
A Neural-Fuzzy Clustering Approach to Rule
Extraction: the role of self-spawning competition

(Invited Paper)

Zhi-Qiang Liu
Centre for Media Technology, School of Creative Media

City University of Hong Kong, Hong Kong, SAR, CHINA
E-mail: smzliu@cityu.edu.hk

Abstract— Cluster analysis has been a popular and effective
tool in dada analysis. Learning rules from data will enhance
traditional clustering methods. In this paper, we present a neural-
fuzzy approach to rule extraction from using the self-spawning
competition, which is based on a generic definition of incremental
perceptron and a new competitive learning algorithm we recently
developed. It extracts a correct number of rule patches and
their positions and shapes in the input space. Initially the rule
base consists of only a single fuzzy rule; during the iterative
learning process the rule base expands according to a supervised
spawning-validity measure. To demonstrate the effectiveness and
applicability of our algorithm, we present some experimental
results.

I. I NTRODUCTION

Clustering has been major paradigm in data analysis. Tradi-
tional approaches often overfit data as more data samples are
available due to the lack of prior knowledge in performing
clustering. Fuzzy inference systems are able to model the
continuous input/output relationships by means of fuzzy IF-
THEN rules without employing precise quantitative analysis.
This fuzzy modeling has been successfully used in many
applications, e.g., to build function approximators, fuzzy con-
trollers, fuzzy classifiers, and decision making.

The basic components in a fuzzy inference system are fuzzy
rules. It is desirable that the rule base covers all the states of
the system that are important to the intended application [18].
In general, fuzzy rules can be obtained by either human experts
or a data-driven extraction scheme from measured input-output
data pairs. The latter case is currently a growing research
topic [3], since in most cases people or decision makers in
a data-mining project or industry applications are usually not
trained statisticians, mathematicians, or AI experts[4]. More-
over, in many commercial areas there are a huge number of
data collections. Therefore, it is important to learn knowledge
and derive fuzzy rules from the data itself [2].

Over the last few years, research on combining neural
networks and fuzzy systems, neuro-fuzzy systems, has gained
considerable importance and attention. The learning capabil-
ities of neural networks give fuzzy systems the ability to
tune the paramaters and shapes of fuzzy membership func-
tions. Among the proposed methods, the hybrid neuro-fuzzy
approach has recently become most popular, which can be
viewed as a specialn-layer feedforward neural network [16]
with sampled fuzzy memberships as the input/output [8], [9],

or with parameterized membership functions stored in the
neurons [7], [1], or with fuzzy sets as the link weights [16].
With learning capability, we are able to determine the fuzzy
sets or fuzzy rules. Learning in a neuro-fuzzy system nor-
mally involves two phases: structural learning and parametric
learning. The structure learning tunes a number of rules;
thus it is also often referred to asrule learning, whereas
the parametric learning tunes the positions of fuzzy sets.
Therefore, once the neural network architecture has been
determined, the number of rules are assumed fixed during the
learning process. Such a process is often not effective for many
real-world problems (i.e., small and interpretable) rule bases.
Researchers have proposed pruning techniques to reduce the
number of rules and variables in the neuro-fuzzy system [16],
[19]. Such approaches usually start from alarge number of
rules; during the learning process some of the rules arepruned
(rule deduction) resulting in a set of rules that are most relevant
to the problem at hand. However, it is difficult in most cases to
choose a reasonablylarge number of rules, because we simply
do not have enough prior knowledge about the data. This can
lead to poor system performance in real-world applications. In
the last few years incremental learning (rule induction) have
been used [15]. Unfortunately, A serious problem with such
learning algorithms is that they do not have a criterion to
terminate the growth process of the neural network structure:
the termination is determinde subjectively and based on a
pre-defined maximum network size. Furthermore, the shape
adaption of a membership function is a simple calculation
between two closest rule patches in the input space, e.g., half
of their distance, which is not suitable for rule patches with
different sizes, as in this case the memberships for smaller
rule patches may overlap significantly with parts of larger rule
patches, leading to misclassification in data analysis.

In this paper, we introduce a new incremental, hybrid neuro-
fuzzy system using the self-spawning competitive learning
paradigm,Self-Spawning Neuro-Fuzzy System(SSNFS). It is a
scatter-partitioning fuzzy inference system that allows the IF-
parts of the fuzzy rules to be positioned at arbitrary locations
in the input space. A major problem with scatter partitions is to
find a suitable number of rules, suitable positions and suitable
width of the rule patches in the input space. Our neuro-fuzzy
model is able to incrementally and adaptively build up a
network structure during the training process. It requires only



a single rule prototype randomly initialized in the input space;
during the training process the rule base expands adaptively
according to a spawning validity measure to discover more rule
patches. The shape width of the rule patch is indicated by an
on-line property vector. The rule induction terminates when a
stop criterion is satisfied. The output weights are trained in an
on-line fashion, which is more appropriate (computationally
less complex) than that in batched learning. To extract rules
from data, we assume that a limited number of input-output
pairs are provided on-line for single-pass processing.

II. SCATTER-PARTITIONING FUZZY SYSTEMS

A. Propositional Fuzzy Logic

The basic component of a fuzzy inference system is the
fuzzy rule which is expressed using linguistic labels, for
instance,

IF (x1 is low) AND (x2 is medium)

THEN (y1 is 0.2) AND (y2 is 0.4), (1)

wherex1, x2 ∈ R is the input variables (antecedent) andy1,
y2 ∈ R is the output (consequent) of this rule. The linguis-
tic labels (e.g., low) are usually modeled as parameterized
membership functions (MFs) within a particular area of the
input space.AND is the T-norm fuzzy operator and in some
casesOR (T-conorm) is used in fuzzy rules. In the example
shown above, the fuzzy sets involved only in the premise part
(IF -part). Fuzzy systems of this kind are referred to aszeroth-
order fuzzy systems. Generally, in annth-order fuzzy system,
theTHEN-part of each rule consists of a polynomial of degree
n in the input variables.

In this paper we will concentrate on zeroth-order fuzzy
systems. Different shapes of the MFs have been proposed such
as the Gaussian, triangular, or trapezoidal. In the following
discussions we assume that the MFs have the form of the
Gaussian function and that the fuzzy system consists ofm
fuzzy rules each withn input variables to classify data intok
fuzzy or crisp classes. Thus, the fuzzy system can be described
as{Ri}i∈{1,...,m}. For theith rule Ri,

Ri : IF (x1 is gi1(x1)) AND(x2 is gi2(x2))
AND · · · AND (xn is gin(xn))
THEN (y1 is ti1) AND (y2 is ti2)

AND · · · AND (yk is tik), (2)

wheregij(xj) is membership function denoting the lingusitic
label associated with thejth input variable in theith fuzzy
rule,

gij(xj) = exp

[
− (xj − pij)2

2σ2
ij

]
, (3)

where the variablepij and σij are the center and variance
of the Gaussian membership functiongij , respectively.~Ti =
[ti1, . . . , tik]T is the output vector for theith fuzzy rule,tij ∈
{0, 1} for partitioning crisp clusters or function approximation
and tij ∈ [0, 1] for partitioning fuzzy clusters.

Usually only a moderate number of MFs are defined for
each input variable. It is always desirable that the membership
values for each input variable add to unity everywhere. This
may be achieved by dividing the membership valuesgij(xj)
by the sum of all memberships with respect toxj , leading to
normalizedMFs,

ĝij(xj) = gij(xj)/
m∑

l=1

glj(xj). (4)

We focus our attention to rules that combine their sub-
expressions by fuzzyAND. In the case of Guassian MFs, the
fuzzy ANDcan be realized by the arithmetic product. LetGi

denote the membership value for the IF-part ofRi in (2),

Gi =
n∏

j=1

gij(xj). (5)

In this case theIF -part of each fuzzy rule can be described
by ann-dimensional Guassian membership function,

Gi( ~X) = exp(−1
2
( ~X − ~Pi)T Λ−1( ~X − ~Pi)), (6)

where ~X is the multivariate input vector[x1, x2, . . . , xn]T ,
~Pi = [pi1, pi2, . . . , pin]T is the n-dimensional Gaus-
sian center that has the corresponding centers of the
one-dimensional factor Gaussians as components.Λ−1 =
diag(1/σ2

i1, 1/σ2
i2, . . . , 1/σ2

in) is the inverse of the covariance
matrix Λ corresponding to the product ofn one-dimensional
Guassian memberships. Similarly, we can normalize the mul-
tivariate Gaussian membership functions as follows:

Ĝi( ~X) = Gi( ~X)/
m∑

l=1

Gl( ~X). (7)

For the input pattern~X, the output of theith component of a
fuzzy system with normaliztion is given by

O(i)( ~X) =
m∑

j=1

tjiĜj( ~X) =
m∑

j=1

tjiGj( ~X)/
m∑

j=1

Gj( ~X). (8)

B. Scatter-Partitioning Fuzzy Systems

Based on (6), we may simplify the fuzzy rule in (2) as

Ri : if ~X is Gi( ~X) then ~Y is ~Ti, (9)

where~Y = {y1, y2, . . . , yk} is the multivariate output variable
andTi is the consequent output vector forith rule.

Since each Gaussian membership functionGi, i ∈
{1, . . . , m} covers a particular area in the input space, each
rule is considerably activated only in this area. One can think
of the input space as being covered by some small patches,
each of them corresponding to the IF-part of one fuzzy rule.
We denote these small patches asrule patchesin this paper.
Building a meaningful fuzzy inference system to a large extent
is to establish a series of fuzzy rules that cover all the rule
patches in the input space. At the same time, we must keep
the number of rules as low as possible in order to maintain
the generalizing ability of the model and to ensure a compact



and transparent model [18]. Therefore, our task is reduced
to seeking an optimal number of rule patches, locating their
positions, and computing their shape widths in the input
space. This is known asscatter-partitioning distinguished
from grid-partitioning approaches in which the rule patches
are assumed on a regular predefined grid distribution. In a
scatter-partitioning fuzzy system the fuzzy memberships are
not confined to the corners of a rectangular grid. Rather, they
can activate anywhere with any width in the input space as
long as the~P andΛ in (6) can be detected. If the convariance
matrices Λi of the Gaussians are diagonal, then they can
still be thought of being generated as a product ofn one-
dimensional Gaussian MFs. Fig.1 shows an example of grid-
partitioning and scatter-partitioning fuzzy systems. Once the
IF-parts are solved, the output vector~T for each rule may be
achieved by minimizing the summed squared error,

E =
1
2

M∑

i=1

m∑

j=1

[
~Yi − Ĝj( ~Xi)~Tj

]2

, (10)

where ( ~Xi, ~Yi) is the training pattern, andM is the total
number of patterns presented for training. This approach is
usually computationally complex. In fact, the output vector
can be learned on-line concurrently in the output space to
reduce the complexity, such as training by the delta-rule [15].

Now, the problem is how to correctly classify the rule clus-
ters in the input space. The conventional learning algorithms
using neural networks or fuzzy clustering are very sensitive
to the number of prototypes initialized. We, however, do not
usually have sufficient prior knowledge about the data set.
Therefore it is desirable to develop an algorithm that is able
to adaptively detect the number of rule patches and their
locations.

In this paper we consider an incremental learning paradigm
which first constructs a fuzzy system by seeking one fuzzy
rule, and conducting rule induction in an iterative learning
process according to a self-spawning validity measure. The
rule growth is terminated when all the rule patches have been
detected based on a stop criterion.

III. T HE SSNFS NEURO-FUZZY MODELING

Many neuro-fuzzy systems use parameterized membership
functions stored in the “neurons” of a multilayered feed-
forward architecture, e.g., GARIC [1] and ANFIS [7]. The
links in these kind of networks indicate only the data flow
directions between nodes and no weights are associated with
the links. The membership functions are usually parameterized
Gaussians, trapezoidal, or triangular functions, or they are
constructed by superposing sigmoids. NEFCLASS [16] builds
a different structure which uses sampled memberships (fuzzy
sets) as link weights.

It must be clear that the above mentioned neuro-fuzzy
models (and in fact almost all neuro-fuzzy models in the
literature) have little to do with fuzzy logic in the narrow
sense [11] but to do with the parameterized membership
functions in the fuzzy IF-THEN rules that are associated with
linguistic labels.

A. SSNFS Architecture

As discussed in Section II, each fuzzy rule is associated with
one parameterized Gaussian membership with multivariate
inputs and one output vector, as seen in (9). The Gaussian
membership functions can be identified by detecting rule
patches in the input space, whereas the output vectors can
be updated on-line in the output space. In this perspective, we
propose SSNFS based on a generic incremental perceptron and
a new learning algorithm,self-spawning competitive learning,
to incrementally search the rule patches.

Similar to that in the ANFIS, the membership functions are
stored in the hidden nodes. However, the difference is that
the new model uses a multivariate membership function for
each rule, thus the node with this membership function is fully
connected to all the input variables. In addition, in SSNFS, we
model the parameters for each membership function as the link
weights between the input nodes and membership nodes and
the consequent vector of each rule as the weights between
the input nodes and rule nodes. The benefit is that the weight
vectors can be adaptively updated given input training patterns.

To build a neuro-fuzzy system for extracting fuzzy linguistic
rules, we present a generic 5-layer incremental perceptron that
will provide a basis for SSNFS architecture and self-spawning
learning algorithm.

Definition 1: A generic 5-layer incremental
perceptron is a 5-layer feedforward neural network
(U ,W ,P ,T ,NET ,A,O,ex,Inc) with the following
specifications:

1) U =
⋃

i∈I Ui is a non-empty set of neurons andI =
{1, . . . , 5} is the index set ofU . For all i, j ∈ I, Ui 6= ∅
andUi ∩ Uj = ∅ for i 6= j. U1 = U

( ~X )
1

⋃
U

( ~X)
1

⋃
U

(~Y )
1

is the input layer,U2, U3 andU4 are the hidden layers,
andU5 is the output layer.

2) Let M = {2m1 + m5,m2,m3,m4,m5} define the
number of neurons for layer 1 to layer 5, respectively;

m1 is the number of neurons for eitherU
( ~X )
1 or U

( ~X)
1 ;

m2 = m3 = m4 is the number of neurons for each
hidden layer;m5 is the number of neurons forU (~Y )

1 or
U5.

3) W defines the link connectedness in the perceptron as
follows:

(a) for ui ∈ U
( ~X )
1

⋃
U

( ~X)
1 and vj ∈ U2,

W (ui, vj) = 1;

(b) for ui ∈ U
(~Y )
1 andvj ∈ U4, W (ui, vj) = 1;

(c) for ui ∈ U2 andvj ∈ U3, W (ui, vj) = 1;
(d) for ui ∈ U3 and vj ∈ U4 and i = j,

W (ui, vj) = 1;
(e) for ui ∈ U4 and vj ∈ U5, W (ui, vj) = 1;

otherwise,
(f) W (ui, vj) = 0.

4) P = {~P1, . . . , ~Pm2} defines the weight vectors (pro-

totypes) on the connectionsW (U ( ~X)
1 , U2). The ith

prototype can be given by~Pi = [pi1, . . . , pim1 ]
T where

pij is the weight on the connectionW (uj , vi) with



(a) (b) (c)

(d) (e) (f)

Fig. 1. Classfication example with a grid-partitioning fuzzy system and a scatter-partitioning fuzzy system. (a) Two dimensional dataset in the unit square
consisting of two classes (white and black). (b) The grid-partitioning system initializes 3× 3 grid to arrange 9 fuzzy rules. (c) The non-normalized Gaussian
view in the input space for this grid-partitioning system. (d) The classification result by the grid-partitioning system. (e) The scatter-partitioning system
captured 6 rule patches in the input space. (f) The classification result by the scatter-partitioning system.

u ∈ U
( ~X)
1 and v ∈ U2. T = {~T1, . . . , ~Tm2} defines

the weight vectors on the connectionsW (U (~Y )
1 , U4).

~Ti = [ti1, . . . , tim5 ]
T where tij is the weight on the

connectionW (uj , vi) with u ∈ U
(~Y )
1 andv ∈ U4.

5) NET defines the propagation function for each unitu ∈
U to calculate the net inputnetu.

(a) for u ∈ U1:
NETui

: R 7→ R, netui
= exui

;
(b) for u ∈ U2:

NETui
: Rm1 7→ Rm1 ,

netui
= O(U ( ~X )

1 ) −
[ov1pi1, ov2pi2, . . . , ovm1

pim1 ]
T , v ∈ U

( ~X)
1 ;

(c) for u ∈ U3:
NETui

: Rm2 7→ R,
netui = ovi∑m2

j=1 ovj

, v ∈ U2;
(d) for u ∈ U4:

NETui : R×Rm5 7→ Rm5 ,
netui

= [ovi
ti1, ovi

ti2, . . . , ovi
tim5 ]

T , v ∈
U3;

(e) for u ∈ U5:
NETui

: Rm4 7→ R,
netui =

∑m4
j=1 ovj , v ∈ U4.

6) A defines the activation function for eachu ∈ U to
calculate the activationau.

(a) for u ∈ U1

⋃
U3

⋃
U4

⋃
U5:

Aui
: aui

= Aui
(netui

) = netui
;

(b) for u ∈ U2:
Au : Rm1 7→ R, au = Au(netu).
whereAu is the parameterized activation func-
tion.

7) O defines for eachu ∈ U an output functionOu to
calculate the outputou.

(a) for u ∈ U1

⋃
U2

⋃
U3

⋃
U4:

oui
= Oui

(aui
) = aui

;
(b) for u ∈ U5:

Oui : R 7→ {0, 1} (for fuzzy partitioning or
function approximation),ou = Ou(au) = au;
Oui

: R 7→ [0, 1] (for crisp partitioning),ou =
Ou(au) = DF (au), where DF is a suitable
defuzzification function.

8) ex defines for each input unitu ∈ U1 its external input
ex(u) = exu. For all other unitsex is not defined.

9) Inc defines the policy for the perceptron increment.
A spawning request will be carried out by taking the
following actions:

(a) One neuron is spawned for each hidden layer,
while the input and output layers remain un-
changed. Letu, v andw indicate the new added
neuron for layer 2, 3, and 4, respectively.
U2 := U2

⋃{u}, m2 := m2 + 1;
U3 := U3

⋃{v}, m3 := m3 + 1;



U4 := U4

⋃{w}, m4 := m4 + 1;
m2 = m3 = m4 holds anytime.

(b) for all U1, U2, U3, U4, and U5, the structure
are reconstructed following the definition of
(U ,W ,P ,T ,NET ,A,O,ex).

Given the definition of the generic perceptron, we can
describe the SSNFS as follows.

Definition 2: A SSNFS system is a generic 5-layer incre-
mental perceptron employing supervised self-spawning com-
petitive learning algorithm with the following specifications:

1) In SSNFS,U ( ~X )
1 is the input layer for data classification;

U
( ~X)
1 and U

(~Y )
1 are the input layers for training;U2 is

the membership layer;U3 is the normalized membership
layer; U4 is the rule layer andU5 is the output layer.

2) SSNFS starts from a single neuron for each hidden layer,
m2 = m3 = m4 = 1 holds initially.

3) SSNFS assigns each prototype~Pi with three property
vectors( ~Ai, ~Ci, ~Ri), called Asymptotic Property Vector
(APV), Center Property Vector (CPV), and Distant Prop-
erty Vector (DPV), respectively. In a simulated neural
network, it is achieved by assigning eachpij three other
weights, while for a real neural network we can simply

setW (ui, vj) = 4 whereu ∈ U
( ~X)
1 andv ∈ U2.

4) SSNFS applies Gaussian membership functions or trian-
gular membership functions as the activation functions
for layer 2; ~P and its property vectors are the parameter
vectors for membership functions and~T is the conse-
quent output vector for a rule.

5) SSNFS switches between the training process and clas-
sification task as following:

(a) for training process,exu = N/A, for u ∈
U

( ~X )
1 ; U

( ~X)
1

⋃
U

(~Y )
1 is the active input layer;

(b) for classification task,exv = 1, for v ∈
U

( ~X)
1

⋃
U

(~Y )
1 ; U

( ~X )
1 is the active input layer.

In the SSNFS model, we model fuzzy rule extraction as a
task to spawn the structure and to establish the premise and
consequent parameters in the training process.

B. Supervised Self-Spawning Competitive Learning

As defined above, SSNFS employs supervised self-
spawning competitive learning (SSSCL) algorithm to tune the
structure and parameters. However, we face a usual problem
of the One Prototype Takes Multi-Clusters (OPTMC). As
shown in Fig.2(a), suppose there are three rule patches in the
input space and one prototype is initialized to detect them,
by the conventional competitive learning paradigm, this single
prototype will move to the center of the training patterns.
As a result, the extracted fuzzy rule covers a wrong rule
patch leading to misclassification. In fuzzy systems, or for that
matter any rule-based systems, it is desirable that the extracted
fuzzy rules represent the true rule patches.

The SSSCL tackles theOPTMC problem by designing
a new learning scheme in which one prototype takes one
cluster (OPTOC) and ignores the others when the number
of prototypes is less than that of the natural clusters, or in this

case, the true rule patches. Fig.2(b) shows the same example
as that in (a) but applying theOPTOC learning paradigm. In
this case, one rule patch (cluster) is correctly detected, and the
rest rule patches can be detected by spawning new prototypes
in subsequent learning rounds. In this way we will be able to
extract a correct set of rules from the data set.

In the neural-fuzzy network, the spawning of new pro-
totypes is accomplished by expanding the SSNFS structure
according to a spawning validity measure and the increment
policy. The newly spawned prototype is to extract one more
fuzzy rule in the next learning cycle. This growth process
terminates when a stop criterion is satisfied. The process is
supervisedin that the spawning validity measure is based on
the desired output patterns for the given training patterns.

Let ~Pi( ~Ai, ~Ci, ~Ri) denote theith prototype in terms of
its three property vectors;( ~X, ~Y ) denote the pair of training
patterns for input layer, where~X is am1-dimensional pattern
in the input space, and~Y is a desiredm5-dimensional pattern
in the output space;Ei denote the regression error and~Ti the
desired output vector for the fuzzy rule extracted by~Pi. Each
time when a pair of patterns,( ~X, ~Y ), is randomly picked from
the training set, the competition occurs among all the current
prototype vectors. The winning prototype is judged by the
nearest neighbor criterion.

The SSSCL OPTOC learning algorithm

STEP 1.
1) SSNFS starts from one fuzzy rule, therefore,m2 =

m3 = m4 = 1 holds initially. The only single prototype
vector, ~P1 , is initialized randomly in the input space.
Its APV ( ~A1) andCPV (~C1) are initialized at a random
location far from~P1, whereas itsDPV (~R1) is set at the
same place as~P1. ~Ti is randomly initialized in the output
space and~Ei is initialized to 0.

2) For the input( ~X, ~Y ), if ~Pi is the winning prototype for
~X, its APV (~Ai)is updated in the input space by

~A∗i = ~Ai +
1

n ~Ai

· δi · ( ~X − ~Ai) ·Θ(~Pi, ~Ai, ~X), (11)

where

Θ(~µ, ~ν, ~ω) =
{

1 if |~µ~ν| ≥ |~µ~ω|,
0 otherwise.

(12)

and

δi =

(
|~Pi

~Ai|
|~Pi

~X|+ |~Pi
~Ai|

)2

. (13)

n ~Ai
is the winning counter and|~u~v| is the Euclidean

distance between a vector~u and a vector~v. δ is the
adaptively updated learning rate which satisfies0 < δi ≤
1.

3) The DPV (~Ri) always follows the farthest pattern for
which ~Pi has been the winner in the input space so far.
For the input( ~X, ~Y ), if ~Pi is the winning prototype for
~X, ~Ri is updated by

~R∗i = ~Ri · (1−Θ(~Pi, ~X, ~Ri))+ ~X ·Θ(~Pi, ~X, ~Ri). (14)



(a) (b)

Fig. 2. Two learning behaviors: OPTMC vs OPTOC. (a) OPTMC: One prototype~P1 is trying to take all three patches{S1, S2, S3}, resulting in oscillation
phenomenon. (b) OPTOC: This prototype detects only one rule patchS2 and ignores the other two.

4) For the input( ~X, ~Y ), if ~Pi is the winning prototype for
~X, the following update scheme guarantees~Pi to cluster
one rule patch and ignore the others in the input space.

~P ∗i = ~Pi + αi · βi · ( ~X − ~Pi), (15)

whereαi is computed with

αi =

(
|~Pi

~Ai|
|~Pi

~X|+ |~Pi
~Ai|

)2

(0 < αi ≤ 1), (16)

andβi is given by

βi =

(
|~Pi

~Ri|
|~Pi

~X|+ |~Pi
~Ri|

)2

(0 < βi ≤ 1). (17)

The OPTOC scheme enables each prototype to find only
one natural rule patch in the input space when the patches is
more than the prototypes. This in itself is a major improvement
over other competitive learning algorithms in the literature.
However, at this stage we are still not sure whether there are
other rule patches that have not been detected yet. For this we
introduce a spawning validity measure to determine if all the
rule patches have been properly discovered. If not yet, SSNFS
expands its structure by spawning and appending one neuron
for each hidden layer, then reconstruct the architecture. The
prototype vector of the newly spawned neuron inU2 is hence
to join the competition in the next iterative learning process.
Based on theOPTOC learning scheme, it is therefore able
to extract one more fuzzy rule.

Definition 3: (The SSSCL Spawning Validity Measure
and Stop Criteria)

1) For the input( ~X, ~Y ), if ~Pi is the winning prototype
for ~X, ~Ci and ~Ti are updated on-line by thek-Means
learning scheme [12],

~C∗i = ~Ci +
1

n~Ci

( ~X − ~Ci); ~T ∗i = ~Ti +
1

n~Ti

( ~X − ~Ti).

(18)
Just as the namek-Means indicates, the CPV (~Ci)
indicates the arithmetic means (centroid) of all theX ’s

and ~Ti indicates the arithmetic centroid of all theY ’s,
where( ~X, ~Y )’s are the presented patterns for which~Pi

has been the winner.
2) Ei denotes the regression error for the fuzzy rule ex-

tracted by~Pi. Therefore, it is given by

E∗
i = Ei + (O( ~X)

i − ~Y )2, (19)

whereOi represents the output vector of the fuzzy rule
extracted by~Pi as the if-parts and~Ti as the then-parts.

3) For all i ∈ {1, . . . , m2}, if |~Pi
~Ai| < ε and there is at

least one prototype~Pj satisfies|~Pj
~Cj | > ε, then SSNFS

is suitable for spawning.ε is a small positive constant
which is theoretically 0. The self-spawning process is
carried by:

(a) SSNFS expands its structure in terms of the
policy Inc defined in the Definition (1).

(b) Let ~Pm2 denote the prototype vector for the
newly spawned neuron inU2. It is initialized
with

~Pm2 = ~Rs

where the indexs satisfies

s = arg minjEj ||~Pj
~Cj |>ε

set ~Rm2 = ~Pm2 , ~Am2 = ~Cm2 at a random
location in the input space,Em2 = 0, andTm2

at a random location in the output space.
4) For all i ∈ {1, . . . , m2}, if |~Pi

~Ai| < ε and |~Pi
~Ci| < ε,

SSNFS finish its structural and parametric learning and
can be interpreted as a set of established fuzzy rules.

SSNFS adaptively updates its structure and weight parameters
to extract fuzzy rules. In the next section, we present our
experimental results.

IV. EXPERIMENTAL RESULTS

To demonstrate our system and its applicability, in this
section we present the experimental results for two classical
problems. First, we consider the reconstruction of a known



rule base from data to verify the ground truth. The purpose is
to identify the partition in the data from the rule base. Second,
we describe an application in pattern recognition using a well-
known benchmark data, namely, the Iris data set.

A. Modeling a Known Rule-Base

We consider an existing fuzzy system which partitions
a two-dimensional data into three classes: A, B, and C.
Let Tr(x, a, b, c) denote the triangular membership function
specified by three parameters (a, b, c),

Tr(x, a, b, c) =





x−a
b−a , if a ≤ x ≤ b
c−x
c−b , if b < x ≤ c

0, if x < a or x > c.
(20)

The rule base consists of seven fuzzy rules as shown in Table I.
The input variables take values in the domain{0, 10}. The
output vectory indicates the class an input pattern belongs.
The three classes are labeled asA = [100], B = [010], and
C = [001].

Fig.3(a) shows the training data set obtained by the data-
generating rule base. It contains 200 data points partitioned
into three classes. We know that the data-generating system
consists of seven rules, but it is not straightforward to tell how
many clusters are actually present in the input space [18].
Given this data set, we apply the SSNFS model to extract
the fuzzy rules with two-dimensional Gaussian membership
functions. Our objective is to verify, from the given data
set, whether the SSNFS is able to extract a set of rules that
are similar to those in the original, known rule base. It is
a network of two input neurons, one neuron for each hidden
layer and three output neurons. The constant parameterε in the
spawning validity measure was initialized to2% of the domain
scale. Initially, as expected, the only single prototype extracted
one fuzzy rule by detecting one rule patch. During the self-
spawning learning process, the spawning action occurred seven
times. Consequently the rule base expanded to eights rules
finally. In Fig.3(b) the learning trajectories and spawning
actions were drawn in detail in the input space to show
the effectiveness of the SSNFS. The number in each circle
indicates the spawning order and the initial position of the
newly spawned prototype; the thin curves are the learning
trajectories of prototype vectors. Fig.3(c) shows the partition
of the data after the rules have been extracted by SSNFS. Table
II lists the extracted rules with their parameters using SSNFS,
where ~Pi

~Ri, and ~Ti are defined in Definition 3.
Fig.4(a) shows the classification map with respect to class B

data (filled circles) obtained by the original, known rule base.
Fig.4(b) shows the corresponding classification map obtained
by using the rules extracted by the SSNFS from the input
data set (the 200 data points). Since the training data set
does not reflect the global distribution of the data-generating
rules, the extracted rules mostly perform well on these training
data points and thereabouts. One can easily extract the global
optimal fuzzy rules by uniformly sampling the input space
with small step. Thus this is not a problem of the proposed
technique but that of the computational complexity.

From the known rule set in Table I, the extract rules in
Table II, and classification maps in Fig.4, we can see that
the SSNFS is able to reconstruct the existing rule base very
accurately.

B. Rule Extraction from Iris Data

We applied the SSNFS to the Iris data set1 to extract a set of
fuzzy rules. The objectives in this experiment are threefold: (1)
to extract a set of fuzzy rules; (2) to classify the data set using
the extracted rules; and (3) to compare the class centroids with
the actual centroids. The SSNFS network consists of four input
neurons, one hidden neuron for each hidden layer initially,
and three output nodes. Throughout the test, we setε = 0.02.
During the learning process, the spawning action occurred 4
times, therefore 5 rules were extracted by SSNFS. Table III
lists the final rules with their parameters. To test the robustness
of the proposed model, we carried out Monte Carlo tests and
run the SSNFS 10 times. Each time, SSNFS was able to extract
a very consistent set of rules; in fact, the rules were almost
identical among the tests. Fig. 5 shows a classification result
for attribute 2 against attribute 4 by using the extracted fuzzy
rules to classify data points as being Iris Setosa, Versicolour,
or Virginica.

The spawning constantε is a constant that is used to tune
the quality of rule extraction. The smaller theε, the more rule
patches in the input space, therefore the better accuracy of
the rule extraction. Typically it is sufficient thatε < 0.05. As
shown in Table.IV, by settingε = 0.02 or ε = 0.05, we can
obtain the centroids of classes that are very close to the actual
centroids of the three classes.

V. CONCLUSIONS

Cluster analysis is a powerful paradigm in dada analysis,
especially when we are dealing withdynamicallygenerated
dada sets increasing found in the Internet. Many techniques are
available in the literature. However, due to the insufficient prior
knowledge, we are at the mercy of data samples in clustering
which may lead to unreliable results. As an initial attempt, we
have proposed a novel fuzzy-neural approach to learning rules
from data that will have many data clustering applications.
We first discussed the scatter-partitioning fuzzy system, based
on which we then presented the SSNFS model, a neuro-fuzzy
system for rule extraction. It is derived from a generic 5-layer
incremental perceptron model and employs the supervised
self-spawning competitive learning algorithm (SSSCL). When
initialized with a single rule prototype, the SSNFS is able
to adapt its structure to reach a suitable number of rules by
the self-spawning learning algorithm. The considered synthetic
and real-world examples demonstrated the effectiveness and
applicability of the new rule generating system.

In most real-world applications, rarely do we have ade-
quate prior knowledge to specify the shapes, locations, and
the number of rules. Therefore, extracting rules using the
self-spawning competitive learning algorithm is effective and

1The Iris data was obtained fromhttp://www.ics.uci.edu/ mlearn/ MLRepos-
itory.html via a free, public ftp site.



(a) (b) (c)

Fig. 3. (a) The data set contains 200 data points obtained by the data-generating rule base; they were partitioned into 3 classes: A (plus signs), B (filled
circles), and C (hollow circles). (b) The OPTOC learning trajectories and spawning actions of SSNFS; the spawning occurred 7 times and finally 8 fuzzy
rules were extracted. (c) The classification result obtained by our neural-fuzzy system.

(a) (b)

Fig. 4. (a) The class B output surface of the data generating rule base. (b) The corresponding output surface of the simulated fuzzy rules based on a limited
data set.

Fig. 5. An example: attribute 2 vs attribute 4 for Iris types 1, 2, and 3 classified by the SSNFS rules.



TABLE I

RULE BASE CONSISTS OF7 FUZZY RULES FOR GENERATING THE DATA SET.

R1 If x1 is Tr(x1, 0.0, 2.7, 5.2) andx2 is Tr(x2, 2.5, 4.2, 5.4) theny is [1, 0, 0]
R2 If x1 is Tr(x1, 0.0, 2.5, 5.0) andx2 is Tr(x2, 4.8, 5.6, 7.5) theny is [0, 1, 0]
R3 If x1 is Tr(x1, 2.5, 5.2, 7.3) andx2 is Tr(x2, 0.0, 1.5, 3.4) theny is [0, 0, 1]
R4 If x1 is Tr(x1, 2.5, 5.2, 7.3) andx2 is Tr(x2, 2.5, 4.2, 5.4) theny is [0, 1, 0]
R5 If x1 is Tr(x1, 5.8, 7.5, 9.4) andx2 is Tr(x2, 2.5, 4.2, 5.4) theny is [0, 1, 0]
R6 If x1 is Tr(x1, 5.8, 7.5, 9.4) andx2 is Tr(x2, 5.6, 7.5, 9.2) theny is [1, 0, 0]
R7 If x1 is Tr(x1, 2.5, 5.2, 7.3) andx2 is Tr(x2, 5.6, 7.5, 9.2) theny is [0, 0, 1]

TABLE II

THE RULE PARAMETERS EXTRACTED BYSSNFSBASED ON THE DATA SET INFIG.3.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8
~Pi (2.71, 3.75) (2.08, 5.83) (3.85, 5.00) (5.83, 2.08) (6.46, 3.96) (7.08, 7.71) (5.52, 7.50) (2.81, 7.60)
~Ri (3.54, 4.17) (1.46, 6.88) (3.02, 4.79) (4.38, 1.67) (7.50, 5.00) (7.19, 6.67) (5.52, 6.46) (3.23, 8.23)
~Ti (0.99, 0.01, 0) (0, 1, 0) (0.01, 0.99, 0) (0, 0.03, 0.97) (0, 0.97, 0.03) (1, 0, 0) (0, 0, 1) (0, 0, 1)

TABLE III

THE RULE PARAMETERS EXTRACTED BYSSNFSON THE IRIS DATA.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5
~Pi (5.19, 3.54, 1.42, 0.24) (6.60, 2.64, 3.49, 1.23) (6.60, 2.64, 4.72, 1.23) (7.64, 2.64, 5.75, 2.08) (7.64, 2.64, 6.60, 2.08)
~Ri (4.50, 2.30, 1.30, 0.30) (4.90, 2.40, 3.30, 1) (4.90, 2.50, 4.50, 1.70) (6.30, 3.40, 5.60, 2.40) (7.90, 3.80, 6.40, 2.00)
~Ti (1, 0, 0) (0, 1, 0) (0, 0.58, 0.42) (0, 0, 1) (0, 0, 1)

TABLE IV

THE CLASS CENTROIDS OBTAINED BYε = 0.02 AND ε = 0.05.

Iris setosa Iris versicolour Iris virginica
Actual (5.006, 3.428, 1.462, 0.246) (5.936, 2.770, 4.260, 1.326) (6.588, 2.974, 5.552, 2.026)

ε = 0.05 (5.012, 3.536, 1.460, 0.245) (5.836, 2.731, 4.389, 1.332) (6.848, 3.078, 5.632, 2.058)
ε = 0.02 (5.007, 3.425, 1.473, 0.250) (5.882, 2.752, 4.353, 1.421) (6.832, 3.061, 5.611, 2.052)

robust. However, there are many challenging theoretical prob-
lems remaining open to further research. For instance, rule
generalization in SSNFS, convergence property, rule-patch
validation in the context of soft computing, etc.

REFERENCES

[1] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,”IEEE Trans. Neural Networks,
vol. 3, no. 5, pp. 724-740, 1992.

[2] V. Cherkassky and P. Mulier,Learning From Data.John Wiley & Sons,
Inc. New York, 1998.

[3] W. Duch, R. Adamczak and K. Gra̧bczewski, “A new methodology of
extraction, optimization and application of crisp and fuzzy rules,”IEEE
Trans. Neural Networks,vol.12, no.2, pp.277-306, March 2001.

[4] W. Duch, R. Setiono and J.M.̇Zurada, “Computational intelligence
methods for rule-based data understanding,”Proc. IEEE,vol.92, no.5,
pp.771-805, May 2004.

[5] H. Frigui and R. Krishnapuram, “A robust competitive clustering
algorithm with applications in computer vision,”IEEE Trans. Patt. Anal.
Machine Intell.,vol. 21, no. 5, pp. 450-465, May 1999.

[6] N. Tschichold-Gürman, “Generation and improvement of fuzzy classi-
fiers with incremental learning using fuzzy rulenet,” in K. M. Geroge,
J. H. Carrol, E. Deaton, D. Oppenheim, and J. Hightower, eds, Applied
Computing 1995.Proc. 1995 ACM Symposium on Applied Computing,
pp. 466-470, Feb. 26-28, ACM Press, New York, 1995.

[7] J. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,”
IEEE Trans. Syst., Man, Cybern.,vol. 23, no. 3, pp. 665-685, 1993.

[8] J. M. Keller and H. Tahani, “Implementation of conjunctive and dis-
conjunctive fuzzy logic rules with neural networks,”Int. J. Approximate
Reasoning,vol. 6, pp. 221-240, Feb., 1992.

[9] J. M. Keller, R. R. Yager, and H. Tahani, “Neural network implemen-
tation of fuzzy logic,” Fuzzy Sets and Systems,vol. 45, pp. 1-12, 1992.

[10] J. M. Keller and H. Tahani, “Backpropagation neural networks for fuzzy
logic,” Information Science,vol 62, pp205-221, 1992.

[11] R. Kruse and J. Gebhardt,Foundations of Fuzzy Systems,Wiley,
Chichester, 1994

[12] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,”Proc. 5th Berkeley Symposium on Mathematical
Statistics and Probability,pp. 281-297, Berkeley, 1967, University of
California Press.

[13] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,”Science,vol. 197, pp. 287-289, July, 1977.

[14] S. Mitra and L. Kuncheva, “Improving classification performance using
fuzzy map and two level selective partitioning of the feature space,”
Fuzzy Sets and Systems,vol 70., pp. 1-13, 1995.

[15] D. Nauck and R. Kruse, “NEFCLASS-A neuro-fuzzy approach for the
classification of data,”Applied Computing,K. M. George, J. H. Carrol,
E. Deaton, D. Oppenheim, and J. Hightower, eds., 1995. In Proc. Of the
1995 ACM Symposium On Applied Computing, Nashville, Feb. 26-28,
pp. 461-465, ACM Press: New York, 1995.

[16] D. Nauck, “Neuro-Fuzzy systems: review and prospects,”Proc. the
5th European Congress on Intelligent Techniques and Soft Computing
(EUFIT’97), pp. 1044-1053, Aachen, Sep. 8-11, 1997.

[17] S. K. Pal and S. Mitra, “Multi-layer perceptron, fuzzy sets and
classification,” IEEE Trans. Neural Networks,

[18] M. Setnes, “Supervised fuzzy clustering for rule extraction,”IEEE
Trans. Fuzzy Syst.,vol. 8, no. 4, pp. 416-424, 2000.

[19] H. G. Zimmermann, R. Neuneier, H. Dichtl, and S. Siekmann, “Model-
ing the german stock index dax with neuo-fuzzy,”Proc. Fourth European
Congress on Intelligent Techniques and Soft Computing (EUFIT96),
Aachen, Sep., 1996.


