE II

EXECUTABLE PC AND TASK SIZE MAGNIFICATION BY EACH PROGRAM.

Magnification

0.5
0.5
3
2

PC BProgram B
Program C

Executable
 PC

(A) Executable PC

PC C
PC DProgram D

Program E PC E

(B) Magnification of Task Size

[times]
Program

Program B
Program C
Program D
Program E

Program

The size of Task Z is changed by each processing Data Z
as shown by TABLE II (B). The size of the initial Task Z is
4. The size of an agent is disregarded compared with the size
of the task. Processing is completed if the task is processed
by each of Program B, C, D and E in the four respective PCs
once and returned to PCA.

In this experimental model, the transference table indicates
the next PC that the agent should transfer to, based only on the
current PC, since the state is corresponded to the PC on which
the agent exists currently in the experiment of this section, as
shown in TABLE III(A). A self-evaluation value is added when
the agent completes the task. When the quantity of agents’
transference on a network link exceeds the limited quantity,
the agents chosen at random can transfer less than the limited
quantity.

The network structure and network resources in the exper-
imental model of this section are shown in Fig. 8 in which
the optimal routes are determined as one combination. The
optimal combination of the routes is acquired when half of the
agents acquire transference table 1 and the other half acquire
transference table 2 in TABLE III(B)(C) (Refer to appendix).

TABLE III

TRANSFERENCE TABLES OF AGENTS; DEFINITION AND THE OPTIMAL BY

MATHEMATICALLY CALCULATION.

Next PC
TPC(Z,A)PC A

PC B

current PC

TPC(*,*)     {A,B,C,D,E}

TPC(Z,B)
TPC(Z,C)PC C

PC D TPC(Z,D)
PC E TPC(Z,E)

(B)Optimal Table 1 (C)Optimal Table 2

B
C
D
E
A

C
D
E
A
B

TPCTPC

(A)Transferance Table

current PC

PC A
PC B
PC C
PC D
PC E

PC A
PC B
PC C
PC D
PC E

current PC

B. Experiments and Discussion

For the 100 runs performed, the results were as follows.

As experimental results of DS-GA, the history of the
population ratio of agents with transference table 1 and tables
2 is shown in Fig. 9.
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Fig. 9. History of the population ratio of agents with transference table 1
and table 2.

The route of an agent at this time is shown in Fig. 10. Two
types of routes, called a pentagon and a star, have appeared.
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Fig. 10. Optimal routes of the agents.

The agent learned the optimal route for collective perfor-
mance. This result shows that the characteristics of DS-GA
shown in Section III also appears in a more complicated
environment.

C. Adaptation in dynamic environment

In a real network environment, network resources may
change dynamically. In the experiment of this subsection, we
change network resources in 1000 time steps. The network
after change is shown in Fig. 11.
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Fig. 11. Conceptual representation of Changed Network Structure and
Surplus Network Resources. The underlined parts are the parameters that
changed.

The optimal combination of the routes is the case where half
of the agents acquire transference table 1 and the other half
acquire transference table 3 in TABLE IV (Refer to appendix).



TABLE IV

OPTIMAL TRANSFERENCE TABLES OF AGENTS BY MATHEMATICALLY

CALCULATION AFTER CHANGE OF NETWORK.

Optimal Table 1 Optimal Table 3

B
C
D
E
A

C
E
B
A
D

TPCTPCcurrent PC

PC A
PC B
PC C
PC D
PC E

current PC

PC A
PC B
PC C
PC D
PC E

The history of the population ratio of agents with transfer-
ence table 1 and table 3 is shown in Fig. 12.
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Fig. 12. History of the population ratio of agents with transference table 1
and table 3.

Even in such a dynamic environment, the agent learned the
optimal route for collective performance by DS-GA.

V. CONCLUSION

In this paper, we proposed Multi-Agent Oriented Distributed
Computing (MAO-DC) and applied DS-GA to MAO-DC to
efficiently use the surplus resources of personal computers
(PCs). The task-processing agent in MAO-DC learned two
types of optimal routes, a pentagon route and a star route,
by DS-GA according to the state of the computer resources
and network resources without perceiving the information of
network resources. Then load balancing of MAO-DC was
optimized.

From these results, we found that MAO-DC with DS-GA
is efficient for distributed computing under an unknown and
dynamic network environment.

APPENDIX

Here, we analyze mathematically the optimal solution of the
experimental model in Section IV. In the model, each agent
selects the optimal transference table out of all 55(= 3125)
types that indicates the next PC to which the agent should
transfer, based on the current PC. However, the agents should
transfer according to one of the 4P4(= 24) routes, since from
the fixed request PC, PCA, an agent should travel to the four
other PCs, PCB,C,D,E , at once and return to PCA. We take
into consideration the 24 routes and define ROUTES as the
set of the 24 routes (ABCDEA, ABCEDA, · · ·, AEDCBA).
We define AgentsR as the agents transferring through route
R and define NR as the number of AgentsR.

The optimal solution is the set of values NR(R ∈
ROUTES), where the value of

∑
R∈ROUTES NR is max-

imum.
As described below, we consider the restrict conditions of

solving the maximum. At first, we obtain the 24 restriction
inequations as follows.

NR ≥ 0(∀R ∈ ROUTES), (1)

since NR(R ∈ ROUTES) is positive or zero.
The agents can transfer through ten network links, since the

combination is ten when two arbitrary computers are chosen
out of the five computers. We define LINKS as the set of 10
network links (AB, AC, · · ·, DE) and define LimitL as the
limited quantity of the network link L.

Here, as an example, we consider the influence of LimitAB.
Twelve types of agents transfer through the network link
AB: AgentsABxyzA and AgentsAxyzBA, where xyz are the
permutations C, D, and E. The size of AgentsABxyzA on the
network link AB is 4. The size of AgentsAxyzBA on AB is 6
(4(×0.5×3×2)×0.5), according to TABLE II(B). We obtain
the restriction inequality as follows.

4×NABCDEA + · · ·+6×NACDEBA + · · · ≤ LimitAB (2)

As in the above case, we get the other 9 restrictions
by each network link. As a result, we can calculate
max

∑
R∈ROUTES NR under the above 34 restrictions. We

get the following optimal solutions, NABCDEA = 500000,
NACEBDA = 500000, and NR = 0(R ∈the others) for
Subsection IV-A, and NABCDEA = 500000, NACBEDA =
500000, and NR = 0(R ∈the others) for Subsection IV-A.
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