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Abstract— The active learning method (ALM), a methodology
of soft computing, has been proposed as a new fuzzy-based
modeling approach. The ALM has processing engines named
IDS’s, which are tasked with extracting useful information from
a system subject to modeling. Hardware that implements the
ALM provides fault tolerant capabilities due to parallelized IDS
units. This paper discusses hardware redundancy of the ALM
and traditional computing systems, and presents fault tolerant
capabilities of the ALM architecture.

I. INTRODUCTION

Soft computing is a discipline which features a low-cost,
robust computing process in the presence of ambiguity and
uncertainty, focusing on the remarkable human ability to
effortlessly deal with intricate information. Thus, some soft
computing methodologies simulate human behavior and physi-
cal characteristics. The ALM (Active Learning Method), which
has been proposed as a methodology of soft computing, is a
learning system that simulates the intelligent information han-
dling processes of the human brain with a microscopic view
[1][2][3]. The ALM is formed on the basis of fuzzy concepts,
striving to achieve human-like information processing. Typical
fuzzy applications use linguistic processing with membership
functions of the kind seen in fuzzy rules. On the other hand, the
ALM features pattern-based processing. This simulates human
nature in the modeling of processing information in pattern-
like images rather than utilizing numerical interpretations,
when humans acquire knowledge from complex targets. In the
ALM, a modeling method named IDS has been proposed. The
ALM has plural IDS units, which are modeling processing
engines where useful pattern information is generated directly
from raw input/output data.

ALM systems should have a hardware architecture that en-
ables parallel processing in the modeling layer which consists
of plural IDS units. Each IDS unit perform pattern processing
which is time-consuming in software calculation using a stan-
dard CPU. If the IDS is implemented in dedicated hardware,
parallelization with the IDS hardware units not only boosts
the overall processing speed, but also provides system fault
tolerance due to hardware redundancy. Thus, it is desirable
in terms of processing nature, performance, and robustness
to develop dedicated hardware for the IDS. Reference [4]
and [5] describe the development of IDS hardware and its
effectiveness.

System fault tolerance is indispensable for industrial appli-
cations such as safety-critical or long-life systems. If those

fault tolerant systems are utilized for modeling, inference,
and control in the presence of ambiguity or uncertainty,
exact computation, as seen in traditional computing systems,
is not necessarily required. However, almost 100% of such
systems are still based on the traditional computing architec-
ture. Here, ‘traditional’ means the von Neumann architecture.
Redundancy is a common means to enhance fault tolerance
of systems. Hardware redundancy is the most effective for
improving system availability. For example, compared with
a single CPU unit system, a duplex system with hot-swap
capable CPU units dramatically increases system availability.
Design of fault tolerant systems based on the traditional com-
puting architecture is difficult due to its exact and sequential
processing nature, and fault tolerance of those systems cannot
be perfect, because there is a shared area in the redundant
architecture.

The processing of ALM is inexact and parallel in nature.
Thus, hardware redundancy of the ALM is simply constructed,
and it has the possibility of overcoming many drawbacks
of the traditional fault tolerant systems. In this paper, we
discuss hardware redundancy of the ALM and the traditional
computing systems, and show fault tolerant capabilities of the
ALM through software-based simulated failure tests.

II. ACTIVE LEARNING METHOD

A. Fundamentals of the ALM

The ALM results from algorithm modeling focused on
simulating the intelligent information handling processes of
the human brain based on the following set of hypotheses.

When humans engage in modeling a complex system:

1 They derive system features by breaking down the
system into simpler aspects and translating information
in a more readily comprehensible form.

2 The information obtained at this stage is of a general
outline nature, representing pattern-like images rather
than numerical data.

3 They link multiple images together, and strive to obtain
an understanding of the system as a whole.

4 If the information is inadequate, an effort is made
to acquire additional information from specific parts
of the system by active manipulation. This process is
repeated through trial-and-error.
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Fig. 2. Image of data spread in IDS

Fig. 1 shows the modeling approach of ALM. Step 1 corre-
sponds to the breakdown of a multi-input, single-output system
(MISO), y = f(x1, ..., xN ), into single-input(xn), single-
output(y) systems (SISOs). From input/output data, each SISO
makes a pattern useful for modeling, using the method of ink
drop spread (IDS). Pattern information is obtained through
data fuzzification, and is visually comprehensible. The general
concept and algorithm for IDS are explained below.

IDS is an SISO system that contains an xn-y plane for
the recording of input/output relationships. The method plots
input/output data on this xn-y plane, and blurs data points like
ink patterns, as illustrated in Fig. 2. This process is called “data
spread.” As individual data spreads overlap, the overlapping
portions become increasingly darker, ultimately resulting in
a pattern on the surface of the plane. The pattern includes
continuous line(s) and spread(s). The continuous line shows
that the input and output have a close relationship, and the
spread indicates that the output depends upon other input(s). In
particular, the continuous line is referred to as a ‘narrow path.’
Practically, the narrow path and the spread are calculated in a
manner that determines the mean and the dispersion. The ALM
architecturally consists of a modeling layer with plural IDS
units and an inferential layer. The narrow paths and spreads
are transferred from the IDS units to the upper inferential layer,
and are used for the inferential process in the ALM.

The pattern sets thus obtained are next combined on the
basis of a set of combination rules. For example, with a
two-input system comprising x1 and x2, the output, y, is
sought with the following combination rules when each input
is divided into two regions.
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Fig. 3. Inference in the ALM using narrow paths and spreads

R1 : if x2 is A21 , then y11 is Ψ11

R2 : if x2 is A22 , then y12 is Ψ12

R3 : if x1 is A11 , then y21 is Ψ21 (1)
R4 : if x1 is A12 , then y22 is Ψ22

y is β11y11 or β12y12 or β21y21 or β22y22

where Anm
is the membership function, expressing the mth

region for the nth input variable. Ψnk
represents the kth

narrow path for the nth input variable. βnk
is the degree of

confidence for each narrow path, and is a weighted average
when the narrow paths are combined. The value of βnk

is
determined by the size of the spread. Fig. 3 shows an example
of the pattern-based modeling process on the two-input system
described above. In this figure, the ALM system seeks an
output yκ for xκ

1 and xκ
2 . The two graphs of the xn-y plane,

including narrow paths and spreads, indicate that we can obtain
an accurate yκ with pattern information from IDS21 rather
than from IDS11 . In spite of the simplified modeling process,
the ALM is able to output excellent modeling results using
plural IDS units.

B. The IDS Method

An IDS unit has a processing controller and an xn-y plane.
As the main function of IDS, the controller executes the data
spread on the plane with input/output data sets, and calculates
the narrow path and the spread from the pattern image on the
plane. Let the xn-y plane be Pxny = {p(x, y)|x ∈ Xn, y ∈ Y }
where p(x, y) is the point (x, y) in the plane. d(x, y) denotes
the darkness of the point (x, y).



If a data spread is done at (xs, ys), darkness of the neigh-
borhood of (xs, ys) is increased. As a pattern of ink drops, we
defined this added darkness by the following expression,

∆d(xs + u, ys + v) = I0 exp(−Ibias(u2 + v2)) (2)
−Is ≤ u, v ≤ Is

where I0, Ibias > 0, and Is are parameters for the added
darkness to the center point of ink drops, the bias of darkness
according to the distance from the center point, and the spread
of ink drops, respectively.

The important factors of IDS pattern image are narrow path
and spread. We used simplified methods of determining the
narrow path and spread so that utilized hardware resources and
processing time could be reduced. We applied the bisector of
area method (BOA) and a simplified method named IDS α-
cut spread to calculations of the narrow path and the spread,
respectively. In fuzzy applications, the BOA is often used in
defuzzification. The narrow path using the BOA is calculated
by

ψBOA(x) = {b|
b∑

y=1

d(x, y) ≈
ymax∑

y=b

d(x, y), b ∈ Y } (3)

where ymax = maxy∈Y y. The IDS α-cut spread is defined
by

σIDS
α (x) = max

y∈Y
{y|d(x, y) > α}−min

y∈Y
{y|d(x, y) > α}. (4)

The IDS α-cut spread is based on the idea behind α-cut of
fuzzy sets. The value of α may be determined by an average
darkness of the whole xn-y plane.

Spread information in the xn-y plane is used to seek the
degree of confidence of the narrow path for the inferential
processes of the ALM. The degree of confidence of the narrow
path is obtained from spread σIDS

α (x), using a conversion
function,

fc(x) =
{

1, if x ≤ P
exp(−Cbiasσ

IDS
α (x)), if P < x

(5)

where Cbias > 0 is a parameter for bias, and fc also has a
function of normalization.

III. IDS HARDWARE

In ALM, the number of narrow paths and spreads sought
with IDS increases extremely as the number of inputs and input
divisions increases. A system has N inputs, and each input X1,
..., XN is divided to M1, ..., MN regions, respectively. The
total number of IDS units, Utotal is given by

Utotal =
N∑

i=1

N∏

j=1,j 6=i

Mj . (6)

Suppose we have an ALM system with a number of IDS units
integrated into a standard computer. Executing the data spread
and calculating the narrow path and spread for each IDS unit
would place a heavy load on a host CPU when a complex
system is being modeled. This would lengthen the processing
time required for modeling and impact system performance on
the whole.

PCI bus

NP bus

XY Plane
Memory

Narrow Path
Memory

Syncronous SRAM

Syncronous SRAM

64-bit /
100MHz

32-bit / 55MHz

32-bit / 33MHz

IDS Controller

PCI-IDS
Interface

FPGA

FPGA

512Kbyte

8M byte

Fig. 4. Block Scheme of the HIDS

The ALM system structure provides robustness against
failures. An IDS unit executes a given modeling process
independently from other IDS units, but partially supplements
the results from these other IDS units. In Fig. 3, IDS11

supplements IDS21 . In case of a breakdown in the IDS21

unit, the system may keep a certain level of output accuracy.
The IDS layer conducts most parts of modeling process and
transfer condensed pattern data to the upper inferential layer.
The amount of data transferred between the upper layer unit
and each IDS unit is small. These conditions also facilitate
system scalability.

In order to secure the performance and fault tolerance of
the ALM, dedicated hardware for IDS is indispensable for
complex modeling which demands realtime capabilities, and
industrial applications which demand high system availability.

According to the hardware implementations described in
Section II, we developed a new IDS hardware unit named
‘HIDS’. The block scheme of the HIDS is illustrated in Fig. 4.
The main IDS circuits ran at 100MHz. The NP bus in the
figure is a simple original bus. The HIDS is installed as a 32-
bit/33MHz standard PCI card. Reference [5] gives details of
the development of the HIDS.

IV. HARDWARE REDUNDANCY

A. Redundancy of computing systems

Most types of traditional computers run with a single
processor, and a single unit which is comprised of a pro-
cessor, a memory controller, the main memory, and other
peripherals. Although such computers provide us with exact
computational results, if we demand severe fault tolerance of
the computers, the control logic for redundancy becomes very
complex because of the exact and sequential nature of the
traditional computing. Fig. 5 illustrates a typical example of
‘pair and a spare’ which is the most well-established fault
tolerant technique in traditional computing systems, and is
widely used in safety-critical applications that require high
system availability. The central controller in Fig. 5 is a memory
controller, and also has the functions of error detection for
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duplicate processors and bus arbitration between redundant
units. If duplicate processors output different computational
results in an operational unit, the faulty unit is removed from
the operation and immediately replaced with a standby unit.
In the traditional fault tolerant systems, duplicate processors
do not contribute to the enhancement of the processing speed
of the unit. On the contrary the overall speed may be degraded
due to control for redundancy in comparison with a standard
architecture. Also, the fault tolerance of traditional computers
cannot be perfect, because there is a shared area in the
redundant architecture. As this shared area decreases, the
availability of the redundant system improves.

Unlike the traditional computing systems above, neural
networks do not provide exact computational results. They
are applied mainly to control and learning problems, and
their inexact processing nature is a feature of soft comput-
ing systems. Although, in the hardware of soft computing
technologies, neural network hardware [6] may have the most
potential to be used in a wide variety of industrial applications,
the industrial use of neural networks in hardware is still
limited. Fig. 6 illustrates a neural network structure. The neural
network systems have massively interconnected structures and
perform heavy parallel processing if dedicated hardware is
used for them. Hence, they have considerable potential for fault
tolerance. The fault tolerance of neural networks has attracted
the attention of many researchers for years [7][8][9].
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B. Redundancy of ALM systems

The ALM system, as also seen in neural networks, has ‘nat-
ural’ fault tolerance in its architecture. For modeling complex
systems, the ALM involves a good number of IDS units, each
of which has different modeling tasks. Parallelization with IDS
hardware units increases not only the overall processing speed
and modeling accuracy, but also system fault tolerance. Fig. 7
shows three structures of the ALM modeling layer. This figure
illustrates part of the modeling layer which deals with the
nth input Xn. Fig. 7(a) represents the highest redundancy,
where IDS controllers are equipped with the total number
of divisions of the other input variables as shown in (6).
In this structure, the failure of IDS controllers has the least
impact on the precision of the overall model. For large-scale
systems, however, if hardware implementation of the IDS uses
digital circuitry, this structure would be expensive because a
great number of IDS controllers would be required. Fig. 7(b)
and 7(c) are alternative structures that are not expensive. In
particular, Fig. 7(c) is the least expensive structure among
ALM systems that have realtime capabilities. If some intervals
between input/output data sets are given, and these are not
simultaneously input into the same nth input interface, one
IDS controller can execute modeling processing in realtime.
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TABLE I
IDS PARAMETERS IN EXPERIMENTS

I0 Ibias Is P Cbias α
15 0.0083 39 90 0.01 1

However, failure of the IDS controller in this structure results
in the lack of a modeling means for the aspect of input Xn.
Hardware redundancy of the ALM modeling layer would be
determined according to the system scale, system reliability,
and cost.

C. Experiments on fault tolerance of the ALM

To examine modeling performance in the presence of a
single unit failure in the Fig. 7(a) structure, we conducted
software-based simulated failure tests. We gave a fault to each
of IDS units in turn, and kept the upper inferential unit from
receiving any data from the faulty IDS unit. In the tests, each
IDS unit had an xn-y plane with 1024x1024 resolution, and
IDS parameters were set as Table I. The following nonlinear
function was used for modeling.

y =
√

2
( sinx1

x1

)2

+ 3
( sinx2

x2

)2

, 1 ≤ x1, x2 ≤ 10 (7)

This function is graphically shown in Fig. 8. We tried three
different modeling conditions in Table II. Each input was
divided into two, four, and six regions. By changing the
number of input divisions, we can see the relationship between
the redundancy of IDS units and the fault tolerance of ALM.

To evaluate the completed models, 1000 input sets that
were randomly generated were input to the models, and the
mean squared error (MSE) and the correlation coefficient
were calculated using the original function’s outputs and the
model outputs. Fig. 9, Fig. 10, and Fig. 11 map the results
of modeling tests that divided each input by two, four, and
six, respectively. Each case (a) in the figures is a modeling

TABLE II
MODELING CONDITIONS IN EXPERIMENTS

ALM1 ALM2 ALM3
Number of input divisions 2 4 6

Number of IDS units 4 8 12
Number of training data 200 350 500

result without any unit failure, and each case (b) represents
the worst modeling result in MSE among the ALM systems
with a single unit failure. In Fig. 9(b) part of the graph was
apparently out of shape, because one out of four IDS units did
not work. In Fig. 11(a) the modeling result of six divisions in
no failure was very similar to the original, and in Fig. 11(b) the
effect of a single unit failure remarkably reduced. As a result
of the experiments, we confirmed that if more IDS units were
used according to the input divisions, the fault tolerance of the
ALM system improved.

V. CONCLUSION

Today’s fault tolerant systems have several issues to be
discussed, as described in section IV.A. Those issues have
been caused by excessive dependence on the power and tech-
nology of modern-day computers based on the von Neumann
architecture. We consider that soft computing technologies are
great potential for the development in the area of fault tolerant
systems. We aim to realize an ALM learning system that is
capable of performing high-speed high-precision computation
with excellent fault tolerant capabilities. In this paper, the
redundancy of the ALM architecture and its fault tolerant capa-
bilities were presented. The hardware redundancy of the ALM
contributes not only to the processing speed and modeling
accuracy, but also to system fault tolerance. In future papers,
we will compare the ALM with neural networks about various
performance criteria including fault tolerant capabilities.
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(a) No failure, MSE = 0.0118, correlation coefficient = 0.991
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(b) Single failure, MSE = 0.0558, correlation coefficient = 0.850

Fig. 9. Model outputs of ALM1 (two divisions)
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(a) No failure, MSE = 0.0068, correlation coefficient = 0.989
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(b) Single failure, MSE = 0.0129, correlation coefficient = 0.967

Fig. 10. Model outputs of ALM2 (four divisions)
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(a) No failure, MSE = 0.0065, correlation coefficient = 0.993
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(b) Single failure, MSE = 0.0102, correlation coefficient = 0.985

Fig. 11. Model outputs of ALM3 (six divisions)


