A Neural-Fuzzy Clustering Approach to Rule
Extraction: the role of self-spawning competition

(Invited Paper)

Zhi-Qiang Liu
Centre for Media Technology, School of Creative Media
City University of Hong Kong, Hong Kong, SAR, CHINA
E-mail: smzliu@cityu.edu.hk

Abstract— Cluster analysis has been a popular and effective or with parameterized membership functions stored in the
tool in dada analysis. Learning rules from data will enhance neurons [7], [1], or with fuzzy sets as the link weights [16].
traditional clustering methods. In this paper, we present a neural- With learning capability, we are able to determine the fuzzy

fuzzy approach to rule extraction from using the self-spawning ts or fuzzv rul Leaming in a neuro-fuzz tem nor
competition, which is based on a generic definition of incremental SES O 1Uzzy Tules. Learning In a neuro-fuzzy system nor-

perceptron and a new competitive learning algorithm we recently Mally involves two phases: structural learning and parametric
developed. It extracts a correct number of rule patches and learning. The structure learning tunes a number of rules;
their positions and shapes in the input space. Initially the rule thus it is also often referred to asile learning whereas
base consists of only a single fuzzy rule; during the iterative o parametric learning tunes the positions of fuzzy sets.
learning process the rule base expands according to asuperv'sedTherefore once the neural network architecture has been
spawning-validity measure. To demonstrate the effectiveness and S : g
applicability of our algorithm, we present some experimental determined, the number of rules are assumed fixed during the
results. learning process. Such a process is often not effective for many
real-world problems (i.e., small and interpretable) rule bases.
Researchers have proposed pruning techniques to reduce the
Clustering has been major paradigm in data analysis. Tradismber of rules and variables in the neuro-fuzzy system [16],
tional approaches often overfit data as more data samples[da8]. Such approaches usually start fromaage number of
available due to the lack of prior knowledge in performingules; during the learning process some of the rulepareed
clustering. Fuzzy inference systems are able to model tfrale deduction) resulting in a set of rules that are most relevant
continuous input/output relationships by means of fuzzy Ife the problem at hand. However, it is difficult in most cases to
THEN rules without employing precise quantitative analysishoose a reasonablgrge number of rules, because we simply
This fuzzy modeling has been successfully used in madg not have enough prior knowledge about the data. This can
applications, e.g., to build function approximators, fuzzy coread to poor system performance in real-world applications. In
trollers, fuzzy classifiers, and decision making. the last few years incremental learning (rule induction) have
The basic components in a fuzzy inference system are fuzzgen used [15]. Unfortunately, A serious problem with such
rules. It is desirable that the rule base covers all the statesledrning algorithms is that they do not have a criterion to
the system that are important to the intended application [18rminate the growth process of the neural network structure:
In general, fuzzy rules can be obtained by either human expette termination is determinde subjectively and based on a
or a data-driven extraction scheme from measured input-outpué-defined maximum network size. Furthermore, the shape
data pairs. The latter case is currently a growing researatiaption of a membership function is a simple calculation
topic [3], since in most cases people or decision makers ietween two closest rule patches in the input space, e.g., half
a data-mining project or industry applications are usually nof their distance, which is not suitable for rule patches with
trained statisticians, mathematicians, or Al experts[4]. Moreifferent sizes, as in this case the memberships for smaller
over, in many commercial areas there are a huge numberrole patches may overlap significantly with parts of larger rule
data collections. Therefore, it is important to learn knowledgeatches, leading to misclassification in data analysis.
and derive fuzzy rules from the data itself [2]. In this paper, we introduce a new incremental, hybrid neuro-
Over the last few years, research on combining neufalzzy system using the self-spawning competitive learning
networks and fuzzy systems, neuro-fuzzy systems, has gaipadadigm Self-Spawning Neuro-Fuzzy SystS$8NFS). Itis a
considerable importance and attention. The learning capalsitatter-partitioning fuzzy inference system that allows the IF-
ities of neural networks give fuzzy systems the ability tparts of the fuzzy rules to be positioned at arbitrary locations
tune the paramaters and shapes of fuzzy membership fuimcthe input space. A major problem with scatter partitions is to
tions. Among the proposed methods, the hybrid neuro-fuzfipd a suitable number of rules, suitable positions and suitable
approach has recently become most popular, which can wiglth of the rule patches in the input space. Our neuro-fuzzy
viewed as a special-layer feedforward neural network [16]model is able to incrementally and adaptively build up a
with sampled fuzzy memberships as the input/output [8], [9hetwork structure during the training process. It requires only

I. INTRODUCTION

a single rule prototype randomly initialized in the input space; Usually only a moderate number of MFs are defined for
during the training process the rule base expands adaptivedch input variable. It is always desirable that the membership
according to a spawning validity measure to discover more rulelues for each input variable add to unity everywhere. This
patches. The shape width of the rule patch is indicated by aray be achieved by dividing the membership valyg$z ;)
on-line property vector. The rule induction terminates whenky the sum of all memberships with respectzig leading to
stop criterion is satisfied. The output weights are trained in aormalizedMFs,

on-line fashion, which is more appropriate (computationally

less complex) than that in batched learning. To extract rules Gij(xj) = gij(xj)/Zglj (xj). 4)
from data, we assume that a limited number of input-output =1
pairs are provided on-line for single-pass processing. We focus our attention to rules that combine their sub-

expressions by fuzzyAND In the case of Guassian MFs, the
Il ATTER-PARTITIONING FUZZY SYSTEM : . .
SC © GFU SYS S fuzzy ANDcan be realized by the arithmetic product. et

A. Propositional Fuzzy Logic denote the membership value for the IF-partRyfin (2),
The basic component of a fuzzy inference system is the

fuzzy rule which is expressed using linguistic labels, for G; = Hgy;j(xj). (5)

instance, j

In this case thdF -part of each fuzzy rule can be described

IF (21 is low) AND (z2 is medium
(1) (2) by ann-dimensional Guassian membership function,

THEN (y; is 0.2) AND (y, is 0.4) Q))
wherez, zo € R is the input variables (antecedent) and Gi(X) = exp(—f(X ~ B)TATY(X - B)), (6)
y2 € R is the output (consequent) of this rule. The linguis-
tic labels (e.g., low) are usually modeled as parameteriz T
membership functions (MFs) within a particular area of the’ [pi1, pi2, ..., pin]” is the n-dimensional Gaus-
input space ANDis the T-norm fuzzy operator and in someian center that has the corresponding centers of the
casesOR (T-conorm) is used in fuzzy rules. In the examplé)ne -dimensional factor Gaussians as componefts. =
shown above, the fuzzy sets involved only in the premise p 9(1/o},1/0%, ..., 1/07,) is the inverse of the covariance
(IF -part). Fuzzy systems of this kind are referred tzemth- matrix A correspondmg to the product af one-dimensional

order fuzzy system&enerally, in amth-order fuzzy system, Guassian memberships. Similarly, we can normalize the mul-
the THENpart of each rule consists of a polynomial of degretéva”ate Gaussian membership functions as follows:
n in the input variables. N L

In this paper we will concentrate on zeroth-order fuzzy Gi(X) = Gi(X) /ZGl)
systems. Different shapes of the MFs have been proposed such
as the Gaussian, triangular, or trapezoidal. In the followirgpr the input patter@(, the output of theth component of a
discussions we assume that the MFs have the form of thgzy system with normaliztion is given by
Gaussian function and that the fuzzy system consists:of m m
fuzzy rules each witm input variables to classify data into (i) A G X (X
fuzzy or crisp classes. Thus, the fuzzy system can be descrlbe(c)j Z £ G (X 7:21 G (X)/ 7:21 il X). @
as{R;}icq1,...m}. For theith rule R;, ' ‘

4gwereX is the multivariate input vectofry,zs, ..., z,]7,

B. Scatter—Part|t|on|ng Fuzzy Systems
R;: IF (z1is gir(z1)) AND(22 is gi2(22)) Based on (6), we may simplify the fuzzy rule in (2) as

AND - AND (e 1S gi"(x_’L)) R, : if X is Gy(X) thenY is T}, 9)

THEN (yl IS til) AND (yg IS tig) . .)))

AND --- AND (yj is ti) (2 WhereY = {y1,ys,...,y} is the multivariate output variable
andT; is the consequent output vector fah rule.

whereg;;(x;) is membership function denoting the lingusitic Since each Gaussian membership functioh, i ¢

label associated with thgth input variable in theith fuzzy {1,...,m} covers a particular area in the input space, each

rule, rule is considerably activated only in this area. One can think
(z; — pij)? of the input space as being covered by some small patches,

9ij(x;) = exp _T?j ’ () each of them corresponding to the IF-part of one fuzzy rule.

We denote these small patchesrake patchesin this paper.

where the variabley;; and o;; are the center and varianceBuilding a meaningful fuzzy inference system to a large extent
of the Gaussian membership functigyy, respectively.ﬁ» = is to establish a series of fuzzy rules that cover all the rule
[ti1,...,t]T is the output vector for théth fuzzy rule,t;; € patches in the input space. At the same time, we must keep
{0, 1} for partitioning crisp clusters or function approximatiorthe number of rules as low as possible in order to maintain
andt;; € [0, 1] for partitioning fuzzy clusters. the generalizing ability of the model and to ensure a compact

and transparent model [18]. Therefore, our task is reducAd SSNFS Architecture

to seeking an optimal number of rule patches, locating their og giscussed in Section I, each fuzzy rule is associated with
positions, and computing their shape widths in the inpyhe parameterized Gaussian membership with multivariate
space. This is known ascatter-partitioning distinguished inputs and one output vector, as seen in (9). The Gaussian
from grid-partitioning approaches in which the rule patcheg,empership functions can be identified by detecting rule
are assumed on a regular predefined grid distribution. INy3ches in the input space, whereas the output vectors can
scatter-partitioning fuzzy system the fuzzy memberships a5 pdated on-line in the output space. In this perspective, we
not confined to the comners of a rectangular grid. Rather, thgy, 556 SSNFS based on a generic incremental perceptron and
can activate anywhere with any width in the input space gsey learning algorithmself-spawning competitive learning
long as theP” and A in (6) can be detected. If the convarianceg, incrementally search the rule patches.

matrices A; of the Gaussians are diagonal, then they can gjmijar to that in the ANFIS, the membership functions are
SF'" be.thought of pemg gengrated as a productzobne- stored in the hidden nodes. However, the difference is that
dimensional Gaussian MFs. Fig.1 shows an example of grifly new model uses a multivariate membership function for
partitioning and scatter-partitioning fuzzy systems. Once the -1, yle, thus the node with this membership function is fully
IF-parts are solved, the output vectBrfor each rule may be ¢,nnected to all the input variables. In addition, in SSNFS, we
achieved by minimizing the summed squared error, model the parameters for each membership function as the link

1 M™ oL 42 weights between the input nodes and membership nodes and
E= 5 ZZ [Yi -G (X)T;| (10) the consequent vector of each rule as the weights between
i=1j=1 the input nodes and rule nodes. The benefit is that the weight

where (X;,Y;) is the training pattern, and/ is the total Vectorscan be adaptively updated given input training patterns.
number of patterns presented for training. This approach isTo build a neuro-fuzzy system for extracting fuzzy linguistic
usually computationally complex. In fact, the output vectdiiles, we present a generic 5-layer incremental perceptron that
can be learned on-line concurrently in the output space Wl provide a basis for SSNFS architecture and self-spawning
reduce the complexity, such as training by the delta-rule [13¢arning algorithm.

Now, the problem is how to correctly classify the rule clus- Definition 1: A generic S5-layer incremental
ters in the input space. The conventional learning algorithragrceptron is a 5-layer feedforward neural network
using neural networks or fuzzy clustering are very sensiti&,W,P,T,NET,A,O,ex,Inc) with the following
to the number of prototypes initialized. We, however, do népecifications:
usually have sufficient prior knowledge about the data set.1) U = Uie; Ui is a non-empty set of neurons adid=
Therefore it is desirable to develop an algorithm that is able {1,..., 5} is the index set ot/. For alli, j € I, U; # 0
to adaptively detect the number of rule patches and their 5417 0 U; =0 fori+j. Uy =u Yy yov)
locations. , , , _ is the input layerlJ,, Us and U, are the hidden layers,

Ip thl$ paper we consider an incremental Iearplng paradigm 4 U, is the output layer.
which first constructs a fuzzy system by seeking one fuzzyz) Let M = {2my + ms,ma,ms, ma,ms} define the

rule, and conducting rule induction in an iterative learning number of neurons for layer 1 to layer 5, respectively:
process according to a self-spawning validity measure. The) (X). '

- ithei ¥
rule growth is terminated when all the rule patches have been "' 's the number of neurons for eithéh,” * or U,
detected based on a stop criterion. my = mg = my IS the number of neurons for each

hidden layer;ns is the number of neurons fclfl(y) or

[1l. THE SSNFS NEURO-FUzzY MODELING Us.
Many neuro-fuzzy systems use parameterized membershi3) W defines the link connectedness in the perceptron as
functions stored in the “neurons” of a multilayered feed- follows: B B
forward architecture, e.g., GARIC [1] and ANFIS [7]. The @@ for w; € Ul(X)UUl(X) and v; € Uy,
links in these kind of networks indicate only the data flow W (ui,v;) = 1;

directions between nodes and no weights are associated with
the links. The membership functions are usually parameterized
Gaussians, trapezoidal, or triangular functions, or they are
constructed by superposing sigmoids. NEFCLASS [16] builds

(b) foruw; € UI(Y) andv; € Ug, W(u;,v;) =1,
(C) for u; € Uy andvj € Us, W(Ui7’l}j> =1,
(d) for u; € Us andv; € Uy andi = j,

. . . W(U“ ’Uj) =1,
a dn‘feren_t structure which uses sampled memberships (fuzzy © foru € Uy andv, € Us, Wlusvy) = 1;
sets) as link weights. otherwise

It must be clear that the above mentioned neuro-fuzzy O Wus,ov;) =0
models (and in fact almost all neuro-fuzzy models in the . R
literature) have little to do with fuzzy logic in the narrow 4) P = {Pi,...,Pn,} defines the weight vectors (pro-
sense [11] but to do with the parameterized membership totypes) on the connectionBV(Ul(X),Ug). The ith
functions in the fuzzy IF-THEN rules that are associated with prototype can be given bﬁ = [pits- -+, Dim,)T Where
linguistic labels. pi; is the weight on the connectiol (u;,v;) with

QO

ONee
()

Fig. 1.

(e

Classfication example with a grid-partitioning fuzzy system and a scatter-partitioning fuzzy system. (a) Two dimensional dataset in the unit squ:

consisting of two classes (white and black). (b) The grid-partitioning system initialize83yrid to arrange 9 fuzzy rules. (c) The non-normalized Gaussian
view in the input space for this grid-partitioning system. (d) The classification result by the grid-partitioning system. (e) The scatter-partitioning syste!
captured 6 rule patches in the input space. (f) The classification result by the scatter-partitioning system.

u € Ul(X) andv € U. T = {T},...

,Tin,} defines

the weight vectors on the connectiofi§ (U, U,). (b)

) timg;]

T, = [ta,. ..
connectionW (u;, v;) with u € UI(Y

T where t;; is the weight on the
) andv € Uy.

5) NET defines the propagation function for each unit

U to calculate the net inputet,,.
(@ forwue Us:

NET,, : R — R, net,, = exy,;

(b) foru e Us:
NET,, : R™ +— R™,
nety, =
[0111pi1; Oy, Pi2y - -
(c) forwe Us:
NETui TR™ - R,
nety, = E;”:%o%’ v € Us;
(d)y forwue Uy:
NET,, : R X R™ — R™3,
netui = [Ovi t“, Ovi tig, ..
Us;
(e) forwueUs:
NET,, : R™ — R,

ma
net,, = ijl 0y;, v € Us.

T
'7O’Uitim5]) v €

Ay, @ ay, = Ay, (nety,) = nety,;

for u € Us:

Ay i R™ =R, a, = Ay(nety).

where A, is the parameterized activation func-
tion.

7) O defines for each, € U an output functionO,, to
calculate the outpud,,.

(@)
(b)

oU)

9oy

T .
< O'Umlpiml] , U S 1 9

for u € U1UU2UU3UU4:

Oy,; = Oui (am) = Q5

for u € Us:

Oy, : R — {0,1} (for fuzzy partitioning or
function approximation)p, = O, (a,) = ay;
Oy, : R — [0,1] (for crisp partitioning),o,, =
Oy(a,) = DF(a,), where DF is a suitable
defuzzification function.

8) ex defines for each input unit € U, its external input
ex(u) = ex,. For all other unitsez is not defined.
9) Inc defines the policy for the perceptron increment.

A spawning request will be carried out by taking the

following actions:

(@)

6) A defines the activation function for each € U to

calculate the activation,,.
@ foruetU; UUsUUsUUs:

One neuron is spawned for each hidden layer,
while the input and output layers remain un-
changed. Let;, v andw indicate the new added
neuron for layer 2, 3, and 4, respectively.

Us :=UzxJ{u}, mao:=ma+1;

Us .= Us|J{v}, mz:=m3z+1;

Uy = U JH{w}, mai=mq+1; case, the true rule patches. Fig.2(b) shows the same example
mo = m3 = my holds anytime. as that in (a) but applying the PTOC' learning paradigm. In

(b) for all Uy, Us, Us, Uy, and Us, the structure this case, one rule patch (cluster) is correctly detected, and the
are reconstructed following the definition ofrest rule patches can be detected by spawning new prototypes
(UW,PT,NET,AO,ex). in subsequent learning rounds. In this way we will be able to

Given the definition of the generic perceptron, we cagxtract a correct set of rules from the data set.
describe the SSNFS as follows. In the neural-fuzzy network, the spawning of new pro-
Definition 2: A SSNFS system is a generic 5-layer incretotypes is accomplished by expanding the SSNFS structure
mental perceptron employing supervised self-spawning coaccording to a spawning validity measure and the increment
petitive learning algorithm with the following specifications: policy. The newly spawned prototype is to extract one more

1)

2)

3)

4)

5)

In SSNFS,UI(X) is the input layer for data classification:'uzZy rule in the next learning cycle. This growth process
terminates when a stop criterion is satisfied. The process is

supervisedn that the spawning validity measure is based on

the desired output patterns for the given training patterns.
Let Zsi(/fi,@,ﬁi) denote theith prototype in terms of

fts three property vector:{;)? , }7) denote the pair of training

ggNiFglgags?lﬁsielacr:]r?ldfoltr(l)l':lz%glwith three propert patterns for input Iayeg wher¥ is am;-dimensional pattern
vectors(/f- 69 R-) callgd Asillmptotic Proper[:y \[;ect)(;r ?n the input space, antl is a desiredn5—dimensional pattern
(APV) Celr;telr’PrZo;’)erty Vector (CPV), and Distant Prop'-n the output spacely; denote the regression error afidthe
erty Véctor (DPV), respectively. In a{ simulated neur (iieswed output vector for theﬁfug}zy_rule extracteq}by Each
network, it is achiéved by assigﬁing eggh three other Time Whe_n a pair of pattern{;,_)(_, ¥}, is randomly picked from

' J the training set, the competition occurs among all the current

weights, while for a real neur?l??etwork we can Slmpl3{)rototype vectors. The winning prototype is judged by the
setW (u;,v;) = 4 whereu € U™ " andv € U,. nearest neighbor criterion.

SSNFS applies Gaussian membership functions or trian- _ _
gular membership functions as the activation functionghe SSSCL OPTOC learning algorithm
for layer 2; P and its property vectors are the parameter Step 1.

vectors for membership functions afdis the conse- 1) SSNFS starts from one fuzzy rule, therefore, =

Ul(X) and Ul(y) are the input layers for trainindys is
the membership layet/s is the normalized membership
layer; U, is the rule layer and/s is the output layer.
SSNFS starts from a single neuron for each hidden lay

quent output vector for a rule. ms = m4 = 1 holds initially. The only single prototype
SSNFS switches between the training process and clas- yector, P, | is initialized randomly in the input space.
sification task as following: lts APV (A;) andC PV (Cy) are initialized at a random
(@) for training processexr, = N/A, for u € location far fromP;, whereas itD PV (R,) is set at the
Ut Yol is the active input layer; same place aB. T; is randomly initialized in the output
(b) for classification taskezr, = 1, for v € space and; is initialized to 0.

v Ju); U is the active input layer. 2) For the input(X, '), if P, is the winning prototype for

In the SSNFS model, we model fuzzy rule extraction as a X its APV (4;)is updated in the input space by

task to spawn the structure and to establish the premise and
consequent parameters in the training process.

1
nz

X;:Ei+ '5i'(2*gi)'@(éagi7)z)v (11)

i

B. Supervised Self-Spawning Competitive Learning where

As defined above, SSNFS employs supervised self- o 1 if |ap| > |Ed),
spawning competitive learning (SSSCL) algorithm to tune the o, v,d) = {
structure and parameters. However, we face a usual problem
of the One Prototype Takes Multi-Clusters (OPTMC). As - 2
shown in Fig.2(a), suppose there are three rule patches in the 5 = ﬂ) (13)
input space and one prototype is initialized to detect them,
by the conventional competitive learning paradigm, this single "
prototype will move to the center of the training patterns.
As a result, the extracted fuzzy rule covers a wrong rule
patch leading to misclassification. In fuzzy systems, or for that
matter any rule-based systems, it is desirable that the extracteg)
fuzzy rules represent the true rule patches.

The SSSCL tackles th&® PTMC problem by designing
a new learning scheme in which one prototype takes one
cluster OPTOC) and ignores the others when the number

i1

0 otherwise. (12)

and

 \IPX] +|PA
n; is the winning counter andiii| is the Euclidean
distance between a vectar and a vectory. ¢ is the
adaptively updated learning rate which satisfies ¢; <

The DPV (&;) always follows the farthest pattern for
which P; has been the winner in the input space so far.
For the input(X,Y), if P is the winning prototype for
X, R, is updated by

—

of prototypes is less than that of the natural clusters, orinthis R = R;-(1—-O(P,, X, R;))+ X -O(P, X, R;). (14)

7

@)

(b)

Fig. 2. Two learning behaviors: OPTMC vs OPTOC. (a) OPTMC: One protof?llpts trying to take all three patch€gsS1, Sz, S3}, resulting in oscillation
phenomenon. (b) OPTOC: This prototype detects only one rule gaicdnd ignores the other two.

4) For the input(X,Y), if P is the winning prototype for
X, the following update scheme guarantéggo cluster
one rule patch and ignore the others in the input space.

whereq; is computed with
RN 2
P A;
o; = % (0 <oa; < 1), (16)
|Pi X | + [P Al
and 3; is given by 3)

b — | P Rs|
" \IPX|+|BR]
The OPTOC scheme enables each prototype to find only
one natural rule patch in the input space when the patches is
more than the prototypes. This in itself is a major improvement
over other competitive learning algorithms in the literature.
However, at this stage we are still not sure whether there are
other rule patches that have not been detected yet. For this we
introduce a spawning validity measure to determine if all the
rule patches have been properly discovered. If not yet, SSNFS
expands its structure by spawning and appending one neuron
for each hidden layer, then reconstruct the architecture. The
prototype vector of the newly spawned neurortinis hence
to join the competition in the next iterative learning process.
Based on theD PTOC learning scheme, it is therefore able
to extract one more fuzzy rule.
Definition 3: (The SSSCL Spawning Validity Measure
and Stop Criteria)
1) For the input(X,Y), if P, is the winning prototype
for X, C; and T; are updated on-line by the-Means
learning scheme [12],

- - 1
Cr=0C;,+

K3

2
> O0<p<1. @7

4)

S - . 1 -
(X=C); Ty =T+ —(X-T).
nﬂ

Just as the namé-Means indicates, the CPVCY)
indicates the arithmetic means (centroid) of all tkiés

nea

andf,; indicates the arithmetic centroid of all th€'s,
where(X,Y)'s are the presented patterns for whieh
has been the winner.

E; denotes the regression error for the fuzzy rule ex-
tracted byP,. Therefore, it is given by

(19)

whereO; represents the output vector of the fuzzy rule
extracted byP; as the if-parts and’; as the then-parts.
Foralli € {1,...,mso}, if |P;A;| < e and there is at
least one prototyp#; satisfies P;C;| > ¢, then SSNFS

is suitable for spawninge is a small positive constant
which is theoretically 0. The self-spawning process is
carried by:

Ef = E + (0% — vy,

(@) SSNFS expands its structure in terms of the
policy Inc defined in the Definition (1).
(b) Let P,, denote the prototype vector for the

newly spawned neuron it/;. It is initialized
with
Pan - Rs

where the index satisfies
s = arg minjEj‘lﬁ,»@lx

set Ry, = P, Am, = C,,, at a random

location in the input spacey,,, = 0, andT,,,

at a random location in the output space.
Foralli € {1,...,my}, if |PA;] < e and|P,C;| < e,
SSNFS finish its structural and parametric learning and
can be interpreted as a set of established fuzzy rules.

SSNFS adaptively updates its structure and weight parameters
to extract fuzzy rules. In the next section, we present our
experimental results.

IV. EXPERIMENTAL RESULTS

To demonstrate our system and its applicability, in this
section we present the experimental results for two classical
problems. First, we consider the reconstruction of a known

rule base from data to verify the ground truth. The purpose isFrom the known rule set in Table |, the extract rules in
to identify the partition in the data from the rule base. Secon@able Il, and classification maps in Fig.4, we can see that
we describe an application in pattern recognition using a welhe SSNFS is able to reconstruct the existing rule base very
known benchmark data, namely, the Iris data set. accurately.

A. Modeling a Known Rule-Base B. Rule Extraction from Iris Data

We consider an existing fuzzy system which partitions We applied the SSNFS to the Iris data Set extract a set of

a two-dimensional data into three classes: A, B, and fzzy rules. The objectives in this experiment are threefold: (1)

Let Tr(z,a,b,c) denote the triangular membership functiorio extract a set of fuzzy rules; (2) to classify the data set using

specified by three parameters (a, b, c), the extracted rules; and (3) to compare the class centroids with
the actual centroids. The SSNFS network consists of four input
v neurons, one hidden neuron for each hidden layer initially,

=, fb<z<c (20) and three output nodes. Throughout the test, we seb.02.

, if z<aorz>ec During the learning process, the spawning action occurred 4
The rule base consists of seven fuzzy rules as shown in Tablémes, therefore 5 rules were extracted by SSNFS. Table Il

The input variables take values in the domdih 10}. The lists the final rules with their parameters. To test the robustness
output vectory indicates the class an input pattern belong8f the proposed model, we carried out Monte Carlo tests and
The three classes are labeled 4s= [100], B = [010], and Tun the SSNFS 10 times. Each time, SSNFS was able to extract
C = [001]. a very consistent set of rules; in fact, the rules were almost

Fig.3(a) shows the training data set obtained by the datéentical among the tests. Fig. 5 shows a classification result
generating rule base. It contains 200 data points partitionf attribute 2 against attribute 4 by using the extracted fuzzy
into three classes. We know that the data-generating systéf¢s to classify data points as being Iris Setosa, Versicolour,
consists of seven rules, but it is not straightforward to tell ho@ Virginica.
many clusters are actually present in the input space [18].The spawning constantis a constant that is used to tune
Given this data set, we apply the SSNFS model to extrdBe quality of rule extraction. The smaller thethe more rule
the fuzzy rules with two-dimensional Gaussian membershgitches in the input space, therefore the better accuracy of
functions. Our objective is to verify, from the given datdhe rule extraction. Typically it is sufficient that< 0.05. As
set, whether the SSNFS is able to extract a set of rules t8BewWn in Table.lV, by setting = 0.02 or ¢ = 0.05, we can
are similar to those in the original, known rule base. It igbtain the centroids of classes that are very close to the actual
a network of two input neurons, one neuron for each hiddégntroids of the three classes.
layer a_nd thre_e_ output neurons. _T_hg constant parammeh_e V. CONCLUSIONS
spawning validity measure was initialized2t% of the domain o . : .
scale. Initially, as expected, the only single prototype extractedCIuster analysis is a powe_rful pe_lradlgm_ in dada analysis,
one fuzzy rule by detecting one rule patch. During the Seﬁ;_spemally_when we are d?a"”g wmtynammallygener_ated
spawning learning process, the spawning action occurred segglq.a sets_ Increasing found in the Internet. 'V'af‘y tec_h_rnque; are
times. Consequently the rule base expanded to eights r ilable in the literature. However, due to the msufﬁuent prior
finally. In Fig.3(b) the learning trajectories and spawnin nqwledge, we are at th_e mercy of data sar_npl_es in clustering
actions were drawn in detail in the input space to sho hich may lead to unreliable results. As an initial attempt, we
the effectiveness of the SSNFS. The number in each cirgl8'® proposed a navel fuzzy-neural appraach to leaming rules

indicates the spawning order and the initial position of theem dat"’? that will have many dqt_a (;Iusterlng applications.
e first discussed the scatter-partitioning fuzzy system, based

newly spawned prototype; the thin curves are the Iearnig% X
trajectories of prototype vectors. Fig.3(c) shows the partitidfl’ Which we then presented the SSNFS model, a neuro-fuzzy

of the data after the rules have been extracted by SSNFS. Tﬂﬁtem for rule extraction. It is derived from a generic 5-Ia)_/er
Il lists the extracted rules with their parameters using SSNI:lgf:rementgl perceptrqp modelland employs the supervised

where . i, andT. are defined in Definition 3. {s(a_lf—s_pawn|r1_g competmve learning algorithm (SSSCL)_. When

Fig.4(a) shows the classification map with respect to clasg'ﬁt'al'zed.wnh a single rule prototype, the SSNFS s able
0 adapt its structure to reach a suitable number of rules by

data (filled circles) obtained by the original, known rule base. .) . : .
Fig.4(b) shows the corresponding classification map obtain self-spawning learning algorithm. The considered synthetic

by using the rules extracteFi by th.e SSNFS fr'orn the inpﬁ dlingﬂ{l\i,:;rcl)? tﬁ)éarr]r:ar\)l\llersul(ie;%r;srgg:]zdsgﬁe;ﬁectlveness and
data set (the 200 data points). Since the training data Qgﬁ" most real-world apolications. rarelv do v.ve have ade-
does not reflect the global distribution of the data-generatin t ior knowled F[)p . ,th E]/ locati d
rules, the extracted rules mostly perform well on these traini a (r:urr):l;)ér Q?V:u?egeTgefgs) t;lef)y ex?r:ctﬁwzesrhlggad(s)igsg, ?hne
data points and thereabouts. One can easily extract the glo . " _’ : . i

optimal fuzzy rules by uniformly sampling the input Spacge%-spawmng competitive learning algorithm is effective and

with Sfma” step. Thus this is not a problem of the proposedihe yris data was obtained frohitp://www.ics.uci.edu/ mlearn/ MLRepos-
technique but that of the computational complexity. itory.html via a free, public ftp site.

8

=2 fa<z<b

Qo

8

Tr(z,a,b,c) =

Oa
fal

@
=T S

O
"I."' ¢ Oﬁg oo ° ‘;;'
"".;:.:.. E. M 3 @
v O;.'*Eﬁl‘o :.:ﬁ: '33 & g@
+ gt ..l
1*}3:} 4 ."h'.""::?"‘.‘.: @
: 0? o
0?;3 Pae) ‘S’_‘)—‘
£
(@) (b) (©)

Fig. 3. (a) The data set contains 200 data points obtained by the data-generating rule base; they were partitioned into 3 classes: A (plus signs), B (f
circles), and C (hollow circles). (b) The OPTOC learning trajectories and spawning actions of SSNFS; the spawning occurred 7 times and finally 8 fuz

rules were extracted. (c) The classification result obtained by our neural-fuzzy system.

@

data set.

(b)

Fig. 4. (a) The class B output surface of the data generating rule base. (b) The corresponding output surface of the simulated fuzzy rules based on a lin

Fig. 5. An example: attribute 2 vs attribute 4 for Iris types 1, 2, and 3 classified by the SSNFS rules.

TABLE |

RULE BASE CONSISTS OF7 FUZZY RULES FOR GENERATING THE DATA SET

Rg | If 21

is Tr(z1,5.8,7.5,9.

andzz is Tr(z2,5.6,7.5,9.

theny is

If z1

isT7(z1,2.5,5.2,7.

andzz is Tr(z2,5.6,7.5,9.

Ry | If z1isTr(x1,0.0,2.7,5.2) andzs is Tr(x2,2.5,4.2,5.4) theny is [1,0,0
Ro | If z1isTr(x1,0.0,2.5,5.0) andzs is Tr(x2,4.8,5.6,7.5) theny is [0, 1,0
Rs | If z1isTr(x1,2.5,5.2,7.3) andzq is Tr(x2,0.0,1.5,3.4) theny is [0,0, 1
Ry | I z1isTr(x1,2.5,5.2,7.3) andxs is Tr(x2,2.5,4.2,5.4) theny is [0, 1,0
Rs | If 1 isTr(x1,5.8,7.5,9.4) andzy is Tr(x2,2.5,4.2,5.4) theny is [0, 1,0

1) 2) 1,0,0

3) 2) 0,0,1

theny is

TABLE I

THE RULE PARAMETERS EXTRACTED BYSSNFSBASED ON THE DATA SET INFIG.3.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8
B; (2.71, 3.75) | (2.08, 5.83) | (3.85, 5.00) (5.83, 2.08) (6.46, 3.96) | (7.08,7.71) | (5.52, 7.50) | (2.81, 7.60)
R; (3.54, 4.17) | (1.46,6.88) | (3.02, 4.79) (4.38, 1.67) (7.50, 5.00) | (7.19, 6.67) | (5.52, 6.46) | (3.23, 8.23)
T; | (0.99,0.01,0)| (0,1,0) (0.01, 0.99, 0)| (0, 0.03, 0.97)| (0, 0.97,0.03)| (1,0, 0) (0,0,1) (0,0, 1)
TABLE Il
THE RULE PARAMETERS EXTRACTED BYSSNFSON THE IRIS DATA.
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5
B, | (5.19, 3.54, 1.42, 0.24) (6.60, 2.64, 3.49, 1.23) (6.60, 2.64, 4.72, 1.23) (7.64, 2.64, 5.75, 2.08) (7.64, 2.64, 6.60, 2.08)
R; | (4.50, 2.30, 1.30, 0.30) (4.90, 2.40, 3.30, 1) | (4.90, 2.50, 4.50, 1.70) (6.30, 3.40, 5.60, 2.40) (7.90, 3.80, 6.40, 2.00)
T; (1, 0,0) 0,1, 0) (0, 0.58, 0.42) 0,0,1) 0,0,1)
TABLE IV
THE CLASS CENTROIDS OBTAINED BYe = 0.02 AND € = 0.05.
Iris setosa Iris versicolour Iris virginica
Actual (5.006, 3.428, 1.462, 0.246) (5.936, 2.770, 4.260, 1.326) (6.588, 2.974, 5.552, 2.026!
e =0.05 (5.012, 3.536, 1.460, 0.245) (5.836, 2.731, 4.389, 1.332) (6.848, 3.078, 5.632, 2.058
e = 0.02 (5.007, 3.425, 1.473, 0.250) (5.882, 2.752, 4.353, 1.421) (6.832, 3.061, 5.611, 2.052

robust. However, there are many challenging theoretical praipe] J. M. Keller and H. Tahani, “Backpropagation neural networks for fuzzy

lems remaining open to further research. For instance, rule
generalization in SSNFS, convergence property, rule-pa
validation in the context of soft computing, etc.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

B

1]

(12]

REFERENCES

H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy Iogir,[13]
controllers through reinforcements,"lEEE Trans. Neural Networks,

vol. 3, no. 5, pp. 724-740, 1992. (14]
V. Cherkassky and P. Muliet,earning From DataJohn Wiley & Sons,
Inc. New York, 1998. 5
W. Duch, R. Adamczak and K. Grabczewski, “A new methodology oﬁ‘l]
extraction, optimization and application of crisp and fuzzy ruléEBEE
Trans. Neural Networksyol.12, no.2, pp.277-306, March 2001.

W. Duch, R. Setiono and J.MZurada, “Computational intelligence
methods for rule-based data understandir@rdc. IEEE,vol.92, no.5, [16]
pp.771-805, May 2004.

H. Frigui and R. Krishnapuram, “A robust competitive clustering
algorithm with applications in computer visiodEEE Trans. Patt. Anal. [17]
Machine Intell.,vol. 21, no. 5, pp. 450-465, May 1999.
N. Tschichold-Gurman, “Generation and improvement of fuzzy cIassﬁS]
fiers with incremental learning using fuzzy rulenet,” in K. M. Geroge,

J. H. Carrol, E. Deaton, D. Oppenheim, and J. Hightower, eds, Appli ijg]
Computing 1995 Proc. 1995 ACM Symposium on Applied Computing;,
pp. 466-470, Feb. 26-28, ACM Press, New York, 1995.

J. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,
IEEE Trans. Syst., Man, Cyberol. 23, no. 3, pp. 665-685, 1993.

J. M. Keller and H. Tahani, “Implementation of conjunctive and dis-
conjunctive fuzzy logic rules with neural networkdtit. J. Approximate
Reasoningyol. 6, pp. 221-240, Feb., 1992.

J. M. Keller, R. R. Yager, and H. Tahani, “Neural network implemen-
tation of fuzzy logic,” Fuzzy Sets and Systerus|. 45, pp. 1-12, 1992.

logic,” Information Scienceyol 62, pp205-221, 1992.

R. Kruse and J. Gebhardt,Foundations of Fuzzy Systemdliley,
Chichester, 1994

J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,Proc. 5th Berkeley Symposium on Mathematical
Statistics and Probabilitypp. 281-297, Berkeley, 1967, University of
California Press.

M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,"Scienceyol. 197, pp. 287-289, July, 1977.

S. Mitra and L. Kuncheva, “Improving classification performance using
fuzzy map and two level selective partitioning of the feature space,”
Fuzzy Sets and Systems) 70., pp. 1-13, 1995.

D. Nauck and R. Kruse, “NEFCLASS-A neuro-fuzzy approach for the
classification of data,Applied Computingk. M. George, J. H. Carrol,

E. Deaton, D. Oppenheim, and J. Hightower, eds., 1995. In Proc. Of the
1995 ACM Symposium On Applied Computing, Nashville, Feb. 26-28,
pp. 461-465, ACM Press: New York, 1995.

D. Nauck, “Neuro-Fuzzy systems: review and prospect8rbc. the

5th European Congress on Intelligent Techniques and Soft Computing
(EUFIT'97), pp. 1044-1053, Aachen, Sep. 8-11, 1997.

S. K. Pal and S. Mitra, “Multi-layer perceptron, fuzzy sets and
classification,”IEEE Trans. Neural Networks,

M. Setnes, “Supervised fuzzy clustering for rule extractionEEE
Trans. Fuzzy Systvol. 8, no. 4, pp. 416-424, 2000.

H. G. Zimmermann, R. Neuneier, H. Dichtl, and S. Siekmann, “Model-
ing the german stock index dax with neuo-fuzzyrbc. Fourth European
Congress on Intelligent Techniques and Soft Computing (EUFIT96),
Aachen, Sep., 1996.

