
A New Scheduling Model Based on a Description Logic - Comparison
with the Model of Manne

Pok-Son Kim, Arne Kutzner
Kookmin University, Department of Mathematics, Seoul 136-702, Korea

pskim@kookmin.ac.kr
Seokyeong University, Department of E-Business, Seoul 136-704, Korea

kutzner@skuniv.ac.kr

Abstract

We introduce a new scheduling language called RSVX
that encodes scheduling problems into temporal descrip-
tion logics. Scheduling problems are syntactically repre-
sented as descriptions (activity terms) in RSVX . Based
on the semantics given for RSVX , a calculus is defined
which can transform each activity term A into a seman-
tically equivalent, resolved activity term B, which is a
nonredundant disjunction of all active schedules derived
from A.
Additionally RSVX is compared with the conventional
model of Manne. This comparison clarifies several spe-
cially advantageous characteristics of RSVX .

Introduction

Characteristics of description logics are

• a term language for concepts and other notions,
• a clean denotational semantics
• and specific calculi (like subsumption) based on the

semantics.

Based on these characteristics, resource constrained
project scheduling problems with variants can be rep-
resented and solved as shown in [8]. Scheduling prob-
lems are syntactically represented as descriptions (com-
pound terms) in a defined logic-based language. Such
descriptions are similar to concepts in description log-
ics [12, 6] which emerged from KL-ONE based, termi-
nological knowledge representation systems of artificial
intelligence [12]. The use of a semantic method from de-
scription logics is the key for understanding the meaning
of compound terms. Further such a description language
allows compound terms to be represented by means of
diagrams with a scan-line. From such diagrams the flow
structure and the content of scheduling problems (for ex-
ample, what activity requires what resource) can be read
easy and directly. The process to find an optimal con-
flict free schedule for a given schedule problem, i.e. given
tasks, their duration and resource usage, can also be de-
scribed by means of diagrams.

In this article we introduce a new scheduling language
calledRSVX that owns characteristics of description log-
ics. For a reduced activity-term in RSVX there can exist
several different active schedules and all non-redundant
active schedules can be generated using the algorithm
ARSV . Until now active schedules have been represented
by RSV-diagrams. We show active schedules can also be
represented as reduced activity terms in RSVX . So a
calculus can be defined which transforms each reduced
activity-term A into another activity-term A′ represent-
ing all non-redundant active schedules derived from A.
Finally we compare the computation model RSVX with
the conventional model of Manne [10]. With this we show
several specially advantageous characteristics of RSVX .

The Scheduling Language RSVX

A terminological language RSVX that can be used to
model a new general class of resource-constrained project
scheduling problems is defined as follows:

The syntax of the language RSVX

An expression of RSVX holds implicitly the following
general constraints:

• Each atomic (ground) activity i is associated with a
resource r(i) and an activity time d(i). A resource
(machine) and an activity time are needed for com-
pleting the atomic activity.

• Except for a dummy resource eu each resource can
be assigned to only one activity at a time; a dummy
resource eu is unlimitedly available (resource con-
straint).

• Activity splitting is not allowed (non-preemptive
case).

Definition 0.1. The vocabulary of RSVX consists of
two disjoint sets of symbols. These sets are:



• A set of atomic activities {(0, eu , i)} ∪
{(i, r(i), d(i))|i = 1, · · · , n, r(i) ∈ R, d(i) ∈ IN}
where (0, eu , i) corresponds a dummy atomic
activity and R is a finite set of resources.

• A set of structural symbols (operators) ‘seq’, ‘pll’
and ‘xor’. The structural symbol ‘xor’ is called des-
ignated operator.

First the reduced activity-terms (r-activity-term for
short) of RSVX are given inductively as follows:

1. Each atomic activity is a r-activity-term.

2. If A1, A2, · · · , Ak are r-activity-terms, then

(seqA1, A2, · · · , Ak) and
(pllA1, A2, · · · , Ak)

are r-activity-terms.

Now, activity-terms of RSVX are formed as follows :

Each r-activity-term is an activity-term. If
B1, B2, · · · , Bk are r-activity-terms, then

(xorB1, B2, · · · , Bk)

is an activity-term.

The operators ‘seq’ and ‘pll’ have the following meaning:

• ‘seq’ : This operator specifies the sequential pro-
cessing of an r-activity-term or r-activity-terms
(precedence constraints).

• ‘pll’ : This operator specifies the possibility of par-
allel processing of r-activity-terms.

The designated operator ‘xor’ has the following meaning:

• ‘xor’ : This operator can be used to combine several
r-activity-terms one of which may be alternatively
chosen.

Schedules

We take the definition of active schedules from [8]. Let
A be a r-activity-term and let A1, · · · , An be all atomic
activities occurring in A. An active schedule for A is a set
of starting times of atomic activities {tAi

∈ IN |Ai, i =
1, 2, · · · , n} such that:

• The precedence constraints are satisfied,

• The resource constraints are satisfied and

• No atomic activity can be started earlier without
changing other start times.

The makespan of an active schedule is the duration from
the first starting time mini(tAi) to the stopping time
maxi(tAi + d(Ai)).

The semantics of the language RSVX

Definition 0.2. The model-theoretic semantics of
activity-terms in RSVX is given by an interpretation
I which consists of the set D (the domain of I) and
a function ·I (the interpretation function of I). The
set D consists of all active schedules derived from
activity-terms in RSVX . The interpretation function ·I
assigns to every activity-term A some subset of D that
consists of all active schedules derived from A.

Solving the RSVX -problem using
diagram-based calculation

Many varieties of branch-and-bound-based implicit enu-
meration methods ([13], [14], [15], [1], [4], [5], [11], [2])
for solving the resource constrained scheduling problem
which may also be used for determining the optimal
schedules for each r-activity term in RSVX have been
reported. Further using the new diagram and scan-line-
based algorithm ARSV presented by Kim and Schmidt-
Schauß [8] each r-activity-term in RSVX can be repre-
sented graphically and explicit generation of all nonre-
dundant active schedules for any r-activity-term can be
illustrated graphically. One objective of this article is
to show that with the aid of the diagram representation
used in ARSV each active schedule can also be repre-
sented as a r-activity term in RSVX .

Solution algorithm ARSV based on a scan-line
principle

To demonstrate the computation process of ARSV we
consider the following activity (below, we refer to it as
A) and its RSV-diagram representation:

pll (seq (1, a, 1), (pll(2, b, 1), (3, d, 2)), (4, c, 3)),
(seq (5, d, 2), (6, a, 1))

D

(3, d, 2)

(4, c, 3)

6 t

(5, d, 2) (6, a, 1)

(1, a, 1)

(2, b, 1)



D

(1, a, 1)

6 t

(5, d, 2)

1

D

6 t

(2, b, 1)

(3, d, 2)

2

D1

6 t

3

(5, d, 2)

6 t

4

(4, c, 3)

(6, a, 1)

D1

6 t

5 D2

(1, a, 1)

(5, d, 2)

(1, a, 1)

(1, a, 1)

(2, b, 1)

(2, b, 1)

(3, d, 2)

(3, d, 2)

(5, d, 2)

(1, a, 1)

(2, b, 1)

(3, d, 2)

(4, c, 3)

(5, d, 2) (6, a, 1)

Figure 1: RSV-diagram-based calculation

In the beginning the scan-line is found at the time
tSL = 0 and the diagram is empty. In the diagram each
atomic activity i has a left and a right end point (a start
and end time), denoted by LE(i) and RE(i) and they are
referred to as the stopping times of the scan-line. (D, t)
with t ≥ 0 denotes the scan-line is found at the stopping
time tSL = t in the diagram D. Instead of a continu-
ous moving, the scan-line jumps from a stopping time
into the next stopping time while determining and then
resolving resource conflicts.

Step 1: Attaching start atomic activities to the
scan-line: First all start atomic activities of A, 1 and
5, which have no predecessors in A are attached to the
scan-line. “Attaching an atomic activity i to the scan-
line” means that i is placed in the diagram so that the
time at which the scan-line is found is assigned to i as
its start time.

Step 2: Moving the scan-line: The scan-line jumps to
the next stopping time tSL = 1.

Step 3: Determining and resolving resource con-
flicts (Multiplying the diagram by the number of
the existing conflict combinations); Freezing all
definitely placed atomic activities: First, because

the begin and end times of conflict-free activities i with
RE(i) = tSL have been definitely determined, all such
conflict-free activities are frozen in order to mark that
they must not be moved any more. If several scan-line
activities (activities i with LE(i) < tSL and RE(i) ≥ tSL)
require a conflict resource r simultaneously, a resource
conflict occurs. A resource conflict is resolved while se-
lecting only one activity and all the other activities are
moved behind the selected activity. In this case the be-
gin and end time of this selected activity are definitely
determined. In order to mark this it is frozen.
At any stopping time tSL, several different tSL-time re-
source conflicts can simultaneously occur. In this case
exactly one (tSL, r)-conflict activity for each tSL-time
conflict resource r is selected in order to freeze them.
There exist several different combinations for selecting
activities. Such a combination is called a conflict com-
bination. For the above example, we have diagram 1 of
figure 1 where tSL = 1 has no resource conflict and the
1-time conflict-free activity 1 has been frozen.

Step 4: Deleting all tSL-time direct scan-line ac-
tivities from the activity-term A: In (D, tSL) all
tSL-time direct scan-line activities i.e. activities i with
RE(i) = tSLhave been surely frozen in the last step 3.
Now they are deleted from the input activity A. So A
may become smaller. For our example the 1-time direct
scan-line activity 1 is deleted from the actual activity
term A.

Step 5: Attaching further atomic activities to the
scan-line: Further atomic activities from the actual
term A which can be attached to the scan-line are deter-
mined in order to place them. If in (D, tSL) a scan-line
activity i with RE(i) > tSL has been frozen, the resource
r of i is being blocked until the time RE(i). So, all further
atomic activities requiring the tSL-time blocked resource
r which have not yet been placed in the diagram and
have no predecessor in A must wait until the scan-line
has jumped to the time RE(i). The other activities of A
having no predecessor and having not yet been placed are
attached to the scan-line. For the above example A has
two atomic activities 2 and 3 which have no predecessor
and the resources required by 2 and 3 are not blocked.
So 2 and 3 are attached to the scan-line.

Furthermore the steps 2, 3, 4 and 5 are recursively ap-
plied until all atomic activities have been placed in the di-
agram and all activities in the diagram have been frozen
so that A is empty and an active schedule is completed.
For the example, the scan-line jumps into the next stop-
ping time tSL = 2 and we have the resulting diagram
2 of figure 1, in which 3 and 5 give rise to a resource
conflict. So there are 2 2-time conflict combinations [3]
and [5]. The diagram is duplicated, let these be D1, D2
and [3] and [5] are assigned to D1 andD2 respectively.
In every diagram, the 2-time conflict free activity 2 and
the assigned 2-time conflict activity are frozen and the
other 2-time conflict activity is moved behind each corre-
sponding frozen activity. Subsequently we proceed with



the next step 4 in every diagram.
If we pursue (D1, 2) to which the combination [3] is as-
signed, we have diagram 3 of figure 1 where 5 has been
moved behind 3. Now the two 2-time direct scan-line
activity 2 in (D1, 2) (diagram 3 of figure 1) has to be
deleted from the term A. After deleting the activity we
have the following new A for (D1, 2):

pll (seq (3, d, 2), (4, c, 3)),
(seq (5, d, 2), (6, a, 1))

3 and 5 have no predecessor but they are already located
in the diagram. So in the next step 5 there is no activ-
ity to be attached to the scan-line. After applying the
further steps 2, 3, 4 and 5 to the diagram (D1, 2) recur-
sively, we have diagram 4 of figure 1 (an active schedule).
From the diagram (D2, 2), another active schedule with
project makespan 6 (diagram 5 of figure 1) is generated.

Representation of active schedules as r-
activity-terms in RSVX

For a r-activity-term there can exist several active sched-
ules requiring different project makespan. Until now
active schedules were represented by RSV-diagrams or
Gantt-charts. In this section it is shown that active
schedules can also be described as r-activity terms in
RSVX .
To resolve resource conflicts the atomic activities carried
out first are frozen and all the other conflict atomic ac-
tivities are moved to right behind the frozen activities.
Occupying each arising empty interval from the move-
ment by dummy-atomic activities, the resulting diagrams
can be represented by r-activity-terms. So, by this way,
each active schedule can also be represented by the cor-
responding r-activity term. The active schedules 4 and 5
of figure 1 can be represented by the following r-activity
terms in RSVX :

pll(seq (1, a, 1), (pll(2, b, 1), (3, d, 2)), (4, c, 3)),
(seq (0, eu , 3), (5, d, 2), (6, a, 1))

pll(seq(1, a, 1), (pll(2, b, 1), (seq(0, eu , 1), (3, d, 2))), (4, c, 3)),
(seq (5, d, 2), (6, a, 1))

The RSVX -calculus

Given a r-activity term H in RSVX as input to the algo-
rithm ARSV , ARSV generates all active schedules deriv-
able from H. Let H1, · · · ,Hk be r-activity terms repre-
senting all these active schedules derived from H. Then
the expression (xorH, · · · ,Hk) is also an activity term
in RSVX . We call such a term a resolved activity term.
So we can define a calculus which transforms a r-activity
term into a resolved activity term in RSVX .

Definition 0.3. Transformation into resolved ac-
tivity term

A transformation rule called RSVX -calculus is defined
as follows:

By means of the algorithm ARSV each r-activity term
H can be transformed into a resolved activity term Hr,
denoted by H →ARSV Hr.

Theorem 0.1. Soundness of RSVX -calculus

The RSVX -calculus is correct (sound).

Proof. It is obvious that H →ARSV Hr implies H |= Hr,
i. e. (H)I = (Hr)I .

A Comparison of Solving Methods

In this section the computation modelRSVX withARSV
is compared to a conventional model. This comparison
clarifies several specially advantageous characteristics of
the model RSVX with ARSV .

The model of Manne

Allan S. Manne [10] presented a model for describing
and solving the general job shop-problem on the basis of
the linear programming. In this section we describe the
job shop-problem based on the model of Manne. The
represented version of the solution of job shop-problems
with the model of Manne is adapted to Fuerst [7].

In a job shop-problem n jobs have to be processed on m
machines assuming the following facts [3]:

• A machine can process only one job at a time.

• The processing of a job on a machine is called an
operation.

• An operation cannot be interrupted.

• A job consists of at most m operations; a job is
processed on a machine at most once.

• The machine sequence of a job is given.

• The operation sequence on the machines are un-
known and have to be determined in order to mini-
mize makespan.

In order to describe a job shop-problem, we introduce
the following symbols:

I = {i | i = 1, · · · , n, i is a job.}
J = {j | j = 1, · · · ,m, j is amachine.}
Π = {πi |πi = (fi(1), fi(2), · · · , fi(il)) is the required

machine sequence of job i, il(≤ m) is the
last operation of job i and fi(il) is the
corresponding machine.}

dij the processing time of job i onmachine j
M a large number



j
1 2 3 4

1 4 2
i 2 3 3

3 2 1 2
4 4 1 2

Table 1: The duration dij

variables:
D = makespan
hij = beginning time of job i on machine j, i.e.

beginning time of the operation ij

uikj =

 1, if job i is processed before job k
on machine j

0, otherwise

The goal function is:

D = min!

The additional conditions to be satisfied are:

1. hij + dij ≤ hij′ for all i ∈ I; for all j = fi(r) and
j′ = fi(r + 1) with r = 1, · · · , il − 1

2. hifi(il) + difi(il) ≤ D for all i ∈ I

3. hij + dij ≤ hkj + M · (1 − uikj) for all j ∈ J and
i 6= k with i, k ∈ {e|∃r, such that fe(r) = j in πe}

4. hkj + dkj ≤ hij + M · uikj for all j ∈ J and i 6= k
with i, k ∈ {e|∃r, such that fe(r) = j in πe}

5. hij ∈ IN0 for all i ∈ I and j ∈ J

6. D ≥ 0

7. uikj ∈ {0, 1} for all j ∈ J and i 6= k with i, k ∈ {e|∃r,
such that fe(r) = j in πe}

Now we want to compare the two approaches by means of
a simple example. First we represent a job shop-problem
by means of the model of Manne and then by means of
the language RSVX .

Example

Let the following job shop-problem be given: 4 jobs
(i = 1, 2, 3, 4) are processed on 4 machines (j = 1, 2, 3, 4).
From table 1 the duration of each operation ij, denoted
by dij , can be read.

Further let the following processing orders πi of jobs i be
given:

π1 = (4, 3)
π2 = (1, 4)
π3 = (2, 3, 4)
π4 = (3, 1, 2)

The above problem is formulated according to the model
of Manne as follows:

The goal function is:

D = min!

The additional conditions to be satisfied are:

1. Keeping of the given machine sequence of the jobs:
job 1: h14 + 2 ≤ h13

job 2: h21 + 3 ≤ h24

job 3: h32 + 2 ≤ h33

h33 + 1 ≤ h34

job 4: h43 + 2 ≤ h41

h41 + 4 ≤ h42

2. Determining of the makespan:
job 1: h13 + 4 ≤ D
job 2: h24 + 3 ≤ D
job 3: h34 + 2 ≤ D
job 4: h42 + 1 ≤ D

3. Decision about the operation sequence on the ma-
chines:
machine 1: h21 + 3 ≤ h41 + M(1− u241)

h41 + 4 ≤ h21 + M · u241

machine 2: h32 + 2 ≤ h42 + M(1− u342)
h42 + 1 ≤ h32 + M · u342

machine 3: h13 + 4 ≤ h33 + M(1− u133)
h33 + 1 ≤ h13 + M · u133

h13 + 4 ≤ h43 + M(1− u143)
h43 + 2 ≤ h13 + M · u143

h33 + 1 ≤ h43 + M(1− u343)
h43 + 2 ≤ h33 + M · u343

machine 4 h14 + 2 ≤ h24 + M(1− u124)
h24 + 3 ≤ h14 + M · u124

h14 + 2 ≤ h34 + M(1− u134)
h34 + 2 ≤ h14 + M · u134

h24 + 3 ≤ h34 + M(1− u234)
h34 + 2 ≤ h24 + M · u234

4. Nonnegativity condition:
hij ∈ IN for all relevants i, j
D ≥ 0

uikj ∈ {0, 1} for all relevants i, k, j

Before we represent this problem as an r-activity-term
in RSVX , we identify machines j = 1, 2, 3, 4 with the
alphabetic characters a, b, c, d respectively. The infor-
mations about machine sequence and processing time of
each job can be summarized as the following table:

job machine sequence
processing time

1 d c
2 4

2 a d
3 3

3 b c d
2 1 2

4 c a b
2 4 1



The operation ij is denoted by ij. The considered prob-
lem can be represented as the following expression in
RSVX :

pll (seq (11, d, 2), (12, c, 4)),
(seq (21, a, 3), (22, d, 3)),
(seq (31, b, 2), (32, c, 1), (33, d, 2)),
(seq (41, c, 2), (42, a, 4), (43, b, 1))

Given the above activity-term as input-expression to
ARSV , all active schedules are generated. So the given
job shop-problem is solved. The main differences be-
tween two above models will be mentioned in the follow-
ing section.

Conclusion

We introduced a new logic-based scheduling language
called RSVX . Scheduling problems are defined as de-
scriptions (activity terms) in RSVX . An active schedule
generated by the algorithm ARSVcan also be represented
by an activity term in RSVX . Based on this representa-
tion method and the semantics given for RSVX a calcu-
lus was defined which can transform each activity term A
into a semantically equivalent, resolved activity term B
which is a nonredundant disjunction of all active sched-
ules derived from A.
We compared RSVX with the conventional model of
Manne. That comparison clarified the following specially
advantageous characteristics of RSVX :

• RSVX is more powerful than the model of Manne
because all problems that can be solved by the model
of Manne can also be solved by RSVX -model. How-
ever, the inversion is not true.

• Related works (e.g. [9]) often put a value on the
models based on the fundamental principles of linear
programming. It is argued that such models would
give very elegant formulation for job shop-problems.
We think RSVX offers a more elegant and easy
understandable formulation for job shop-problems.
Further, from a RSVX -expression describing a job
shop-problem, the processing structure of operations
can be read directly and clear.

• If a job shop problem is described by a RSVX -
expression, then the costly representation by numer-
ous inequalities belonging to the model of Manne can
be saved.

• The model of Manne comprises the unpleasant prop-
erty that the number of variables and restrictions
(inequalities) increase strongly depending on the
problem size. This can be avoided with RSVX .

References

[1] C. E. Bell and K. Park. Solving Resource-
Constrained Project Scheduling Problems by A*

Search. Naval Research Logistics Quarterly,
37(1):61–84, 1990.

[2] P. Brucker, S. Knust, and O. Schoo, A. Thiele.
A Branch and Bound Algorithm for the Resource-
constrained Project Scheduling Problem. European
Journal of Operational Research, 107:272–288, 1998.

[3] J. Carlier and E. Pinson. An Algorithm for Solving
the Job-Shop Problem. Operations Research, 8:487–
503, 1989.

[4] E. Demeulemeester and W. Herroelen. A Branch-
and-Bound Procedure for the Multiple Resource-
Constrained Project Scheduling Problem. Manage-
ment Science, 38(12):1803–1818, 1992.

[5] E. Demeulemeester and W. Herroelen. New
Benchmark Results for the Resource-constrained
Project Scheduling Problem. Management Science,
43(11):1485–1492, 1997.

[6] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt.
The Complexity of Concept Languages. Information
and Computation, 134(1):1–58, 1997.

[7] A. Fürst. Auftragsfolge- und Personalplanung.
München und Mering, 1997.

[8] P. S. Kim and M. Schmidt-Schauß. A Term-Based
Approach to Project Scheduling. ICCS01, Lecture
Notes in Artificial Intelligence Series 2120, p. 304
ff., Springer-Verlag, 2001.

[9] Klaus-Peter Kistner and Marion Steven. Produk-
tionsplanung. Physica-Verlag, Heidelberg, 1990.

[10] A. S. Manne. On the Job-Shop Scheduling Problem.
Operations Research, 8:219–233, 1960.

[11] A. Mingozzi, V. Maniezzo, and L. Ricciardelli,
S. Bianco. An exact Algorithm for Project Schedul-
ing with Resource Constraints based on a New
Mathematical Formulation. Management Science,
44(5):714–729, 1998.

[12] M. Schmidt-Schauß and G. Smolka. Attributive
Concept Descriptions with Unions and Comple-
ments. Technical Report SEKI Report SR-88-21,
FB Informatik, Universität Kaiserslautern, D-6750,
Germany, 1988.

[13] L. Schrage. Solving Resource-Constrained Network
Problems by Implicit Enumeration-Nonpreemptive
Case. Operations Research, 10:263–278, 1970.

[14] J. P. Stinson, E. W. Davis, and B. M. Khu-
mawala. Multiple Resource-Constrained Schedul-
ing Using Branch and Bound. AIIE Transactions,
10(3):252–259, 1978.

[15] F. B. Talbot and J. H. Patterson. An Efficient Inte-
ger Programming Algorithm with Network Cuts for
Solving Resource-Constrained Scheduling Problems.
Management Science, 24(11):1163–1174, 1978.


