
A Generation of XML Schema from
Entity-Relationship Model

Chang Suk Kim
Kongju National University

Dept. of Computer Education
Chungnam, Kongju 314-702

Republic of Korea
e-mail: csk@kongju.ac.kr

Dae Su Kim
Hanshin University

Dept. of Computer Science
Kyunggi, Osan 447-791

Republic of Korea
e-mail: daekim@hanshin.ac.kr

Kwang-Baik Kim
Silla University

Dept. of Computer Science
Busan, 617-736

Republic of Korea
e-mail: kbkim@silla.ac.kr

Abstract—The XML is emerging as standard language
for data exchange on the Web. Therefore a demand of
XML Schema(W3C XML Schema Spec.) that verifies
XML document becomes increasing. However, XML
Schema has a weak point for design because of its
complication despite of various data and abundant
expressiveness. This paper shows a simple way of design
for XML Schema using a fundamental means for
database design, the Entity-Relationship model. The
conversion from the Entity-Relationship model to XML
Schema can not be directly on account of discordance
between the two models. So we present some algorithms
to generate XML Schema from the Entity-Relationship
model. The algorithms produce XML Schema codes
using a hierarchical view representation. An important
objective of this automatic generation is to preserve
XML Schema’s characteristics such as reusability,
global and local ability, ability of expansion and various
type changes.

I. INTRODUCTION

The XML(eXtensible Markup Language) is emerging as
standard language for data exchange on the Web. It has
great advantages such as extensibility, portability and the
possibility to add semantics to data within the document
itself. To have these characteristics, XML have to model
data or documents using a DTD(Document Type
Definitions) which describes document structural
constraints. But DTD syntax is different from XML
document syntax. So DTD is limited to model and describe
a document structure since it does not support XML
namespace and various data types. Recently a demand of
XML Schema(W3C XML Schema Spec.) that verifies
XML document becomes increasing. XML Schema
supports various data types which can be represented a

complex document. The syntax of XML Schema is the
same as XML document against DTD has EBNF type
syntax of its own.

However, XML Schema has a weak point for design
because of its complication despite of various data and
abundant expressiveness. Thus, it is difficult to design a
complex document reflecting the usability, global and local
facility and ability of expansion[1, 2].

This paper shows a simple way of design for XML
Schema using a fundamental means for database design,
the Entity-Relationship model. The conversion from the
Entity-Relationship model to XML Schema can not be
directly on account of discordance between the two models.
So we present some algorithms to generate XML Schema
from the Entity-Relationship model. The algorithms
produce XML Schema codes using a hierarchical view
representation. An important objective of this automatic
generation is to preserve XML Schema’s characteristics
such as reusability, global and local ability, ability of
expansion and various type changes.

Figure 1. Generation of XML Schema from E-R model.

Entity-Relationship model is not accord with XML
Schema structure, so the transformation XML Schema
from Entity-Relationship model can not be processed
directly.

Before to generate XML Schema Entity-Relationship
model should be translated hierarchical view. The target
XML Schema (xsd file) is generated from the hierarchical
view using proposed transformation rule and constraints.

II. RELATED WORKS

The researches about generating DTD from Entity-
Relationship model are accomplished at UCLA (EXPRESS
project), University of Applied Sciences (DB2XML
project) and Stanford University (Lore Project) [3]. But it
is rare to study generating XML Schema from Entity-
Relationship model[4].

Elmasri[5] introduced a design methodology for XML
Schema that based on well-understood conceptual model.
Elmasri proposed entity migration to transform Entity-
Relationship model. So some migrated original entities are
disappeared. This cause some problem to preserve XML
Schema’s characteristics such as reusability and ability of
expansion.

III. TRANSFORM HIERARCHICAL
STRUCTURE FROM E-R MODEL

A. Transformation Overview

Transformation algorithms about hierarchical view from
Entity-Relationship model are described. This algorithm
has a characteristic to use reusability of duplicated entities.

Transformation Overview is as follows:
 BFS(Breadth First Search) algorithm searches a root
entity

 Transform graph-style E-R representation to
hierarchical structure

 Arrange E-R representation

B. BFS Scan

It needs to transform graph-style E-R representation to
hierarchical structure. To do this BFS(Breadth First
Search) algorithm searches a root entity which is
designated by operator(Figure 2 and Figure 3).

C. Hierarchical structure model

After to processing BFS scan, we can get a hierarchical
structure model as shown Figure 4. When we scan from
ACCOUNT entity to BANK entity, BANK entity is known
as duplicated entity. Then the BANK entity generated
BANKGroup entity. All the attributes of BANKsuch as
branch, phone, name, code, addr are moved into

BANKGroup entity(Figure 5). BANK entity refers
BANKGroup entity as shown Figure 4.

Figure 2. BFS scan.

Algorithm BFSScan
Begin search designated root entity;
do
{
Search designated root entity;
 if (duplicated entity){
 Save duplicated entity into duplicated queue

(duplicateQue);
 }else{
 Save normal entity into queue (bfsQue);
 }
}while(in searching process);

Figure 3. BFS scan algorithm.

Figure 4. Hierarchical structure model.

algorithm GenerateHierView
for(number of entities){
 if(child entity of current entity is duplicated){
 if(first duplication){
 generate new group entity; // named as "node-nameGroup"
 move to the new generated entity of current child entity;
 current child entity refer new generated entity;
 }else{
 copy duplicated entity; // named as "parent entity-child
entity”
 duplicated entity refer generated group entity already;
 }
 }
}

Figure 5. Algorithm GenerateHierView.

IV. GENERATION XML SCHEMA FROM
HIERARCHICAL STRUCTURE

A. Assumptions

This chapter describes XML Schema generation from
hierarchical structure model. In general, it is possible to
generate several XML Schemas from the same hierarchical
structure model. So we assume some restrictions.
 Entity is generated as designated complex type and global

style and it is named as ‘entity-nameType’.

 Attributes are generated as simple type. If current entity
has a child entity, it includes the child entity.

 If mapping constraints is one-to-one, then the occurrence
generated as minOccurs = “1” maxOccurs = “1”. Else if
mapping constraints is one-to-N, then the occurrence
generated as minOccurs = “1” maxOccurs = “unbounded”.

 If group entity are existed, the group entity should be
declared global.

B. XML Schema file and Schema declaration

Following algorithm creates XML Schema file and
Schema declaration. All created XML Schema documents
have a prefix ‘xs:’ which differentiate same named entities.

Algorithm createXmlSchemaDoc
XML Schema file creation;
write("<?xml version="1.0" encording="UTF-8"?>");
write("<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">");

 Following code is generated by above algorithm
createXmlSchemaDoc.

<?xml version="1.0" encording="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
......
</xs:schema>

C. Root entity creation

Root element is defined as designated complex type and
element type is named ‘rootType’. The compositor is
defined <sequence> and root entity is named ‘root-entity-
nameType’. Occurrence generated as minOccurs = “1”
maxOccurs = “unbounded”. In this example, root type’s
name is CUSTOMER.

D. Group element creation

If hierarchical structure model have group elements,
‘group-elementGroup’ are generated. The compositor is
defined <sequence>, names are defined the same names of
attribute and type is generated as ‘xs:string’ (Figure 6).

Root element is defined as designated complex type and
element type

algorithm createGroup
for(number of group){
 write(creation group element ‘group-elementGroup’);
}

Figure 6. Algorithm createGroup.

<xs:group name="BANKGroup">
 <xs:sequence>
 <xs:element name="Addr" type="xs:string"/>
 <xs:element name="code" type="xs:string"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Phone" type="xs:string"/>
 <xs:element name="Branch" type="xs:string"/>
 </xs:sequence>
 </xs:group>

The resulting codes are generated from Entity-Relationship
model in Figure 2 using proposed algorithms.

<?xml version="1.0" encording="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMERDoc" type="rootType"/>
 <xs:complexType name="rootType">
 <xs:sequence>
 <xs:element name="CUSTOMER" type="CUSTOMERType" minOccurs="0" maxOccurs="unbounded">
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="CUSTOMERType">
 <xs:sequence>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

 <xs:element name="Ssn" type="xs:string"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Phone" type="xs:string"/>
 <xs:element name="Addr" type="xs:string"/>
 <xs:element name="ACCOUNT" type="ACCOUNTType" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name="LOAN" type="LOANType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ACCOUNTType">
 <xs:sequence>
 <xs:element name="Balance" type="xs:string"/>
 <xs:element name="AccNo" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="AcctDate" type="xs:string"/>
 <xs:element name="BANK" type="BANKType" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="LOANType">
 <xs:sequence>
 <xs:element name="LoanNo" type="xs:string"/>
 <xs:element name="Amount" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="LoanDate" type="xs:string"/>
 <xs:group ref="BANKGroup"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="BANKType">
 <xs:sequence>
 <xs:group ref="BANKGroup"/>
 </xs:sequence>
 </xs:complexType>

 <xs:group name="BANKGroup">
 <xs:sequence>
 <xs:element name="Addr" type="xs:string"/>
 <xs:element name="code" type="xs:string"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Phone" type="xs:string"/>
 <xs:element name="Branch" type="xs:string"/>
 </xs:sequence>
 </xs:group>

</xs:schema>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Phone" type="xs:string"/>
 <xs:element name="Branch" type="xs:string"/>
 </xs:sequence>
 </xs:group>

</xs:schema>

V. EXPERIMENTATION AND DISCUSSION

The proposed algorithms for transforming hierarchical
structure and generating XML Schema are implemented by
Java programming language (JDK 1.4.2.). We built some
Java classes such as GenenrateXmlSchema, MakeE,
MakeR etc. Our approach comparing to previous study has

advantages such as reusability and expansion. Figure 7
show redundant element creation of the existing XML
Schema generation method.

<xs:complexType name="ACCOUNTType">
 <xs:sequence>
 ……
 <xs:element name="BankAddr" type="xs:string"/> <!—elements
are duplicated -->
 <xs:element name="Bankcode" type="xs:string"/>
 <xs:element name="BankName" type="xs:string"/>
 <xs:element name="BankPhone" type="xs:string"/>
 <xs:element name="Bankbranch" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LOANType">
 <xs:sequence>
 <xs:element name="Loandate" type="xs:string"/>
 <xs:element name="Amount" type="xs:string"/>
 <xs:element name="LoneNo" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="BankAddr" type="xs:string"/> <!—elements
are duplicated -->
 <xs:element name="Bankcode" type="xs:string"/>
 <xs:element name="BankName" type="xs:string"/>
 <xs:element name="BankPhone" type="xs:string"/>
 <xs:element name="Bankbranch" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Figure 7. XML Schema code with duplicated elements.

VI. CONCLUDING REMARKS

This paper showed a simple way of design for XML
Schema using the Entity-Relationship model. The
conversion from the Entity-Relationship model to XML
Schema can not be directly on account of discordance
between the two models. So we presented some algorithms
to generate XML Schema from the Entity-Relationship
model. The algorithms produce XML Schema codes using
a hierarchical view representation. An important objective
of this automatic generation is to preserve XML Schema’s
characteristics such as reusability, global and local ability,
ability of expansion and various type changes. Finally we
showed the reusability compare to existing approach.

ACKNOWLEDGMENTS

This work was supported by grant R01-2002-000-00068-
0 from the Basic Research Program of the Korea Science
and Engineering Foundation in Republic of Korea.

REFERENCES

 [1] Jon Duckett, etc., Professional XML Schemas, Wrox,

2001.
[2] Kevin Williams, etc., Professional XML Databases,

Wrox, 2001.
[3] Dongwon Lee, "Schema Conversion Methods between

XML and Relational Models", Knowledge
Transformation for the semantic Web, 2003.

[4] Garsten Kleiner and Udo Lipeck, "Automatic
Generation of XML DTDs from Conceptual Database
Schemas", Informatik 2001 - Wirtschaft und
Wissenschaft in der Network Economy - Visionen und
Wirklichkeit, 2001.

[5] Ramez Elmasri, "Conceptual Modeling for Customized
XML Schema", Proceedings of the 21st International
Conference on Conceptual Modeling 2002, page 429-
443.

	INTRODUCTION
	RELATED WORKS
	TRANSFORM HIERARCHICAL STRUCTURE FROM E-R MODEL
	GENERATION XML SCHEMA FROM HIERARCHICAL STRUCTURE
	EXPERIMENTATION AND DISCUSSION
	CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

