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Abstract -We present in this article, the realisation of reactive navigation 
module based on neural networks of temporal radial basis functions 
« TRBF », while using an orthogonal least square algorithm « OLS ». 
Applied to a type structured like  interior of building, the robot must 
assure his task of navigation mildly all while avoiding obstacles without 
wandering, with the possibility to take in account the taken decisions in 
his past lasting trajectory.  
Keywords -Reactive navigation, TRBF, OLS, Mobile Robot. 
  

I. INTRODUCTION 

The navigation is considered like a basis function of the 
complete system of mobile robot while basing on information 
on the nature of the environment.  
The general idea consists in associating an elementary 
displacement of the robot to information of situation. This 
information is the same type that we use by in recognition of 
the environment. It is a vector of inputs about distances robot- 
measures counter environment among the 1024 possible [1]. 
For this input, the network should associate an elementary 
displacement of type:  « Advance of one step, to turn on right 
or left in one step » [2].  
For the recognition of situations the robot must have a 
panoramic vision on 360 degrees, independent of its 
movement [3].  
Here in opposite, the sense of displacement of the mobile 
seems indispensable. In addition, it is necessary to recall that 
neuronal module to achieve is foreseen to function in link 
with the system of perception and the system of auctioneers 
commands, while following the following decision chain (to 
see Fig.1) [1] :  
 
 
 
 
 

Fig.1 Module of navigation  
 

We are not evidently here in case of the generation and the 
follow-up of an optimal trajectory; we ask nevertheless for 
the chain of navigation to be globally surest possible [4]. We 
have opts for a neuronal module based on temporal radial 
basis functions using Orthogonal Least Square contexts, 
because we think that it adjusts good with this type of 
problem ( overlapping or oscillations owing a confused 
situation), in this case the taken decision insertion in the past 
becomes important and useful. So that we can integrate the 

temporal notion, we needed to play on the optimisation of all 
parameters, in object:  

 To have an integral solution in a reliable hardware 
carried easily   and fast.  

 To use of less expensive sensors.  
 Hardiness towards noises and the unforeseen 

shortcomings.  
After this introduction we pass to section 2 to define the 
application about the navigation of mobile robot. In the 
section 3 we show how using a temporal Radial Basis 
Function in chain decision, based on the OLS algorithm 
(Orthogonal Least Square). Results and simulation are 
presented in the section 4. Finally we conclude by 
commenting the application while proposing some 
perspectives.  
 

II. APPLICATION 

A. Problem definition  

We consider eleven elementary situations that a robot can 
frequently meet inside a building: passage, impasse, corner, 
piece, wall, left angle, input, right angle, crossing, T-crossing 
and output (see Fig.2)  
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Elementary situations  
    
In this environment the mobile robot must assure its stain of 
navigation mildly all while choosing an optimal course, for 
this effect we introduced the probabilistic notion in the action 
with hold in amount of the temporal aspect.  
We must recall here that the sense of displacement of the 
robot has an influence on the creation of the training basis and 
in this goal we must consider the half-plan like source of 
information for actions of the robot (to turn on the right or on 
the left or Advancing).  
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B. Preparation of the Learning basis  

For many situations of environment, the mobile is placed in 
uncertain way in Np different positions, with an uncertain 
initial orientation. Then R rotations of a step θ given are done 
there, creating Ri « examples » for every Npi position. We 
have thus: ( Np∑

=1i
i* (Ri +1) examples with i : 1.. s ; s 

represents  the number of chosen situations for the navigation.  
For every example, the vector of information containing N 
distances is recorded and a decision of elementary order of 
movement is chosen (see Fig.3, it shows the taken decisions 
according to the main direction of the axis of the robot in an 
environment of type passage).  
 
 
 
 
 
 
 
   
 
 
             
 
                    

Fig.3. Decisions of displacement according to  
                       robot orientation in a passage.  
 
At the time of the creation of the basis, we chose decisions in 
order to direct the mobile toward a trajectory situated toward 
the middle of the environment (for reason of displacement 
security).  
 
The following Fig. 4 shows for a particular environment, that 
orders have been worked out of the training basis. We 
distributed this environment in 4 zones of Z1 to Z4.  
 
- If the robot is in a zone « Z1 », from it position and it initial 
direction one will create R « examples » by P rotation of 10°. 
For every case, the chosen order will be compliant, according 
to the direction of the main axis, to the Fig. 3.  
 
- Suppose now that the robot is in a zone « Z2 », with an 
initial orientation in direction of the left wall. We create as 
much then of « examples » by rotations of 10° toward the 
right that it is necessary so that the axis of the robot rejoins 
the axis of the passage. For every case an order « Turn To 
Right » will be associated. If the initial orientation moves 
away the mobile of the wall, we will associate an order 
« Advance » and none example won't be creates.  
 
By duality, the same procedure has been used for the zone 
« Z3 ». If the robot is in the zone « Z4 », one will make it turn 
until to be in a compatible direction with the trajectory 
indicated on the face.  
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 In the following part we describe the architecture of the 
network and the training algorithm.  
 In the following part we describe the architecture of the 
network and the training algorithm.  

 

j=1

  
A. Network Architecture  A. Network Architecture  

We propose the following architecture see Fig.5 and Fig.6:  We propose the following architecture see Fig.5 and Fig.6:  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
  
  
Maintenant nous définissons:  Maintenant nous définissons:  
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Where ϕ: is a function of activation (Linear or Sigmoid etc)  
and W0k are the slant. The kernel function is:  
Where ϕ: is a function of activation (Linear or Sigmoid etc)  
and W
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Where i=1.. h, h: is the number of centres.  
j=1.. m, m: is the dimension of the hidden time delay  (τ2).  
Dimension of Here = dimension of X = n x l.  
n = number of feature of the input vector.  
l = is the dimension of time delay of input (τ1).  
φ j,σi = the function core characterized by the time delay of j 
delay with a receiving field σi ( see Fig.7.)  
 
 

 
 

φ : kernel that can be  
-Gaussian :exp(-r2/σ2) 
-logarithmic :log(r2+k2) 
-Quadratic: :r2i+1 

-Thin plate spline: r2log(r) 
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Fig.6 Representation of the delay block of 
(τ1,τ2)  
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Fig.5 Representation of the TRBF network  
Fig.7 Kernel example 
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. RESULTS AND SIMULATION 
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date stakes on the basis of training, either by the method to 
either center-reduce it by the shift of data (x’=2*x-1) [1,8].  

B. Choices of kernels  

Certain authors proposing to choose a variety of kernels in the 
training like thin: plate spline, the gaussian and 
multiquadratic kernels, but it asks for an enormous count time 
to choose the best center with the best kernel, in our survey, 
we fixed the kernel. 
 
C. Training and Test rates  

Table 1 Training Rates 
Action  
 

Turn  on 
left  

Advance  Turn  on  
right  

Global 
rate  

Rate of training 
 

 
95.88% 

 
96.46% 

 
97.9% 

 
96.74% 

Rate of 
recognition 

 
94.23% 95.88% 97.53% 95.88% 

 
Looking at the above table, we notice after these results that 
the navigation reacts well with the TRBF training. It comes 
back to the reduced class number that enters in conflict (3 
classes) on the first hand, and to the fact that examples of 
training base has been chosen minutely.  
 
D. Tolerance to noise  

The Table.2 presents the gotten results while adding to data of 
the validation basis a gaussian noise of spread (variable 
between 0.01 and 0.1. One notes that until β=0.05 there 
nearly is not any reduction of performances. It assures 
practically that we could replace the telemeter laser by 
another sensor. When choosing a gaussian noise we got these 
results on Table. 2: 
 
Table.2 Comparison between of noised data with a gaussian 
noise, while playing on the factor of spread β . 
Action  
 

Turn  on  
left  

Advance  Turn  on  right  Global rate 

β=0.01 94.23% 95.88% 97.53%  96.74% 
β=0.03 95.06% 93.41% 96.7%  95.05% 
β=0.05 93.8% 92.5% 95.47%  93.92% 
β=0.08 90.9% 89.3% 93.41%  91.20% 
β=0.1 88.88% 87.65% 92.18%  89.57% 
 
After this results, we notice that gaussian noise, in spite of 
increase of the spread type, didn't drag a total deterioration on 
the global rate until a spread β =0.1. We conclude that the 
margin of the spread type that keeps the best performances 
belongs to the interval [0.01, 0.05].  
 
E. Simulation in unknown environment  

The good results in environments of training incited us to do 
other tests to validate the capacity of the network to make sail 
correctly the robot in very different situations          
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Fig.8. Environment test
. 8 shows that results gotten in a course through 
 of shapes bent and of variable widths obliging the 
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to-stroke. All small obstacle placed close to the centre 
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V. CONCLUSION 
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