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Abstract – This paper presented analyses of non-linear 
inferential data analysis problems, which intelligent 
techniques could provide promising results. With 
understanding of the characteristics of the data analysis 
problem, intelligent techniques can be used more 
confidently to address real world engineering applications. 
In this paper, intelligent data analysis techniques used in 
the field of petroleum and mineral engineering will be 
discussed. Finally, case studies based on real world 
application are also shown. 
 

I. INTRODUCTION 

In most engineering applications, the role of data analysis 
is critically important. The data analysis approach used must 
be able to provide a reasonable summary as well as an 
analysis of the data. There are two broad categories of data 
analysis; descriptive and inferential [1]. Descriptive analysis 
simply aims to find a description of the data as presented 
solution. No prediction of what might have been achieved 
outside the range is expected, nor should it be undertaken. For 
inferential analysis, however, the analysis tool is expected to 
derive the underlying function from which the data derives 
and therefore allow the prediction of data that could be 
expected in the experiment for different input values. 

Clearly, inferential analysis is the more complex problem. 
It faces the difficulty that it may only ever process a sample 
and that may be an incomplete description of the population. 
By implication, inferential analysis must extract as much 
information as possible from the sample and draw sound 
inferences about the population. In most applications, 
whatever data analysis approach is adopted, it is required to 
offer reasonable interpolation performance and provide some 
indication when extrapolation is appropriate. Given the 
diversity of potential problems, it is inappropriate to consider 
a generic data analysis approach. However, with slight 
modification, any new data analysis technique should 
obviously be applicable to a particular class of applications. 

This paper presents new quantitative inferential analysis 
technique using computational intelligence learning 
techniques. Intelligent learning systems attempt to construct 
useful prediction functions purely by processing data taken 
from past successfully resolved problems. They assume, as 
they must, that all useful information is available in the 

supplied data. However, being a learning system, their 
analysis can shift in the light of new information.  

The intelligent data analysis technique presented can solve 
multivariate non-parametric regression problems. Hence it can 
be used to deal with non-linear or random data (sometimes 
with bias).  It is robust in the presence of noise. Intelligent 
data analysis normally makes use of computational 
intelligence algorithms to extract knowledge from the 
supplied sample when dealing with non-linear, random, noisy 
and heterogeneous data. In statistics, the empirical model, 
multivariate non-parametric regression analysis and 
discriminant analysis are usually employed. Although these 
approaches are widely used, they do have their limitations. 
They can normally deal with only small amount of training 
data and as some prior assumption need to be made, it is very 
difficult to analyse complex problems. Statistical approaches 
are based on structured models and therefore they are very 
computationally complex. Further, it is difficult for non-
statisticians to understand and use them. Statistical approaches 
tend to be inflexible, as it is very difficult to find an analysis 
model that applies universally to any class of problem. Most 
of the time, the operating conditions can change from one 
operation to another. It is also tedious to build another model 
every time the operating condition changes. All these 
problems present an argument for the search for a better 
intelligent data analysis approach to handle the same degree of 
analysis. 

Section 2 of this paper will examine the characteristics of 
computational intelligence techniques used for intelligent data 
analysis. Section 3 will present real world applications in 
petroleum and mineral engineering that can be used for the 
discussions. Section 4 will present a summary from different 
intelligent data analysis techniques that have been proposed in 
the real world applications. In Section 5, an intelligent data 
analysis model is built for well log data analysis using real 
world data. Lastly, conclusions are presented. 
 

II.CHARACTERISTICS OF INTELLIGENT DATA 
ANALYSIS 

 
In performing inferential analysis, the intelligent 

techniques yield similar and comparable characteristics to 
non-parametric estimators [2]. The purpose is to build a model 
to find the relationship between the input vector (independent 



vector) x and the target vector (dependent vector) y without 
any assumed prior parameters. Given that the input vectors X 
and the target vectors Y, the expression that uses to describe 
the relationship can be:  

  )(XgY =    (1) 

When obtaining the training set (observations), there will 
be some environmental factors that will affect the 
measurements. Therefore it is not possible to have an exact 
function of g(X) that describes the relationship between X and 
Y. However, a probabilistic relationship govern by joint 
probability law ν can be used to describe the relative 
frequency of occurrence of vector pair (x, y) for n training set.  
The joint probability law ν can further separate into 
environmental probability law µ and conditional probability 
law γ. For notation expression, the probability law can be 
expressed as: 

  )()()( γµν PPP =   (2) 

For environmental probability law µ, it describes the 
occurrence of x.  As for conditional probability law γ, it 
describes the occurrence of y given x. A vector pair (x, y) is 
considered as noise if x does not follow the environmental 
probability law µ, or the y given x does not follow the 
conditional probability law γ.  

From (1), the relationship g(X) based on the available 
training set can be assume to has direct relation with the 
conditional probability law γ. Therefore, it is the role of γ that 
the intelligent technique is trying to find. It can also be 
denoted as E(Y|X) as the expectation of Y given X. Therefore: 

  )|()( XYEXg =    (3) 

In most intelligent techniques, g(X) is not always obtained 
straight away from the training set (X, Y). It has to undergo 
certain training or learning (estimation) process in realizing 
the best g(X). For most intelligent techniques, the best g(X) 
model is directly related to the internal parameters P.  it can 
then be expressed as: 

  *),()( PXfXg ≈   (4) 

where P* is the set of parameters giving the best estimation 

In most neural network techniques, the P* can be replaced 
by the interconnected weight vector. This is the set of 
parameters that the learning process is trying to tune.  In most 
fuzzy rule extraction techniques, the P* can be replaced by the 
set of membership functions. The tuning of the membership 
functions is carried out in searching for the best estimation 
results. This is especially important in any case of data 
analysis problem as the fuzzy inference system makes use of 
fuzzy rules and membership functions to define the fuzzy 
patches in the input-output state space. As for most neural-
fuzzy, neural-fuzzy-genetic, and genetic-fuzzy approaches, 
the main purpose is to search for the set of membership 
functions and defuzzification parameters to produce the best 
estimation results. In this case, the P* has to be replaced by 
the joint parameters of the membership functions and 
defuzzification parameters. Of course, the basic formula 

shown in (4) can also be extended to other computational 
intelligence techniques that are not mentioned here. 

From the above condition, the equation (1) can therefore 
be: 

  θ+= *),( PXfY   (5) 

where θ denotes the error function. 

And the output vectors (predicted value) O will be: 

  ),( PXfO =    (6) 

To find the best parameters P* so as to minimise the error 
function θ, most intelligent techniques perform the mean 
square errors (MSEs) minimisation process, 
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performance of the intelligent technique is very much 
dependent on the parameters P, the expected performance 
functions λ(p) could be expressed as: 
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As MSE combines the bias and variance into one measure 
[2]. The above expression can then be separated into bias and 
variance term using the relationship of MSE = bias2 + 
variance: 

 BIAS OXYE −= )|(  ),()|( PXfXYE −=
      (7) 

 VARIANCE ))]|(([ 2XYEYE −=   (8) 
 

From equation (7) and (8), bias and variance is directly 
affecting the value of MSE. It is then important to keep these 
two components small as well. However, it is difficult to keep 
them small at the same time. Normally, the use of cross 
validation may be necessary to balance these. 
 

III.THE PROBLEM OF WELL LOG AND 
HYDROCYCLONE DATA ANALYSIS 

In engineering, the important criterion in developing a data 
analysis approach is to give reasonable prediction results for 
practical problems. To facilitate discussion in this paper, two 
problems from the resource industry were closely examined. 
They are the problems of well log data analysis in petroleum 
exploration and hydrocyclone control in mineral processing. 
Well log data analysis in the petroleum industry [3] and 
hydrocyclone data analysis in the mineral industry [4] fall into 
the same class of non-linear data analysis problems. There are 
a large number of well-developed techniques for solving 
linear problems and some classes of nonlinear data analysis 
techniques (Mendenhall et al., 1992). Nonlinear data analysis, 



especially where the nature of the nonlinearity is unknown, is 
far more difficult to deal with.  

The problem in this case is an identification problem. 
There are known inputs to some ‘black box’ plus measured 
outputs. The problem is to determine a function that describes 
the link between the two. In most instances, the techniques 
that approximate well to non-linear functions are those that 
can be generalised from the given set of input and output 
pairs. However, that set may not be perfect due to human or 
measurement error. That is to say, the data set is noisy. The 
main objective for data analysis is to make use of the given 
noisy and imprecise nonlinear data to enhance the desired 
output responses. This analysis also tries to reduce irrelevant 
and unwanted responses. In the past, parametric or semi 
parametric approaches with some prior assumptions have been 
used to handle this form of data analysis. Non-parametric 
techniques have becoming more popular in recent decade due 
to the improvement in computing power. In this paper, well 
log data analyses in petroleum industry and hydrocyclone data 
analysis in mineral industry are used as case analysis. 
Although the collection of the data in these two fields is 
different, they both fall into the same category of inferential 
nonlinear data analysis problems.  

Well log data analysis (see Figure 1) plays an important 
role in petroleum exploration. It is used to identify the 
potential for oil production at a given source and so forms the 
basis for estimating the financial returns and economic 
benefits. More specifically, it is the means of predicting the 
petrophysical properties of each well. That has a significant 
impact on the total budget spent on coring. Figure 2 shows a 
general example of the logging operations.  

A well or drill hole is made in order to gain information on 
some region. Samples extracted from the underground cores 
are examined intensively to obtain the desired outputs; the 
petrophysical properties of the well. Hopefully, this well log 
data will then allow a good prediction of the petrophysical 
properties of the area as a whole. Well log data analysis is 
largely concerned with forming such predictions. 

For hydrocyclones (see Figure 3), the input and output 
parameters are measured in an experimental laboratory and 
used to form the final design of the system. The objective here 
is to predict the output parameters and so the function of the 
system. Hydrocyclones find extensive applications in mineral 
processing for the classification and separation of solids 
suspended in fluids. This task is important, as any mistake in 
classification will result in huge losses. Due to the complexity 
of the separation mechanism in the hydrocyclone, the 
interpretation of the physical behaviour and forces acting on 
the particles is not clear. The task of hydrocyclone data 
analysis is to describe this performance. 

Although these problems seem to be different, they have 
many similarities. The data involved in both cases are non-
linear, random, noisy, and sometime may be heterogeneous. 
In both cases, too, the desirable form of a data analysis tool is 
a system that is automatic, self-learning, and self-explaining 
that can provide accurate and reliable prediction results. In 
neither case is the objective to replace the human analyst 
involved. Rather, it is to provide assistance to them to make 

their broader task easier. Those analysts need to be able to 
examine and understand the designed data analysis model. 
Further, as will be indicated, it is extremely useful if they can 
also manipulate and incorporate prior knowledge or 
experience into the model.  

 

 
Figure 1: Example Plot of Well Logs 

 

 
Figure 2: Example of the Logging Operations 

 

 
Figure 3: The Hydrocyclone 



IV.INTELLIGENT WELL LOG AND HYDROCYCLONE 
DATA ANALYSIS 

A. Intelligent Well Log Data Analysis 
One of the key issues in reservoir evaluation using well 

log data is the prediction of petrophysical properties such as 
porosity and permeability. Of all petrophysical properties, 
permeability is one of the more important properties in 
reservoir engineering. The first computational intelligence 
technique that has emerged as an option for permeability 
determination is the Artificial Neural Network (ANN). 
Research has shown that an ANN can provide an alternative 
approach to permeability determination with improvement 
over the traditional methods [5, 6]. Most of the ANN based 
permeability determination models have used the 
Backpropagation Neural Networks (BPNNs). A BPNN is 
suited to this application, as it resembles the characteristics of 
regression analysis in statistical approaches.  

Beside applications that use BPNN directly, there are 
some applications where other intelligent techniques are used 
to enhance the performance of the BPNN. Basically they are 
aiming to achieve the objectives of the characteristics 
discussed in Section II. For example, Arpat [7] proposed using 
the neighbouring log data point relations to perform 
permeability determination with only limited core. Fung et. al 
[8] make use of Self-organising Map (SOM) and Learning 
Vector Quantisation (LVQ) to identify the electrofacies and 
then build a BPNN for each electrofacies for permeability 
determination. Wong [9] makes use of adjacent core data 
using an improved windowing technique such that the scales 
of the well log and core are matched. Fung and Wong [10] 
make use of the SOM in splitting the data for validation and 
generate prediction confidence indications. In their ANN 
application, an input contribution measure is also used to 
determine the significant well logs to be used in the analysis.  

The mathematics using fuzzy theory in establishing a 
determination model for reservoir evaluation has become a 
new technique in the last few years [11]. As a fuzzy 
determination model relies on a set of fuzzy rules, it will be 
very difficult for a human analyst to hand code all the fuzzy 
rules required in the determination process. Fuzzy rule 
extraction techniques are normally used to extract fuzzy rules 
directly from the data. The set of extracted fuzzy rules not 
only has to enhance the prediction results by better handling 
uncertainties and fuzziness, but it should also be capable of 
expressing the underlying characteristics of the determination 
model in human understandable rules. 

As the number of well logs increases in the determination 
model, the complexity of the fuzzy model increases 
exponentially. There are two problems when dealing with 
complex systems whose number of input variables is large.  
Firstly, fuzzy rule bases suffer from rule explosion.  The 
number of possible rules necessary is O(Tk) where k is the 
number of input variables and T is the number of fuzzy terms 
per input variable.  The second problem is the loss of 
interpretability of fuzzy rules. Hierarchical fuzzy systems may 
be used as a better alternative to the rule explosion problem. 

Besides using fuzzy logic in establishing the model itself, 
it is also used in some cases as a preprocessing or 

postprocessing tool [12]. Preprocessing and postprocessing is 
necessary to ensure the quality of the available data used to 
establish the determination model, and the quality of the 
predicted values from the determination model. As analysts 
normally use some heuristic rules to determine the quality, it 
is suggested that fuzzy rules can used to perform this task 
automatically and easily. 

With the emergence of computational intelligence, 
techniques that combine ANN, fuzzy, or genetic algorithms 
together have been applied successfully in permeability 
determination [12]. These techniques used in building the 
permeability determination model normally address the 
disadvantages encountered in ANN and fuzzy system. 

B. Intelligent Hydrocyclone Data Analysis 
As the problem in hydrocyclone data analysis falls into the 

same category as those in well log data analysis, all methods 
employed in intelligent well log data analysis should be able 
to be used for the same purpose. This section gives some 
summary of the intelligent techniques which is theoretically 
similar to those designed for well log data analysis. 

ANN [13, 14] and Neural-Fuzzy [15] techniques have 
been applied. Although ANN techniques have proven to be 
useful for the prediction of the hydrocyclone control 
parameter, the main disadvantage is their inability to convey 
the acquired knowledge to the user. As a trained network is 
represented by a collection of weights, the user will have 
difficulty in understanding and modifying the model. In many 
cases, the system may not gain the confidence of the user. The 
Neural-Fuzzy approach can show to be better than the ANN 
approach as it can generate fuzzy rules for the user to 
manipulate. However, the fuzzy rules generated to cover the 
whole sample space are too tedious for the user to examine. In 
[16], the analysis of possible use of fuzzy system as an 
intelligent tool has been explored. It uses fuzzy rule 
interpolation technique to solve the problem of a sparse fuzzy 
rule base, when no fuzzy rule can be found for the input 
instances. 

V.BUILDING AN INTELLIGENT DATA ANALYSIS 
MODEL 

To illustrate the process of building an intelligent data 
analysis model, a petroleum reservoir in North West Shelf, 
offshore of Western Australia, was used. Before building the 
data analysis model, it is essential to perform some 
preprocessing to the data set as described in [12], and to verify 
that it agrees to the probability law and the characteristics 
discussed in Section 2. Some of the preprocessing necessary 
are to identify training data that violent the petroleum theory 
or known as outliers, so that they can be removed; identified 
non essential input variables and removed them; if the amount 
of the available data is huge, modular approach may required; 
and examined the distribution of the training data set. 

After which, we have arrived to the data set that the well 
logs used for this reservoir are GR (Gamma Ray), RDEV 
(Deep Resistivity), RMEV (Shallow Resistivity), RXO 
(Flushed Zone Resistivity), RHOB (Bulk Density), NPHI 
(Neutron Porosity), PEF (Photoelectric Factor) and DT (Sonic 
Travel Time). They are recorded by well and by depth. The 



raw data are normalised to be between 0 and 1. The depth 
information is not used for the reservoir evaluation, as the 
reservoir is extremely heterogeneous. The objective of this 
experiment is to develop a reservoir evaluation model to 
predict porosity (PHI) from the well logs.  Data from 4 wells 
are used, namely wells A, B, C, and D, whose physical 
location forms a rough straight line. There are altogether 632 
rows of data.  Wells A, B and D are used for training while C 
is used for testing. There are a total of 439 training samples 
and 193 testing data. 

For discussion purposes, four intelligent well log data 
analysis models are constructed. They are the Conventional 
BPNN (CoBPNN), the Integrated BPNN (IBPNN), Sparse 
Fuzzy Rule system (SFRS), and Sparse Fuzzy Rule system 
with fuzzy rule interpolation (SFRS-FRI). 

For CoBPNN, the initial BPNN model [5] introduced in 
this field was constructed. Basically, it is a direct application 
of BPNN to establish the model. As for IBPNN, the model 
described in [10] was established. The main difference to the 
CoBPNN is that it uses some input contribution measure and 
SOM data splitting validation to improve the generalisation 
ability of the BPNN. 

As for the SFRS, it is the Improved Sugeno and 
Yasukawa’s qualitative modelling (SY) method described in 
[17]. The advantage of using this method in building a sparse 
fuzzy rule base system is it automatically constructs fuzzy 
rules from sample input-output data by putting focus on the 
output space instead of the input space. The usual fuzzy rules 
extraction methods generate dense fuzzy rule bases, so that 
the rule premises form a fuzzy partition of the input space. In 
a dense fuzzy rule base, the number of rules is very high, as it 
depends on the number of inputs and the number of partitions 
per variable in an exponential way. In order to avoid this 
exponential number of rules, this method puts emphasis on the 
rule consequents, i.e., the output space, and first finds a 
partition in output space. The determination of premises in the 
input space is done by splitting appropriately the inverse 
images of the output clusters. 

Normally the information embedded in the available 
training data is not enough to cover the whole population. 
With the use of SFRS, the fuzzy rules generated from these 
data form a sparse fuzzy rule base, i.e. fuzzy rules with gaps. 
If more than half the input instances in the prediction cannot 
find any rule to fire, this determination model is considered 
useless. The main purpose of SFRS-FRI is to introduce a 
fuzzy rule interpretation technique [16] that could solve the 
problem in the SFRS. 

By using the SFRS, a total of 9 fuzzy rules are generated. 
Out of the 193 testing data, there are a total of 14 data points 
that cannot find any fuzzy rules to infer. The fuzzy rule 
interpolation [16] is used to interpolate fuzzy rules using 
neighbouring fuzzy rules to infer the predicted porosity to 
form the SFRS-FRI model. Most conventional fuzzy system 
without fuzzy rule interpolation technique will either set the 
predicted porosity to zero or taking the average of the range of 
the porosity as output when no rules can be found. 

Table 1 shows the results from the four models 
constructed. The accuracies used in the comparison table are 
performance index (PI) as  
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where m is the number of data, yi
  is the ith actual output 

and iŷ is the ith model output.  The lower the performance 
index, the more accurate the intelligent data analysis 
model. 
 
Table 1: Comparison Results for the 4 data analysis model 

Evaluation Model PI (Error) 
CoBPNN 0.0265 
IBPNN 0.0257 
SFRS 0.024 

SFRS-FRI 0.0235 
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Figure 4: Results of the CoBPNN Model and the Core 

Porosity 
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Figure 5: Results of the IBPNN Model and the Core Porosity 

 
From the table, CoBPNN gives the worst PI measure, but 

is still comparable to other intelligent data analysis models. 
However when observing Figures 4 and 5, IBPNN seems to 
be worse off than the CoBPNN. This is mainly because the 
wells are highly heterogeneous, and it is very noisy since we 
used all the data regardless of their core quality. The IBPNN 
has used various ways to ensure that it generalized from the 
training core and remove any “noise” or outlier presented in 
the training core. Therefore, it performs smoothing out based 



on distribution factor, to overcome the bias and variance 
dilemma. 
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Figure 6: Results of the SFRS Model and the Core Porosity 
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Figure 7: Results of the SFRS-FRI Model and the Core 

Porosity 

As for the SFRS and SFRS-FRI, the PI measures are 
comparable to those using BPNN. This shows that as long as 
the characteristics of Section 2 have been taken care of, 
regardless which intelligent data analysis techniques are used, 
they will give satisfactory performance. Of course, depending 
on the needs of the analysts for establishing the data analysis 
model, the point worth noting is SFRS and SFRS-FRI present 
minimum fuzzy rules (9 fuzzy rules) to arrive to the 
acceptable accuracy. With this small number of fuzzy rules, 
the human analyst can understand the model easier and if 
necessary add-in experience or knowledge into the model. 
Modification to the behaviour of the reservoir evaluation 
model can also be done easily. This will allow human expert 
to have better control over the evaluation model. The 
graphical plot of the results generated by the SFRS and SFRS-
FRI are presented in Figures 6 and 7. 

VI.CONCLUSIONS 

This paper presented analyses of non-linear inferential 
data analysis problems, and show that intelligent techniques 
can provide promising results. With the understanding of the 
characteristics of the data analysis problem, an intelligent data 
analysis model could be constructed more confidently. This 
paper has also highlighted by using real world applications in 
petroleum and mineral engineering that, as long as the data 
analysis problems fall into the same non-linear inferential data 
analysis category, the techniques developed can be used for 

different engineering applications. The case studies in this 
paper have also shown that the analysis results can be quite 
comparable regardless of which intelligent technique is used.  
The key considerations are to assess the needs of the analysis 
and to address the characteristics in the same category of the 
data analysis. 
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