Applying Behavioural Cloning to Robotics

Claude Sammut
ARC Centre of Excellence for Autonomous Systems
School of Computer Science and Engineering
University of New South Wales
Sydney 2052 Australia
claude(@cse.unsw.edu.au

Abstract — Programming an autonomous system can be
a difficult and time-consuming task. One method for
speeding up this process is to make the system teachable.
That is, the system learns to perform a task by observing a
human operator. We call this behavioural cloning when
the learnt behaviour closely matches that of the trainer.
Behavioural cloning has been applied to a variety of
problems, originally in simulation. However, it is now
being applied, with some success, to physical systems. In
This paper, we review previous work, describe recent
applications and discuss some of the outstanding problems
in applying behavioural cloning to robots.

1. INTRODUCTION

In the early years of Artificial Intelligence research, a
major goal was to build a “general purpose problem solver”,
that is, a system that had a universal method for decision-
making, requiring only a little domain knowledge. It was
eventually realised that no such system could be built in
practice and that domain specific problem solvers were the
only way of build a system that was both practical and highly
skilled. However, knowledge-based systems encountered the
“knowledge acquisition bottleneck”, the term given to the
difficulty in acquiring adequate domain knowledge to make
the system perform at an expert level. This problem lead to
increased interest in Machine Learning approaches to
building knowledge bases. If a human finds it difficult to
discover or express domain knowledge, then give the system
the ability to learn for itself.

There are strong analogies to this story in robotics.
Ideally, we would like a task planning system that could work
in any robotic domain. We would like a vision system that
could cope with any environment that is presented to it. We
would like a locomotion system that could traverse a wide
variety of terrains. As with problem solving, experience has
taught us that high performance comes from carefully
engineering a solution to suit a specific task. And as with
problem solving, this is a difficult and costly exercise. Once
again, Machine Learning is seen as a way of reducing the cost
of building autonomous systems and also as a way of
improving their robustness.

Behavioural cloning has been gaining in popularity as an
approach to acquiring control knowledge for a robot. The
system learns to perform a task by observing a human
operator. Logs of the human performance are input to a
Machine Learning algorithm to produce a control strategy.

Various approaches to behavioural cloning have been
successfully demonstrated, both in simulation and using
physical systems. However, one of the biggest obstacles to
more widespread deployment of behavioural cloning is the
complexity of the sensory data collected by a robot. If the
state of the system can be characterised by a small number of
parameters, then the problem remains almost entirely within
the realm of Machine Learning. If the state can only be
characterised by complex data such as from a vision system
then we must also develop methods for representing the data
in a form that is suitable for learning.

A further problem that must be considered falls in the
domain of Human-Computer Interaction. If the human
operator has access to information that the robot does not then
it may be difficult or even impossible for the robot to learn an
operational control strategy. Therefore, the operator must be
limited to a user interface that presents only the information
available to the robot. This present problems since the way
the information is presented can strongly influence the
human’s ability to perform well.

In the remainder of this paper, we give a brief introduction
and history of behavioural cloning and then present recent
work in applying it to physical systems. We describe attempts
to address the problems of representation and human-
computer interaction and conclude with a discussion open
problems.

II. BEHAVIOURAL CLONING

Michie [1] first formulated behavioural cloning as the
process of capturing records of the human performance of a
skill and using machine learning to transform the data into
symbolic control rules that not only show run-time
dependability but also transparency. That is, an important
goal of behavioural cloning is to gain an understanding of the
human skill as well as being able to reproduce it.

Initial experiments acquired knowledge for some quite
complex systems but entirely in simulation: pole balancing,
flying a fixed-wing aircraft [2], operating a container crane
[3] and scheduling a production line [4]. These experiments
used relatively straightforward method of representation
control knowledge, namely, situation-action rules.

In the case of flying an aircraft, each time the pilot
performs a control action, such as moving the stick or
changing settings for the throttle and flaps, we record that
action and the state of the aircraft at a time slightly preceding
the action. That is, we record, the position and orientation of
the aircraft, the rates of change of these variables and we



record all the other control settings. We then used a standard
decision-tree learning algorithm [5] to induce a set of control
rules for each control action.

Variations on the above methodology include
decomposing the learning task into acquiring rules for
different stages of the operation, for example, taking-off,
turning, landing, etc. Within a single behaviour, multiple rules
may also be learned for “goal-seeking” when the system is far
from its target and “station-keeping” when the system is near
its target. Kerr and Kibira [4] post-processed their decision
trees by “fuzzifying” them. It was found that the scheduler
was rapidly switching plans when the system was near a
decision point and oscillating around it. The fuzzification
smoothed this behaviour. While they introduced traditional
membership functions, the same effect can also be achieved
by using a machine learning algorithm that outputs class
probabilities rather than strict classifications.

While situation-action rules are effective in relatively
simple domains, they tend to be brittle in more complex
environments [6]. For example, if the aircraft in the flight
simulator drifts into regions of the state space that are not
covered by the situation-action rules, there is no way of
recovering. Recent work in behavioural cloning as focussed
on creating representations of the skill that are more goal-
oriented. These representations are more robust since the
control does not attempt to map every possible state to an
appropriate action. Instead, the controller tries to determine
setting for particular goal parameters and then follows with a
set of rules that apply actions to achieve those goals values.

Bain [7] constructed a system consisting of two learned
rule-sets in which one was applied to the current state of the
simulation to determine the desired values of predefined goal
parameters. The system them “backward chained” with
another rule set to find an action that would move the system
closer to the goal values. Isaac [8] extended this architecture
so that the second set of rules was implemented as a model
tree that yielded PID values for a switching controller. The
operation of this system is best illustrated by an example. The
following rules show how a turn can be implemented. The
goal rule is as follows:

t = goal turn rate

if azimuth < -3.6 then
if distance <1715 then
t =0.163- azimuth + 0.0013- distance —1.90
else
t =0.073- azimuth + 0.0003 - distance —1.92
else
t =0.006 - azimuth + 0.0022 - distance —1.93

This rule determines the desired turn rate given the
aircraft’s heading and distance from the target. The rule is
learnt by a regression tree program in which the leaf nodes
are constructed by linear regression on the training data in the
leaves. Once the desired turn rate has been found, the system
uses the following rule to determine that setting for the
ailerons.

INNER AILERON CONTROL RULE
if i <11.7 then
a, =-0.053-¢-0.0004-i-0.003-d-0.013
else
a,, =-0.043-¢-0.0236-i-0.012- d + 0.330

OUTER AILERON CONTROL RULE
a,, =-0.049-¢-0.0016-i-0.012- d -0.002

e =current _turn _rate —t
i = integral of e

d = derivative of e

Two rules are given. The “inner” rule is used when the
aircraft is close to the desired turn rate and the “outer” rule
when further away. Each leaf node in the rules above is a PID
controller. That is, each control action is determined by:

derror

dt

control =P -error + 1+ ferror dt+D-

Thus, the system learns a switching controller. This
approach had proved to be more robust than situation-action
rules for complex tasks.

Suc [9] has taken the approach of learning “qualitative
strategies” as constraints on learning a controller. From the
human trainers actions, an algorithm for learning qualitative
models is used to generate rules such as, “if the aircraft is
approximately straight and level and if the aircraft’s pitch is
below the desired pitch, pull back on the stick”. While this
does not give the numerical values required to implement the
action, the rule serves as a constraint for further learning.
Given a set of rules that characterise the pilot’s behaviour
throughout a flight, functions to produce a numerical action
value are randomly generated, constrained by the qualitative
rules. The function that best achieves the desired result is
retained.

There are other approaches to learning from
demonstration, for example by Atkeson and Schaal [10].
However, they place less importance on building human-
readable control rules.

III. LEARNING CONTROL STRATEGIES

D’Este, O’Sullivan and Hannah [11] gave a simple
demonstration of behavioural cloning in robotics. The task
was to teach a Pioneer II robot to follow a target and avoid
obstacles. The robot was equipped with a colour camera and a
sonar array. The target was painted bright green so that a
simple vision system could isolate the target and determine its
heading and distance. The sonar array was used to for
obstacle detection. Thus, the inputs for learning are relatively
simple: head and distance to target and the return values from
the 16 ultrasonic sensors. Some experiments also included a
“memory” in the sense that the values from the previous
decision cycle were preserved and were also available for
learning.



The human trainer controlled the robot via workstation
and attached joystick. In many respects this is similar to the
problem addressed by Pomerleau [12] when training the
ALVINN vehicle to drive on roads. In both cases, it was
found that the situation-action formulation only succeeded if
the training data included a wide variety of conditions. For
example, a “safe” driver who always stays in the middle of
the road or a robot that stays well away from any obstacle
provides no experience for what to do when the car does stray
too close to the side or the robot wanders to near an obstacle.
Pomerleau solved this problem by artificially creating data
sets that contained additional examples. In the case of the
Pioneer, the investigators combined data from a safe operator
with those of a “dare devil” who allowed the robot to come
close to barriers and fences. This experience of having to
cover a wide variety of situations was one of the reasons for
pursuing the goal-directed approaches described in the
previous section.

The main feature of these examples is that while we are
dealing with relatively complicated tasks, the input data are
simple. Even in ALVINN, the vision system was highly
restricted and the learner’s task was mainly to relate curvature
of the road with an appropriate steering angle. Even much
more complex problems, such as flying a helicopter, have the
same feature. They can be solved because the inputs are
simple.

There have been several recent demonstrations of learning
to control a helicopter [13, 14] has demonstrated. Ng’s
approach has some features in common with behavioural
cloning. Behavioural traces of a human pilot are recorded but
rather than using the data to construct a control strategy
directly, a locally weighted linear regression algorithm is used
to create a model of the helicopter. Once this was obtained it
could be used in a simulation environment for applying
reinforcement learning. Once learnt in simulation, the control
policy is transferred to the real helicopter. Because
reinforcement learning algorithms typically require many
trials to learn a satisfactory policy, building a model is
currently the only way of applying this kind of learning in
practice. Ironically, one of the original claims for
reinforcement learning was that no model is required. Ng’s
work has some similarities with Suc’s [9] in that Suc also
builds a model of the plant but this is used when refinancing
the qualitative control rules to numerical ones.

As impressive as helicopter control is, the system can still
be characterised by a small set of state variables, as in the
flight simulator. Thus, solving this problem does not require
dealing with complex representations of the world. In the
following sections, we discuss two domains: robot soccer and
autonomous ground vehicles in unstructured environments
where representation becomes a serious issue.

IV. TEACHING A ROBOT TO PLAY SOCCER

RoboCup' is an international competition held annually to
encourage developments in robotics. It consists of several
leagues of different kinds of robots. One of them is the Sony
legged robot league. A team consists of four Sony Aibo
robots. Each one has an onboard visions system and operates

! http://www.robocup.org

autonomously, although it can communication with its team
mates via an 802.11b wireless network. We describe here
some of our experiences in programming this robots to play
soccer” and the implications for machine learning.

The robot’s software system has evolved into quite a
complex system as illustrated in Figure 1.
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Figure 1. Robot Architecture

* The robot’s vision system is primarily based on segmenting
the image by colour and looking for edges that represent
field markings. Because images can be very noisy and
background objects may confuse object recognition, much
effort goes into heuristics that filter out unlikely candidates.

* To localise, that is find where the robot is in relation to
other objects in the field, the robot looks for the corner
posts and goals, which are specially coloured and the field
markings. Each robot constructs its own world model,
which is a map of the field with objects placed where the
robot thinks each one is.

* Communication between the robots is mainly used to assist
in localisation. Each robot broadcasts its world model to its
team mates. This is most helpful when one robot is unable
to see the ball but another robot can. Data fusion is
therefore critical component of the localisation module.

* Locomotion in a four-legged robot is quite complex and
significant part of the effort in programming the robots is
devoted to optimising leg movements for speed and to tailor
them for specific skills such as kicking, dribbling, getting
behind the ball, etc.

* The strategy module determines the appropriate action to
perform for a given situation. For example, if the robot is in
the mid-field and has a clear shot at the goal, it may choose
a long-range kick. If it is near the goal, it may choose a less
powerful but more accurate kick. If it cannot see the goal, it
may continue to dribble the ball. The strategy module also
determines the role of the robot: attacking, supporting the
attacker or defending.

In the early years of the competition, some teams
attempted to develop elegant software architectures based on
generic designs. However, these were quickly abandoned as it
was realised that to achieve a high level of performance, a
great deal of domain specific knowledge was required. The
generic systems were simply too slow and were not robust.

* The University of New South Wales team has won the
competition three times. Team report may be found at
http://www.cse.unsw.edu.au/~robocup.



The robots would always do something unexpected because
either the vision system was confused by an unusual scene or
the interactions with other robots were so complex that it was
impossible to predict the outcome of some behaviour.

The most successful methodology for developing the
software for the robots has been to begin with simple-minded
approaches, put the robots into a game, observe their
behaviour and modify the code to eliminate weaknesses.
Playing many games has been essential to discovering unique
but important situations that the robots might encounter. Of
course, this is slow and painstaking work. Ideally, we would
like to put the robots into the field and let them learn as
humans do, through coaching, practice and observation of
other players.

A. Learning Low-Level Skills

Machine learning has been used very successfully in
several aspects of the legged league. Colour detection is a
difficult problem because the perception of colour is strongly
affected by lighting conditions. Consequently, machine
learning has been applied to learning colour calibration [15].
Sample images are obtained. They are manually classified to
create a training set for learning. In our case, we use
Quinlan’s C4.5 [16].

Another area in which learning has been very beneficial is
in improving the gait of the robot. Specify the kind of motion
we want the robot to execute by describing a trajectory for the
paws at the end of the leg. Many different shapes for the
trajectory have been tried. Figure 2 shows an example.
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Figure 2. Locomotion Trajectory

Different surfaces may require a slightly different gait. For
example, a smoother carpet could cause more slippage and so
the angle of attack on the descent of the leg or the lift-off may
have to be adjusted. Kim and Uther [17] used an optimisation
technique to improve the gait. A robot is placed on the field
and made to walk back and forth along a path of known
length. The robot is able to time its traversal and therefore
measure improvements in speed. Between each repetition, the
parameters are adjusted following a gradient descent
approach to find a better trajectory. In the 2003 competition
this yielded approximately a 25% increase in straight line
speed.

B.  Learning Behaviours

We saw that supervised learning can be applied to
learning low-level vision operations and trial-and-error

learning can be used for locomotion. Learning behaviours
would also be very useful because these are also difficult to
devise. Some examples of simple behaviours are:

* If the robot cannot see the ball first look in the direction last
indicated by the world model. If that fails, scan the head
around. If that fails, rotate the whole robot 360°. Note that
the robot should turn clockwise if the robot is defending its
own goal and it is on the left hand side of the field. This is
because the ball may be close to the robot but out of its
field of view. When the robot turns, it may knock the ball.
If that happens, we want the ball to be knocked away from
our own goal. If the robot is attacking the other goal, it
would turn in the opposite direction so that the all is
knocked towards the goal.

* If two team mates are approaching the ball, the one that has
the best angle on the ball should take precedence over the
other robot. For example, if a robot is approaching the ball
facing its own goal, it should get out of the way of a team
mate coming from the other direction.

If a robot is approaching the ball and there is no opponent
nearby, it can take the time to trap the ball, turn and shoot
in best direction. If there are opponents near by, the robot
should not try to be accurate, it should use a simple kick to
move the ball down the field and away from opponents.

The code is full of such heuristics. Various teams
implement behaviours as state machines or decision trees but
they all contain many ad hoc rules that are created as a result
of watching games and devising new behaviours or patching
old one when a failure occurs. To try to automate this process,
we are developing a behavioural cloning system to capture
behaviours from a human operator. However, before we can
do any learning, we have to deal with problems in user
interface design.

The setup is as follows. During practice sessions, a human
can operate a robot by remote control. Information from the
robot is displayed on a workstation screen and the motion of
the robot is controlled by a joystick. We do not want the
operator to observe the robots on the field directly. The
reason is that the human would then have much more
information than is available to the robot. The robot’s field of
view is very narrow whereas the operator looking at the field
would have a global view. Therefore, the operator could make
decisions based in information that the robot does not have. If
that is the case, it may be impossible for the robot to learn
when to trigger a behaviour. Therefore, we restrict the human
to only knowing what the robot knows.

Figure 3. Robot view of a scene



Figure 2 shows a scene taken through the robot’s camera;
this gives a good indication of the narrow field of view.
Figure 3 shows a similar scene after blob formation and
object recognition. The bounding boxes indicate that an
object is recognised. The pink-on-blue object is one of the
corner posts.

Figure 4. After object recognition

Even this display is too rich since the human may still do
some edge detection or other operations that we cannot
control. So the display is distilled even further to exactly
those elements that would be seen by the robot (Figure 5).

Figure 5. The object display

The joystick must allow control of the head to pan around.
Motion control is simplified since the operator is not
responsible for low-level locomotion. The robot moves and
turns in the direction indicated by the joystick.

There are features of the tele-operation that are still under
investigation. One is the degree to which we must slow down
a game. The human reaction time is very slow compared with
the robots. So when a team of human-controlled robots plays
a fully autonomous team, the humans have little chance of
winning. Thus, we must run the autonomous team in slow
motion. However, this could affect the game. So we do not
expect to be able to transfer cloned behaviours to a robot
without modification.

The second feature under investigation is whether the
human should see a display of the robot’s world model. As
described earlier, the outcome from the localisation module is
a map of the field indicating the estimated positions of the
different objects. An example of the world model display is
shown in Figure 6. This shows the location of two blue (with
arrows) and three red robots and the ball. The ellipses indicate
the degree of uncertainty about the position of the object.

Figure 6. A world model for a robot facing the ball

Figure 6 shows the world model that has been constructed
by the upward facing blue robot. It also contains information
transmitted from the other blue robot. The second blue robot
believes the ball is in front of it. This can occur if there is
some background object that is being mistaken for the ball.

Because the operator only sees a very small window onto
the field through the robot’s camera, it is difficult to
remember the location of objects that go out of view. So there
is a reason for showing the operator the world model display.
On the other hand, the world model can be misleading, as in
the example above, so it may be better to let the operator
maintain his own model. Both these modes of operation will
be tested.

There are many other user interface issues yet to be
settled. For example, the robot’s head has three degrees of
freedom so the image may be rotated. The robot’s vision
system uses the head joint angles to transform object
positions. Should the human be shown the corrected display
or the unrotated display? This is again a matter to be
determined empirically.

As in previous behavioural cloning experiments, we
capture the operator’s actions, along with the state of the
system at the time the action was taken. Unlike other
experiments, the information in the images is relational. We
are often interested in whether one blob appears above,
below, left or right of another object. Whether it appears
bigger or smaller, closer of further away. So there is further
work required in determining an appropriate representation
for the training data.

V. OPEN PROBLEMS AND CONCLUSION

In the previous section, we saw how a rich sensory system
such as vision can complicate attempts at behavioural
cloning. In RoboCup, the vision problem is relatively easy
because the environment has been carefully structured. Now



let us consider robots operating in unstructured environments.
Some examples are autonomous ground vehicles operating
off-road or RoboCup rescue in which a robot is required to
navigate through a mock collapsed building to locate
survivors.

If we wish to have a robot drive through a forest, we have
no reliable way of recognising landmarks in such a
complicated scene. An alternative to segmenting an image to
find local features is to treat the image as a whole and operate
on global features. This is the approach widely used in
content-based image retrieval. There has been growing
interest in dimensionality reduction techniques [18] to store
and retrieve images based on global features. An image is
mapped into a high-dimensional space in such a way that
similar images should be mapped into neighbouring regions.
Clustering then tells us how to group images. Now consider
how we navigate when driving, say, from home to the office.
How do we recognise that we should turn at a particular
street? We may recognise a building or some other landmark.
However, the same affect could be achieved if we recognise
the scene, as a whole, as being similar to other scenes where a
turn has been successful.

These methods suggest that it may be possible to train an
autonomous vehicle to navigate through a complex
environment. A possible approach is to allow a human driver
to control the vehicle, collecting images as it goes. The
images are stored in a database along with associated actions.
To retrace the path autonomously, as the vehicle captures
images, they are matched with images in the database. If there
is a match, the associated action is performed. What is less
clear at present is how such a system could be generalised so
that the vehicle will make a sensible decision when it
encounters a new set of scenes.

VI. CONCLUSION

Behavioural cloning has been used to considerable effect
in robotic applications. However, the tasks that have been
tackled so far have not required complex representations. As
we move to less structured environments, it is necessary to
find ways of representing the robot’s sensory inputs so that a
correspondence can be made between the human’s perception
of the world and the robot’s. Only then can the robot learn to
associate the appropriate actions with its inputs.
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