
 

 
Abstract — This paper introduces an intelligent control method 

using the cubic neural network where information processing is 
carried out for multiple purposes and multiple degrees of 
information abstraction. The cubic neural network consists of 
ordinary neural networks and their related fuzzy-neural networks 
obtained by abstracting their information processing. When this 
cubic neural network is utilized for systems control, the ordinary 
neural networks correspond to each controller for multiple 
purposes and their related fuzzy-neural networks are used for 
various nonlinearities and uncertainties including those due to 
fault of system, which are not taken into consideration at modeling 
process. The present intelligent control method using the cubic 
neural network has an integrator that selects and combines 
ordinary neural networks and fuzzy neural networks and is design 
by applying the genetic algorithm. The effectiveness and validity of 
the intelligent control method using cubic neural network are 
demonstrated through fundamental illustrations concerning 
pendulum dynamics and the other applications. 

I. INTRODUCTION 

Recently, intelligent control methods such as fuzzy control 
and neural network control have been spreading and many 
researches on intelligent control method have been carried out 
especially in the field of robotics. The approaches of intelligent 
control have been adopted from various viewpoints of control 
designs. For instance, control objects are too complicated so 
that their modeling is difficult. And human knowledge is 
positively utilized for controller design. In fact, the concept of 
intelligent control was used by K. S. Fu [1] for the 
multi-disciplinary field of control and artificial intelligence, and 
the control without human operation which possesses the same 
ability as that with it was regarded as an intelligent control. This 
control is considered to be an alternative of human ability of 
making decision or strategy and learning a new function in 
uncertain and varying circumstances. Thus, based upon the 
human ability the intelligent control has been considered so far. 
J. Rasmussen [2] proposed that human cognitive behavior 
during motion is hierarchically divided into three phases of skill 
base, rule base and knowledge base. This model is named 
"Rasmussen cognitive model" and is well known as a typical 
hierarchical control structure.  

G.N. Saridis [3] proposed an intelligent control possessing 
the hierarchical structures of organizer and coordinator of which 
principle is named "Increasing Precision with Decreasing 
Intelligence (IPID)". In this structure the abstraction is 
advanced in a higher level. On the other hand, control precision 

and response speed are high in a lower level. J. S. Albus [4] 
proposed a cerebella model articulation controller and extended 
it to a hierarchical control of robot manipulator. Furthermore, 
NASA/NBS Standard Reference Model (NASREM) was 
proposed [5] based upon that model for a real-time control 
system. NASREM consists of three main parts, task 
decomposition, world modeling and sensor processing. Each 
module possesses a hierarchical network structure. The global 
memory is data base where information of external world is 
stored and plays a role of aiding each module.  

R. A. Brooks [6] proposed the subsumption architecture for 
an intelligent control referring to such autonomous system as 
insect, where module decomposition is performed for each 
purpose instead of function and parallel signal processing is 
carried out. For example, in case of mobile robot, signal 
processing from sensing to activating are independently 
performed for obstacle avoidance, wandering and searching in a 
hierarchical architecture of subsumption. This structure is 
characteristics of redundancy, extension ability and 
failure-proof, and is categorized into behavior based robotics, 
which attracts attention in the field of not only robotics, but also 
artificial intelligence, artificial life and so on.  

T. Fukuda and M. Shibata [7] considered that the logical 
decision for control strategy which is suitable to environment 
and control of actuator is necessary for intelligent robot to 
perform the behavior similar to human one, and proposed a 
hierarchical intelligent control system. This system consists of 
learning level, skill level and adaptation level. For the 
adaptation level, a neural network is utilized and for the skill 
level, fuzzy-neural network is used, but in the case of modifying 
the objective value of adaptation level control logical inference 
requiring much time is not performed. In the low level the 
adaptation is performed in the bottom up manner by trial and 
error using the genetic algorithm and on the other hand, 
knowledge is acquired and renewed in the top down manner by 
using human instruction and evaluation.  

The proposed intelligent control methods designed by expert 
systems or knowledge bases based upon past experience  have a 
little ability to cope with unexpected states, although the 
subsumption architecture has such a function as its 
complementary function in a sense. However, the systematic 
synthesis approach of the architecture has not been given.  In 
order to have an intelligent control possess such a function, this 
paper introduces a systematic approach of intelligent control 
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using the cubic neural network (CNN) [8] that possesses a 
multilevel structure and uses parallel distributed signal 
processing. This intelligent control method is applied to a kind 
of high robust control problem of a fault-tolerant control and 
nonlinear control of multi-objective control problem. As the 
former applications, control problems of an inverted pendulum 
and a fluidized bed incinerators subjected to sensor fault and a 
structure subjected to nonlinear large deformation are 
introduced, and as the latter applications, swing up and stand up 
control of a single and double pendulum and prevention control 
of falling down of forklift and structural control are introduced.   

II. INTELLIGENT CONTROL USING CUBI C NEURAL NETWORK 

Based upon a hint from the reference [9], the author devised 
the cubic neural network in which the layered neural networks 
possess the same input and the higher layers deals with higher 
abstracted information. In other words, the lowest layer 
processes quantitative information and the other higher layers 
deals with different degrees of qualitative information. 
Therefore, such neural networks of qualitative information 
processing might correspond to rule-based information 
processing. And an evaluation network is added to each layer of 
the neural networks to evaluate its suitability to the environment 
autonomously.  

In the intelligent control using the CNN which the author 
proposed as shown in Figure 1, the lowest level performs a 
quantitative control and its control performance is the highest in 
comparison with the other levels of controls, but the applicable 
region of the controller is the smallest. On the other hand, the 
higher levels perform qualitative controls and they are inferior 
to the lowest one, their applicable regions are larger than the 
lowest one as shown in Figure 2. The network which integrates 
the level of abstraction autonomously is also acquired by the 
genetic algorithm (GA).  

The characteristics of the intelligent control using CNN is as 
follows: 

(1) At normal situation of system, a quantitative controller of 
Level 1 controls the system precisely. In an abnormal state of 
system, qualitative controllers of which abstraction level is high 
control the system not precisely but stably in certain range.  
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Figure 1 Intelligent control using cubic neural network 
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Figure 2 Features of cubic neural network control 

 
 (2) Since the intelligent control has the cubic structure of 

abstraction axis, the systematic synthesis is feasible and 
according to the necessity complementary controllers can be 
added.  

(3) Qualitative controllers can be acquired by abstracting 
quantitative controllers in a learning manner. 

(4) From the qualitative controllers control rules and 
knowledge can be acquired. 
 

Level 1 controller which treats ordinary detected values 
performs quantitative control. In this case, an ordinary neural 
network synthesis is adopted for a level 1 controller. 
Hierarchical abstraction from the quantitative controller is 
carried out on the basic scheme of information representation 
and then qualitative controllers are obtained through the 
abstraction. As an abstraction method of quantitative 
information, the method of fuzzy neural network is used as 
shown in Figure 3. In this case, the input output characteristics 
of neural network controller designed by first level are learned 
with the fuzzy neural network.  The abstraction is performed at 
the first hidden layer. In this manner, the control rules are 
abstracted maintaining the essential property of quantitative 
controller. 
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Figure 3 Abstraction performed by fuzzy neural network 

 
In order to integrate quantitative and qualitative controllers, it 

is necessary to evaluate each layer network.  In this method, the 
evaluation part is constructed by networks, as shown in Figure 4, 
of which inputs are the error between the output of a system 
neural network corresponding to the same level and the 
abstracted measured signals. 
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Figure 4 Abstracted system neural network and evaluator 

III. FAULT-TOLERANT CONTROL BY CNN INTELLIGENT 

CONTROL 

Here, the capability of coping with an abnormal situation of 
sensor is introduced. First, the stabilization problem of an 
inverted pendulum is considered for an abnormal situation of 
sensor, that is, it is supposed that something is wrong in a sensor 
of pendulum angle and results in the gain reduction of amplifier 
for sensing. According to the synthesis method of the intelligent 
control using cubic neural network, qualitative controllers are 
obtained through the abstracting of a qualitative controller. The 
qualitative controllers possess the control strategy inherent in 
the principle of stabilization of an inverted pendulum. The 
evaluators of each level are also designed and an integrator is 
obtained by applying the genetic algorithm. They are organized 
as shown in Figure 5. 
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Figure 5 Experimental setup of an inverted pendulum 
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Figure 6 Cubic neural network for an intelligent control of an inverted 

pendulum 
 

We consider an abnormal situation that abrupt reduction of 
the sensor amplification occurs. For such abnormal situation, 
the ordinary optimal control synthesized well for the pendulum 
can not stabilize the pendulum if the amplification goes down by 
30 %. On the other hand, it was demonstrated in the experiment 
that the intelligent control using cubic neural network can 
stabilize it even if the amplification goes down by 90 %, that is, 
1/10, since the integrator switches automatically the level of 
controller according to the result of evaluator.  

Second, the fault tolerance performance of the CNN 
intelligent control is shown by applying the CNN intelligent 
control method shown in Fig. 7 to a control problem of a swung 
up and inverted pendulum mounted on a cart for the case that 
arbitrary initial condition of pendulum angle. In order to 
confirm the performance of the controller, experiments using a 
real apparatus were carried out for the cases of parameter 
variation and sensor fault. As a result, it was demonstrated that 
the controller can stand up the pendulum taking into account the 
cart position limit at abnormal situations. Then, the robustness 
and the fault- tolerance of the proposed CNN controller were 
experimentally verified [10] in comparison with the sliding 
mode control technique, as shown in Figs. 8 and 9. It is seen 
form these figures that the CNN intelligent control has much 
more robustness against parameter variation. 
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Figure 7 Cubic Neural Network for swung up and inverted pendulum 
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Figure 8 Experimental results with sensor fault. 
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Figure 9 Experimental results with parameter variation. 

Furthermore, in the application of the CNN control shown in 



 

Fig. 10 to a double pendulum [11], it was demonstrated as 
shown in Fig. 11 that the CNN intelligent control is much 
superior to the optimal linear quadratic regulator (LQR) in the 
robustness against parameter variation. 
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Figure 10 Double pendulum model 
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Figure 11 Experimental results of robustness 

 
Next, we introduce the application [12] of CNN intelligent 

control to sensor fault problem in combustion control of 
fluidized bed incinerators, as shown in Figure 12, which can 
burn waste in a short time by stirring waste and fluidized sands. 
But, it is difficult to stabilize the plant without operators at 
abnormal situations and to obtain exact mathematical models. 
And they tend to change their characteristics.  So, it is necessary 
for the plant control to realize an intelligent control method 
which stabilizes plants when abnormal situations occur, which 
are not only expected, but also unexpected and when their 
characteristics change.  Figure 13 shows an example of scheme 
of CNN intelligent control for a fluidized bed incinerator. 
Figure 14 shows an example of response of real plant to sensor 
failure. In this figure it is supposed that the sensor amplification 
goes down up to 1/3 abruptly due to a sensor failure at the point 
indicated by an arrow, in other words, the temperature measured 
in incinerator goes down up to 1/3. From this figure, it is seen 
that CNN controller can stabilize the combustion and was 
verified by the experiment of a real plant. 
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Figure 12 Fluidized bed incinerator 
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Figure 13 Scheme of CNN combustion control 
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Figure 14 Example of response of real plant to sensor fault 

 
Furthermore, we introduce an application example [13] of 

CNN intelligent control to the vibration controls of structure, as 
shown in Fig. 15, subjected to sensor fault, plastic nonlinearity 
of structure and so on. We suppose some cases that the amplifier 
amplification of acceleration sensor changes abruptly including 
the inverse phase change. Figure 16 shows the designed CNN 
intelligent controller in which the sensor fault concerning the 
amplification and the phase of sensor and the nonlinearity due to 
elasto-plastic deformation are taken into consideration. 
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Figure 15 Application to fault-tolerant vibration control for structure 
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Figure 16 CNN intelligent fault-tolerant controller for vibration control 
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Figure 17 Time histories of CNN control for inverse change of sensor phase 
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Figure 18 Time histories of CNN control for elasto-plastic nonlinearity 

 
Figure 17 shows the time histories of the CNN intelligent 

control for the fault case that sensor phase changes abruptly into 
inverse in comparison with the non-control case and the LQ 
optimal control. It is seen that the stroke of active vibration 
absorber designed by the ordinary LQ optimal control diverges 
instantaneously, while the CNN intelligent controller shown in 
Fig. 16 maintains stability and performance to some extent. 
Figure 18 shows the time histories of the CNN intelligent 
control for the case that elasto-plastic deformation occurs in the 
structure. It is demonstrated that the CNN intelligent control 
maintains vibration suppression, while the LQ control can not 
control the vibration. From these figures, It follows that the 
CNN intelligent control possesses fault-tolerant property.  

IV. MULTI-OBJECTIVE CONTROL BY CNN INTELLIGENT 

CONTROL 

The basic architecture of CNN intelligent control for 
multi-objective control is shown in Fig. 19. In the architecture 

cubic neural network is constructed for each objective and they 
are integrated by an integrator. The before-mentioned problem 
of swinging up and stabilizing a pendulum is a kind of 
multi-objective controls. The intelligent controller using cubic 
neural network, as shown in Fig. 7, possesses the same 
architecture as the basic one shown in Fig. 19. For the 
multi-objective control, the integrator plays an important role in 
the intelligent control. The integrator switches several 
controllers autonomously and adequately depending on the 
system state. Additionally, the integrator integrates them and 
generates new control input to achieve a control objective. It is 
expected that the CNN intelligent control method enable us to 
accomplish several control targets by using less controllers and 
switching laws. Therefore, by illustrating an example [14, 15] of 
multi-objective CNN control for multiple targets of the 
equilibrium points of double pendulum which are shown in Fig. 
20, the design method of the integrator is introduced in this 
chapter. 
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Figure 19 Basic architecture of integrated CNN 
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Figure 20 Multiple equilibrium points of double pendulum 
 

Double pendulum has four equilibrium points as shown in Fig. 
20. Here, we consider the application of the CNN intelligent 
control method to the transfer control problem of a double 
pendulum from an arbitrary equilibrium point to the other 
equilibrium points. This is considered to be a multi-objective 
control problem.  In an example of using conventional nonlinear 
control method [16], twelve controllers and eleven switching 



 

rules were required to realize five paths. Figure 21 shows the 
integrator of CNN intelligent control designed for the transfer 
control problem. As shown in this figure, the number of 
controllers is only four, three stable controllers and one unstable 
controller. The integrator switches adequately the unstable 
controller and each stable controller. The parameter adjustment 
of the integrator is performed by a probabilistic optimization 
method utilizing the Genetic Algorithm (GA). In the 
optimization process, the energy principle is embedded into the 
neural network so as to maintain the robustness of control  
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Figure 21 Integrated Intelligent Control System with an integrator 

 

 
(a) From Down-Down to Up-Up   (b) From Up-Down to Up-Up 

Figure 22  Transfer CNN controls of double pendulum  
 

As a result of experiment, it is demonstrated that the CNN 
controller can transfer and stabilize the double pendulum from 
an arbitrary equilibrium point to the desired unstable one. An 
illustration is shown in Fig. 22. 
 

V. CONCLUSION 

In this paper, an intelligent control method using cubic neural 
network was introduced. The effectiveness and the usefulness of 
CNN intelligent control for fault tolerant control and 
multi-objective control were demonstrated through the various 
applications.  
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