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Abstract

We present the design and syntax of a lazy eval-
uating functional programming language for XML-
transformations. The introduced language is in the
tradition of Haskell and allows the handling of XML-
transformations in a descriptive style. The kernel of
our approach is a sophisticated pattern matching mech-
anism, that performs a translation of patterns to core
language expressions. The proposed language and tech-
niques allow highly efficient XML-processing, even for
huge documents. We also report about a prototype-
implementation for our language and compare our ap-
proach to others.

Introduction

During the last decade the Extensible Markup Language
(XML)[3] has become a standardized medium for the
platform-independent representation of structured data.
Its transparent and self-describing nature makes XML
well suitable for the data-exchange between distinct sys-
tems. Such a data exchange usually causes the need
for document transformations, a standard case is the vi-
sualization of XML-documents in the context of WEB-
applications.
Functional programming languages are well applicable in
the field of transformations because of their characteristic
“to map things”. Inside the area of functional program-
ming languages different evaluation strategies for pro-
gram execution have been devised. One of theses strate-
gies is lazy evaluation, also known as normal order eval-
uation. When using lazy evaluation, an expression is not
evaluated as soon as it gets bound to a variable, but when
the evaluator is forced to produce the expression’s value.
This allows programs to act in an “on demand”-manner.
A popular lazy evaluating functional programming lan-
guage is Haskell[7].

In this article we present a functional programming lan-
guage, called XTL (XML Transformation Language),
which has been designed especially for efficient XML
transformations. XTL comprises a powerful pattern

matching language adapted to the needs of XML process-
ing. The operational semantics of XTL implements lazy
evaluation. Almost all existing systems rely on some tree
representation of the XML-document to be transformed,
and apply some patterns-based mechanism to achieve a
transformation. This design decision leads to difficulties
regarding the handling of huge documents, because such
a tree representation must be generated and hold some-
where. Laziness offers an elegant solution to overcome
these disadvantages. XTL has been designed for usage
in high load environments and for the efficient process-
ing of huge documents. XTL-programs can be compiled
to native code or the virtual machine code like for the
Java-Virtual Machine. XTL conceptually doesn’t need
any intermediate interpretation for pattern matching or
tree processing and knows layout-rules like Haskell for
improving the readability of programs.

First we give an overview about XTL and show some
code-example. Subsequently a short introduction to the
XTL-language is given, where we particularly present an
operational semantics for our pattern language. We in-
form about the compilation process with XTL and intro-
duce our prototype implementation. Finally we remark
some open points of XTL in its current form and give
ideas for future improvements.

Overview of XTL

XTL borrows a lot of syntactical elements as well as their
semantic interpretation from Haskell [7]. Roughly spoken
XTL is a functional core-language in Haskell-tradition
combined with a special purpose pattern-matching mech-
anism, all together adapted to the needs of XML-
processing.

We now give a short introduction to XTL by showing
how to produce a table-based HTML-representation for
a XML-document that contains information about some
CD-collection.
Assume our CD-collection is described by the following
XML-document:



<?xml version="1.0" encoding="ISO-8859-1"?>
<catalog>

<cd>
<title>Greatest Singers - Vol 1</title>
<artist>Enrico Caruso</artist>

</cd>
<cd>

<title>La Traviata</title>
<artist>Maria Callas</artist>

</cd>
</catalog>

Further assume that we want to turn the above XML-
document into the following HTML-representation:

<html> <body>
<h2>My CD Collection</h2>
<table border="1">

<tr bgcolor="green">
<th>Title</th>
<th>Artist</th>

</tr>
<tr> <td>Greatest Singers - Vol 1</td>

<td>Enrico Caruso</td>
</tr>
<tr> <td>La Traviata</td>

<td>Maria Callas</td>
</tr>

</table>
</body> </html>

We can use the code shown below, to achieve the neces-
sary transformation in XTL:

tmap f (x:Any, xs) = let
y = case x of

Tag -> f x
_ -> x

in y, (tmap f xs)
tmap _ () = ()

mapCD <cd> <title> t </title>,
<artist> a </artist>, _ </cd>

= <tr>
<td> t </td>,
<td> a </td>

</tr>

main <catalog> xs </catalog>
= <html>

<body>
<h2> "My CD Collection" </h2>,
<table border="1">

<tr bgcolor="green">
<th> "Title" </th>,
<th> "Artist" </th>

</tr>,
tmap mapCD xs

</table>
</body>
</html>

The above XTL-code consists of three function defini-
tions, where main is the starting point of the evaluation.
Each function definition describes some pattern based
mapping, where the syntax for patterns is XML adapted.
For example, the pattern <catalog> xs </catalog> of
the function main checks if the actual argument of main

is a catalog element and if so, it binds xs to the body of
that element. Altogether the main-function extracts the
sequence of all items comprised by a catalog element,
puts them into a HTML-template and applies tmap in
combination with mapCD for creating the table-rows in-
side the template. tmap is a higher order function and
applies the function given as first argument to all ele-
ments of the sequence given as second argument. It is
similar to the standard map function with classical func-
tional programming languages. mapCD places title and
artist inside a table-row.
XTL is a lazy evaluating language, therefore during pat-
tern matching expressions are only evaluated as far as
necessary for making a match-decision. In this context
the special pattern _ is of particular interest. The pat-
tern _ matches immediately without any further eval-
uation of the expression under inspection. So it even
matches expressions, without any reduction to some head
normal form1. XTL also knows patterns for sets of equiv-
alent XML-items. The pattern Tag in the function tmap
is such a pattern, it matches every XML-element no mat-
ter which tag name. For improving the code legibility
XTL knows the layout rules of Haskell.
The above XTL program is identical to the XSLT style
sheet shown below, both generate the same HTML-code
presented before.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>
<body>

<h2>My CD Collection</h2>
<table border="1">

<tr bgcolor="green">
<th>Title</th>
<th>Artist</th>

</tr>
<xsl:for-each select="catalog/cd">
<tr>

<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="artist"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>

</xsl:template>
</xsl:stylesheet>

We would like to remark, that the above XSLT style sheet
depends on the predefined operations xsl:value-of and
xsl:for-each. The XTL-code doesn’t rely on such pre-
defined functionality, it comprises all necessary code for
the transformation.

1“head normal form” is a notion often used in the context of
normal order reduction. Roughly spoken an expression is in head
normal form if there is some not reducible element (e.g. a data
item or a variable bound to a data item) at top level.



Language Definition

We will now give a formal language definition for XTL.
We start with the definition of values and will continue
with the introduction of the pattern language and term
language.

Values

Values are abstract representations of XML-documents.
They are defined inductively as follows:

1. The empty sequence, denoted by (), is a value.

2. Each character c is a value.

3. Let v be some value and n be some XML-compliant
Tag-name, then <n>v</n> is a value.

4. Let v and v′ two values, then the sequence v, v′ is a
value.

We use the above definition for giving patterns a opera-
tional semantics. Because there is no attribute handling
on pattern level, the above definition doesn’t comprise
any representation for attributes.

Pattern Language

We assume some countably infinite set of variables X.
x, t shall denote some element of X and n shall denote
some XML-compliant tag-name. XTL pattern obey the
following generalized syntax:

P ::= x : P Pattern Variable Binding
A Abstract Pattern
_ Top
’c’ Character
P1 | P2 Choice
P1 , P2 Concatenation
P∗ Repetition
<n>P</n> Named Tag
<(t)>P</> Tag Variable Binding
() Empty Sequence

Additionally we allow the constructs P+ and P ?, where
P+ is an abbreviation for P , P∗ and P ? is an abbrevia-
tion for P |(). A Abstract Pattern A is one of the reserved
words Any, Tag or Char, where in turn Any is an abbrevi-
ation for Tag | Char. Patterns of the form <n> () </n>
can be abbreviated to <n/>. The specification of x : _
can be abbreviated to x merely.

To avoid semantic problems pattern must fulfill some ad-
ditional restrictions:

(R1) Top2 must neither occur inside a repetition nor
be part of the left sub-pattern of a concatenation.
The only exception is that Top is covered by some
named-tag-pattern.

(R2) Variable bindings (Pattern Variable Bindings as
well as Tag Variable Bindings) inside repetitions
or choices are prohibited.

We now describe the semantics of patterns by means of
values. For this purpose we define a relation v ∈ P ⇒
(B,T), read “v is matched by P , yielding (B,T)", where
B is an environment that maps variables to values and T
is an environment that maps variables to tag-names.

() ∈ () ⇒ (∅, ∅) (P1)

() ∈ P∗ ⇒ (∅, ∅) (P2)

for all values v : v ∈ _ ⇒ (∅, ∅) (P3)

for all characters c : c ∈’c’⇒ (∅, ∅) (P4)

v ∈ P ⇒ (B,T), v′ ∈ P ′ ⇒ (B′,T′)

v, v′ ∈ P, P ′ ⇒ (V ∪V′ ,T ∪ T′)
(P5)

v ∈ P ⇒ (∅, ∅)
v ∈ P |P ′ ⇒ (∅, ∅)

(P6)

v ∈ P ′ ⇒ (∅, ∅)
v ∈ P |P ′ ⇒ (∅, ∅)

(P7)

n ≥ 1, for all vi ∈ {v1, . . . , vn} :
vi ∈ P ⇒ (∅, ∅)

v1, . . . , vn ∈ P∗ ⇒ (∅, ∅)
(P8)

v ∈ P ⇒ (B,T)

v ∈ x : P ⇒ (B ∪ {(x, v)},T)
(P9)

v =<n>v′<n>, v′ ∈ P ⇒ (B,T)

v ∈<n>P<n>⇒ (B,T)
(P10)

v =<n>v′</n>, v′ ∈ P ⇒ (B,T)

v ∈<(t)>P</>⇒ (B,T ∪ {(t, n)})
(P11)

P ∈ A, v ∈ P ⇒ (B,T)

v ∈ A ⇒ (B,T)
(P12)

2The notion ’Top’ was chosen due to the semantics of the under-
score that matches every expression (even expressions that trigger
a non-terminating evaluation) without any further evaluation.



The abstract pattern Char is the set of pattern consisting
of character patterns ’c’ for every character c. The ab-
stract pattern Tag is the set pattern consisting of patterns
<n>_<n> for every XML-compliant tag name n. Hence
according to the above semantics Char matches one char-
acter and Tag matches some arbitrary XML-element.

The two syntactical restrictions (R1) and (R2) for pat-
terns avoid ambiguities in the above semantics regarding
variable bindings. The first restriction assures, that the
decomposition of sequences by a concatenation or repe-
tition stays unique. If we omit this restriction, patterns
like x : _ , y : _ would raise an ambiguity regarding the
composition of sequences. By denying the specification
of variable bindings inside choices and repetitions we as-
sure that the arising sets of bindings stay empty. With-
out this restriction we would get the following problem:
In the special case that both alternatives of some choice
are matching and additionally express different sets of
bindings, there is an ambiguity with respect to the deci-
sion which set of bindings shall be regarded as the result
of the choice.

The above semantics bases on an inductively defined set
of values. However, patterns are applied to expressions
and, unless values, expressions may result in an infinite
computation without providing any result. It is a stan-
dard technique to represent this kind of “no information”
by the symbol ⊥ 3, pronounced ’bottom’. We will now
give some notes on ⊥-handling in XTL:

We start with a deeper inspection of the top-pattern ’_’.
The exact operational semantics of the top-pattern is an
immediate match without any further evaluation of the
expression under inspection. Hence, from a value domain
point of view, top matches all values including ⊥. This
has a significant impact regarding the two patterns Any∗
and _. Although at first glance semantically identical
they show a different behavior in the context of ⊥. The
first pattern results in an infinite computation, the sec-
ond one in an immediate match.
There is a further impact of⊥ on choices. Internally XTL
evaluates choice-patterns in a left-right manner, so the
second alternative is only touched if the first alternative
doesn’t match. This is a side-effect of the construction
principle used for the translation of patterns into core
language expressions. However, this evaluation strategy
leads to a lack of commutativity with choice patterns
in the context of ⊥. An example give the two patterns
_ | Any and Any |_. They deliver different results if they
are matched against a⊥-expression. The first one pro-
vides an immediate match, the second one triggers an
infinite computation.

Finally we would like to remark two points. XTL is a lazy
evaluating language, even on pattern level. So during
pattern matching the expression under inspection is only
evaluated so far like absolute necessary for making the

3A extensive introduction to the semantics of the ⊥ symbol can
be found in [6].

match-decision. At the moment XTL doesn’t comprise a
concept for the handling of attributes in patterns.

Term Language

An XTL-program consist of one or several declarations,
where each declaration D has the following structure:

D ::= f P1 · · · Pn = E Declaration

In the above definition E is some expressions that obeys
the following syntax:

E ::= let D1 · · · Dn in E Let Clause
where n ≥ 1

case E of Case Clause
P1 → E1

...
Pn → En

where n ≥ 1
E1 , E2 Concatenation
E1 E2 Application
x Variable
’c’ Character
<n A1 · · ·Az> E </n> Fixed Element

where z ≥ 0
<(x) A1 · · ·Az> E </> Variable Element

where z ≥ 0
() Empty Sequence

Each Ai(i = 0, 1, · · · , z) is an attribute of the form
n = ” v ”, where n is some XML-compliant attribute
name and v the attribute’s value.
The Let-clause binds the named functions defined be
the local declarations D1 · · ·Dn in the expression E. A
case clause checks whether the expression E matches on
of the patterns P1until Pn. The process starts by the
first pattern P1and proceeds pattern by pattern until
one pattern matches. Two expressions are concatenated
by the comma-operator, where the operational semantics
of the comma-operator is similar to a classical string-
concatenation. The fixed element and the variable ele-
ment are for constructing new elements, where the syntax
is adapted to the tag-syntax of XML.

Compilation Process

Conceptually XTL programs are compiled to either na-
tive code or some virtual machine code by a sequence
of separated translations. A graphical description of the
stepwise compilation process gives Fig. 1. In a first step
XTL programs are compiled to a special intermediate
code, called enriched core code. Expressions of the en-
riched core code obey the following syntax:



XTL Program

Enriched Core Code

FundIO Code Haskell Core Code

VM-Code (e.g. Java-VM)

Pattern Compilation

Code Generation

Core Code Adaption

native Code

Figure 1: The XTL compilation process

e ::= letrec f1 x1
1 · · · xn1

1 = e1 LetRec
...

fm x1
m · · · xnm

m = em

in e
<n A1 · · ·An> e Element
e1e2 Application
λv.e Abstraction
x Variable
’c’ Character
p Combinator
err Error

The enriched core code comprises a set of 13 combina-
tors with a predefined operational semantics each. 6 of
these combinators perform some kind of atomic pattern
matching on enriched core code level. 4 combinators are
responsible for sequence construction and concatenation,
the remaining 3 are the standard combinators I, K, B
4. Conceptually all these combinators have a concrete
implementation in the next stage of the compilation pro-
cess (Haskell core code, FundIO).
The kernel of the first compilation step is a sophisticated
pattern compilation. The generation of enriched core
code for a XTL-pattern happens in a two step process.
In a first step a special kind of nondeterministic finite au-
tomaton (NFA) for the XTL-pattern is generated. Sub-
sequently the behavior of this NFA is implemented by
an enriched core code expression. So patterns are re-
ally compiled at compile time, there is no interpretation
during runtime, the generation of NFA’s is only a inter-
mediate step during compilation.
The enriched core code is translated either to Haskell core
code or FundIO code. This intermediate step consist of
a rather easy code adaption. By producing Haskell core
code we can take advantage of existing Haskell compilers
like the Glasgow Haskell Compiler (GHC).
The last step of compilation, the generation of native
code for some target platform, is the responsibility of
the Haskell compiler.

4The definition of the combinators I, K, B can be found in [4].

Some arrows in Fig. 1 have broken lines. These ar-
rows represent translations that are impossible in the
moment, either because there’s no concept available or
existing concepts are not practically usable. Particularly
the production of Java-VM code for Haskell code is such
a point.

Prototype

We have developed a prototype implementation for XTL
for getting an impression of the practical usability of
our approach. The prototype can compile some XTL-
program to standard Haskell code which in turn can be
compiled by any standard Haskell compiler to some ex-
ecutable file. First practical experimentation provided
very promising results. On basis of this prototype we
plan to provide concrete benchmarks soon.

Related work

Transformation of XML documents is a topic with a long
tradition of inspection. Numerous tools and approaches
for XML transformations have been developed as result
of the research efforts in this area. We will pick some of
these approaches which we think are interesting in the
context of XTL.
The style sheet language XSLT [8] has gained wide atten-
tion during the last decade. XSLT processes a tree rep-
resentation of a XML-document by applying template-
based mapping rules, so from its basic nature it is func-
tional programming language. Despite its powerful ex-
pressibility XSLT comprises some significant drawbacks.
First of all XSLT style sheets are interpreted from con-
ceptual point of view, which results in rather poor per-
formance of most XSLT-engines. A further drawback is
the representation of XML-documents as a tree shaped
data structure. Huge XML-documents cause huge tree
models, probably too huge to keep them in the internal
memory. And worse, if we need only few elements of
some huge XML-document a lot of unnecessary parsing
can be caused by the generation of untouched segments of
the tree structure. The only way to overcome such prob-
lems is to act in an “on demand manner”, this means to
keep only vital parts of a huge data structure in memory.
Laziness does this in a very natural style. So XTL opens
a way for processing huge documents efficiently.
Another well known language for XML-transformations
is XQuery [2]. XQuery has shared several design details
with XSLT, e.g. the tree shaped interpretation of XML-
documents (XSLT and XQuery rely on XPath). But
the syntax of XQuery has been designed for queering
databases formed by XML-documents.
Other approaches for processing XML are the languages
XDuce [5] and CDuce[1], either of them have a strong re-
lationship to the functional programming language ML.
But the focus of both languages is different to ours.
XDuce applies the concept of regular expression types



for static type checking at compile time. Another fea-
ture of XDuce is some form of pattern matching derived
from that type system, called regular expression pattern
matching. Unlike XTL there’s no compilation of pat-
terns into core language, instead there’s an intermediate
interpretation at runtime. CDuce is a development moti-
vated by XDuce and aims to be an “XML-centric general
purpose language”. It overcomes several limitations of
XDuce regarding the type system, language design and
run-time system. The unpublished language XMλ from
Meijer and Shields [9] was further work with the focus
on types as XDuce.
Finally we want to mention that there are approaches
to handle XML directly in Haskell, for example the con-
cept of HaXML as introduced in [11]. However, such
approaches are pure libraries, where the decomposition
of XML-documents is described by special combinators.

Conclusion

We presented a functional programming language called
XTL designed for efficient processing of XML documents.
XTL comprises a comfortable pattern language that is
adapted to the needs of XML-document decomposition.
Patterns are compiled to enriched core code during the
compilation process. There is no intermediate interpreta-
tion of patterns at runtime as with most other approaches
for XML processing. Lazy evaluation in XTL causes a
processing of XML-documents in an “on demand man-
ner”. This aspect is especially important for the efficient
processing of huge documents.
First practical experimentation with a prototype of XTL
delivered encouraging results. We plan to provide bench-
marks soon in order to show that our approach delivers
significant performance advantages compared to similar
languages like XSLT or XDuce.

The design work on XTL has not been finished yet, there
are still several open points. I/O is such a point. I/O
with lazy evaluating functional languages is a nontrivial
problem, several solutions have been proposed and im-
plemented in the last decade like e.g. monadic I/O in
todays Haskell. We plan to include the concept of unsafe
I/O into XTL. For this purpose we intent to rely on the
work of Schmidt-Schauß [10] about unsafe I/O. Another
point is a type model on XML-level like for example the
regular expression types in XDuce. A lot of work has
been done in this area, in [5] Hosoya and Pierce give an
overview about the recent results . We plan to include
one of the existing concepts into XTL but in the style of
optional assertions, that are statically checked at compile
time. Further we intend to develop a standard prelude for
XTL that delivers a wide range of predefined functions
for document-processing including a tiny XML-parser.
Altogether our future work aims at a further development
of XTL so that it becomes publicly accepted alternative
to the widespread XSLT.
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