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Abstract— Recently, the concept of bi-capacity has been intro-
duced in MCDM as a generalization on bipolar scales of capacities.
This new model has the ability to represent behavioral changes
between attractive and repulsive values w.r.t. criteria. The main
drawback of this model is that it holds a huge number of param-
eters, which makes its determination quite delicate in practice.
From the observation that bipolarity is usually required only on a
subset of criteria, we define the notion of P -symmetric bi-capacity
that has the complexity of a bi-capacity on P and the complexity
of a capacity on the remaining criteria. This concept is applied to
a MCDM example.

I. INTRODUCTION

MultiCriteria Decision Making (MCDM) aims at modeling
the preferences � of a decision maker (DM) over alternatives
described by several points of view X1, . . . , Xn. Two funda-
mental operations are needed in approaches to MCDM prob-
lems: the construction of utility functions and the aggregation
of these utility functions.

Utility functions depict the preferences �i of the DM over
one attribute Xi. It may exist on each attribute a particular el-
ement, called neutral level, such that better elements are con-
sidered as good whereas worst elements are considered as bad
for the DM. Such a neutral level exists whenever relation �i

corresponds to two opposite notions of common language. For
example, this is the case when �i means “more attractive than”,
“better than”, etc., whose opposite notions are respectively “at-
tractiveness/repulsiveness”, and “good/bad”. In such cases, the
measurement scale associated to the utility function is said to
be of bipolar nature. By contrast, relation “more satisfactory
than” do not clearly exhibit a neutral level. Such scale is said to
be of unipolar nature.

In practice, most of the time, the underlying scale is unipo-
lar and is represented by the interval [0, 1]. However, bipolar
scales are of great interest, especially for the modeling of affect
expressed by the DM [6]. The motivation for doing so is that
human DMs do effectively distinguish positive and negative as-
sets, and behave differently.

On the other hand, most of the well-known methods (ELEC-
TRE, MACBETH, MAUT, ...) are based on a weighted sum.
This function requires the independence of the criteria, which
is very rarely satisfied. When a DM evaluates an alternative, he

generally makes an overall assessment by considering all cri-
teria at the same time instead of considering them separately
one at a time. The satisfaction the DM allots to the value w.r.t.
one criterion depends on the values w.r.t. the other criteria. A
typical example of that is the presence of intolerant (resp. tol-
erant) behaviour of the DM w.r.t. several criteria for which all
of them must be well-satisified (resp. only one of them shall
be well-satisfied) in order to get a fine overall assessment. To
model such behaviors, the Choquet integral has been introduced
in MCDM as an aggregation operator. It has indeed been shown
to represent a certain kind of interaction between criteria, rang-
ing from redundancy (tolerance - negative interaction) to syn-
ergy (intolerance - positive interaction).

For bipolar scales, extensions of the Choquet integral has
been introduced: the asymmetric Choquet integral, and more
generally the CPT (Cumulative Prospect Theory) in decision
under risk or uncertainty [7]. Despite the ability of these mod-
els to cope with many decision behaviors, it is not uncommon
to meet practical situations where these models fail to represent
preferences, even though these preferences seem rather natural.
Section 4 presents one of such an example. These models fail to
represent situations where the DM has different decision strate-
gies on attractive and repulsive values. These are examples of
interaction between criteria on bipolar scales.

An extension of the Choquet integral and the CPT model for
bipolar scales has recently been proposed [2]. As recalled in
Section 4, this new model is able to represent sign-dependant
decision behaviors. It leads to a generalization of the notion of
capacity called bi-capacity [3].

The main asset of bi-capacities is to take into account ex-
plicitly the sign of the criteria values. However, this versatil-
ity and flexibility has a cost: a bi-capacity holds much more
parameters than a capacity. A bi-capacity contains indeed 3n

unknowns instead of 2n for a capacity, which makes the deter-
mination of a bi-capacity quite delicate. As an example, with
5 criteria, a capacity has 25 = 32 coefficients whereas a bi-
capacity holds 35 = 243 coefficients. Ten well-chosen learning
examples are generally enough to determine a capacity with 5
criteria. It would require maybe 80 learning examples to de-
termine a bi-capacity with 5 criteria. This is obviously beyond
what a human being could stand.

To solve this problem, the idea is to consider a model that



has fewer coefficients than bi-capacities. We first notice that
in most MCDM problems with sign-dependant decision strate-
gies, the bipolar nature is not generally compulsory on all cri-
teria. In the example given in Section 4, a bipolar model is
needed only for one criterion. A usual unipolar model (based
on a capacity) is enough on the other criteria. Our approach
consists in allowing more degrees of freedom on some criteria
compared to the other ones. This is done by enforcing some
symmetry properties on the criteria that do not need bipolarity.
These symmetry conditions state that the interaction between
positive and negative values vanishes for the criteria that do not
need bipolarity. This is derived from a property satisfied by the
asymmetric Choquet integral and the CPT model. We obtain a
family of bi-capacities ranging from the CPT model to general
bi-capacities.

II. PRELIMINARIES

The set of all criteria is denoted by N = {1, . . . , n}. The
problem of the determination of utility functions through a bi-
capacity has already been addressed in [2]. We focus here on
the aggregation model so that all scores w.r.t. criteria are sup-
posed to be given in the bipolar scale IRn. Hence alternatives
are elements of X = IRn. Considering two acts x, y ∈ X and
A ⊂ N , we use the notation (xA, y−A) to denote the compound
act z ∈ X such that zi = xi if i ∈ A and yi otherwise.

A. Capacity and Choquet integral

A capacity, also called fuzzy measure, is a set function ν :
2N → IR satisfying

• A ⊂ B ⇒ ν(A) ≤ ν(B),
• ν(∅) = 0, ν(N) = 1.

In MCDM, ν(A) is interpreted as the overall assessment of the
binary act (1A, 0−A). The set of all capacities defined on N is
denoted by G2.

The Choquet integral defined w.r.t. a capacity ν has the fol-
lowing expression :

Cν(x1, . . . , xn) = xπ(1)ν(N)+

n
∑

i=2

(

xπ(i) − xπ(i−1)

)

ν
(

Aπ(i)

)

,

(1)
where xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n), Aπ(i) =
{π(i), · · · , π(n)} and x1, . . . , xn ∈ IR+.

The Choquet has been introduced in MCDM for its ability to
model decision behaviors ranging from tolerance to intolerance.
It has been shown to represent the importance of criteria, the
interaction between criteria and other decision strategies such
as veto or favor.

B. Aggregation on bipolar scales

The Choquet integral has a natural extension to bipolar
scales. It has the same properties and the same mathematical
expression. The Choquet integral is asymmetric in IRn. With
this model, the behavior of the DM on the whole domain is en-
tirely determined by his behavior in the positive part, which is
described by the capacity.

The Choquet model fails to represent behavioral changes be-
tween attractive and repulsive values. In decision under risk
or uncertainty, the behavior of individuals is fairly different for
gains (attractive values) and losses (repulsive values). It is char-
acterized by a non-symmetric behavior. The idea is to deal the
positive and the negative parts with two separate aggregation
functions:

CPT (x) := Cν1
(x+) − Cν2

(x−) ,

where ν1 and ν2 are two capacities associated to the positive
and the negative parts respectively. More precisely, ν1(A) is in-
terpreted as the overall assessment of the binary act (1A, 0−A),
and ν2(A) is interpreted as the opposite of the overall assess-
ment of the binary act (−1A, 0−A). This is known as the Cu-
mulative Prospect Theory (CPT) model [7]. The set of all CPT
models defined on N is denoted by G2

±. In MCDM, this model
amounts to weighing up the pros (attractive values) and the cons
(repulsive values). There is no interaction between the positive
and the negative parts. Generalizations of the CPT model are
sought.

All previous models are limited by the fact that they are con-
structed on the notion of capacity. The idea is thus to generalize
the notion of capacity. Let

Q(N) = {(A, B) ∈ P(N) ×P(N) | A ∩ B = ∅} .

A bi-capacity is a function satisfying [2]
• A ⊂ A′ ⇒ µ(A, B) ≤ µ(A′, B),
• B ⊂ B′ ⇒ µ(A, B) ≥ µ(A, B′),
• µ(∅, ∅) = 0, µ(N, ∅) = 1, µ(∅, N) = −1

The first two properties depict increasingness. In MCDM,
µ(A, B) is interpreted as the overall assessment of the ternary
act (1A,−1B, 0−A∪B). The set of all bi-capacities on N is de-
noted by G3.

The Choquet integral w.r.t. a bi-capacity m has been pro-
posed in [2]. Let x ∈ X , N+ = {i ∈ N, xi ≥ 0} and
B− = N \ N . Define the capacity ν by

∀A ⊂ N , ν(A) := µ
(

A ∩ N+, A ∩ N−
)

.

Then the Choquet integral w.r.t. µ is defined by:

BCµ(x) := Cν (xN+ ,−xN−) .

Let π be a permutation such that |xτ(1)| ≤ . . . ≤ |xτ(n)|, and

Aπ,+
i = {τ(i), · · · , τ(n)}∩N+ =

{

τ(j) , τ(j) ≥ τ(i) , xτ(j) ≥ 0
}

,

Aπ,−
i = {τ(i), · · · , τ(n)}∩N− =

{

τ(j) , τ(j) ≥ τ(i) , xτ(j) < 0
}

.

Then one can write

BCµ(x) =
n

∑

i=1

∣

∣xτ(i)

∣

∣

[

µ(Aπ,+
i , Aπ,−

i ) − µ(Aπ,+
i+1 , Aπ,−

i+1)
]

(2)
Let ΣA := {x ∈ IRn , xA ≥ 0 , x−A < 0}. The Choquet in-
tegral w.r.t. a bi-capacity is clearly a weighted sum in each
domain

Σπ
A =

{

x ∈ ΣA , |xτ(1)| ≤ . . . ≤ |xτ(n)|
}

.



for a permutation π and A ⊂ N .

The following lemma shows that capacities correspond to
asymmetric bi-capacities [2]:

Lemma 1: If m satisfies µ(A, B) = µ(N \ B, N \ A) for
all (A, B) ∈ Q(N), then the Choquet integral w.r.t. µ is equal
to the Choquet integral w.r.t. the capacity ν given by ν(A) =
µ(A, ∅).
The CPT model associated to the capacities ν1 and ν2 is a par-
ticular case of bi-capacity defined by

µ(A, B) = ν1(A) − ν2(B) . (3)

Moreover, one has the following characterization [2]:
Lemma 2: If µ satisfies µ(A, B) − µ(A, B′) =

µ(A′, B) − µ(A′, B′) for all A, A′, B, B′ ⊂ N , such
that (A, B), (A, B′), (A′, B), (A′, B′) ∈ Q(N), then the
Choquet integral w.r.t. µ reduces to a CPT model.

III. BI-CAPACITIES WITH VANISHING INTERACTION

INDICES

Bi-capacities hold much more parameters than usual capac-
ities. Switching from a usual capacity to a bi-capacity implies
indeed a tremendous increase in the number of unknowns, go-
ing from 2n to 3n. The idea is thus to consider intermediate
models with a number of unknowns that is reasonably larger
than 2n.

Instead of bearing all the new degrees of freedom uniformly
on all criteria, the idea is to put new coefficients only on the
criteria that exhibit a switch of behavior between attractive and
repulsive values. On the other criteria, the complexity should
remain the same as for models based on capacities.

A. Towards the wished symmetry property

As said earlier, the flexibility of a bi-capacity is usually not
necessary on all criteria. We wish to define bi-capacities that
hold as many parameters as a usual bi-capacity on some cri-
teria, and the same number of parameters as capacities on the
remaining criteria. Let us denote by P the set of criteria for
which the DM’s behavior is clearly of bipolar nature.

All criteria are treated uniformly in capacities and bi-
capacities. Nothing special is done in the representation model
on one criterion compared to another one. The underlying lat-
tices are indeed uniform - the 2N uniform lattice for capacities
composed of two reference levels on each criterion, and the 3N

uniform lattice for bi-capacities composed of three reference
levels on each criterion. The idea is to adopt a non-uniform
representation based on a non-uniform lattice, composed for in-
stance of three levels on criteria of P and only two levels on the
other criteria. The complexity of such model would be of order
3p (with p = |P |) on P and 2n−p (with n = |N |) on the other
criteria, which gives an overall complexity of order 3p × 2n−p.

¿From Lemma 1, a capacity is a particular case of a bi-
capacity that is asymmetric. In order to reduce the complex-
ity of a bi-capacity on criteria N \ P , it seems thus natural to
impose some (a)symmetric conditions on N \ P .

It is easy to characterize bi-capacities that fulfill symmet-
ric properties on all criteria. For instance, a bi-capacity cor-
responds to a usual capacity if and only if

∀(A, B) ∈ Q(N) µ(A, B) =
µ(A, N \ A) + µ(N \ B, B)

2
(4)

This relation concerns all elements of Q(N). In order to obtain
symmetry only on N \ P , a natural idea is to enforce previous
relation only on Q(N \ P ). This gives

∀(A, B) ∈ Q(N\P ) µ(A, B) =
µ(A, N \ A) + µ(N \ B, B)

2
(5)

We obtain a family of bi-capacities with a gradual symmetry
by choosing P from the empty set to the full set. The general
bi-capacities are indeed recovered when P = N , and usual
capacities are obtained when P = ∅. However, the resulting bi-
capacity for the intermediate values of P is not so natural. This
can be easily seen by investigating what we gain by putting pre-
vious relation onQ(N\P ). Relation (5) implies that the restric-
tion of µ on Q(N \P ) is entirely determined from a knowledge
of µ only on {(A, N \ A), A ⊂ N \ P} ∪ {(N \ A, A), A ⊂
N \ P}. This set is included in Q(N) \ Q(N \ P ). Hence, the
terms of µ on Q(N \ P ) can be discarded, and the terms of µ
on Q(N)\Q(N \P ) must be kept. The number of variables in
the restricted model is thus 3n − 3n−p. We see that the gain on
the number of variables is far from what we are looking for.

Other attempts starting from relation (4) are also unsuccess-
ful either due to the same reason or since the resulting model
has a weird behavior.

To overcome this difficulty, another property satisfied by a
symmetric bi-capacities is sought. Lemmas 1 and 2 give ex-
amples of symmetric (or asymmetric) behaviors between the
positive and negative values. By (3), the decisional behavior
of a CPT-model in a domain ΣA can be deduced from that in
the two domains ΣN and Σ∅. For asymmetric bi-capacities, the
behavior of the DM is determined only by his behavior on at-
tractive values. This close link will be generally speaking lost
for a general bi-capacity.

Symmetry between positive and negative values implies that
there is a link between well-satisfied and ill-satisfied criteria
belonging to N \ P . This can be quantified with the help of
an index that measures the way the criteria interact each other
within a bi-capacity. This is the interaction index.

The interaction indices have been introduced in MCDM to
measure the way criteria interact each other. Let us start with
the case of a capacity. Two criteria are said to interact conjunc-
tively if both criteria must necessarily be satisfied together to get
a good overall evaluation. The contribution of this phenomenon
to the overall evaluation equals the smallest score between the
two criteria. Such interaction is said to be positive. Two crite-
ria are said to interact independently if the contribution of one
criterion to the overall evaluation does not depend on the other
one. The contribution of this phenomenon to the overall eval-
uation corresponds to a weighted sum of the scores of the two
criteria. Two criteria are said to interact substituatively if it is
enough to satisfy one criterion to get a good overall evaluation.



The contribution of this phenomenon to the overall evaluation
equals the largest score between the two criteria. Such interac-
tion is said to be negative.

When there are only two criteria, the value of this interaction
(positive, zero or negative) for capacities has been defined as
follows [5]:

Iν({i, j}) = ν({1, 2}) − ν({1}) − ν({2}) + ν(∅)

A conjunctive situation is indeed typically represented by the
following capacity: ν({1, 2}) = 1 and ν({1}) = ν({2}) =
ν(∅) = 0. Previous formula yields a positive interaction.
Moreover, a substituative situation is typically: ν({1, 2}) =
ν({1}) = ν({2}) = 1 and ν(∅) = 0. Previous formula yields
then a negative interaction. Finally, an independent situation
is for instance: ν({1, 2}) = 1, ν({1}) = ν({2}) = 1/2 and
ν(∅) = 0. Previous formula yields then a zero interaction.
When more criteria are involved, the interaction index between
criteria i and j becomes [5]:

Iν({i, j}) =
∑

K⊂N\{i,j}

(n − k − 2)!k!

(n − 1)!
∆{i,j}ν(K) ,

where ∆{i,j}ν(K) = ν(A∪{i, j})−ν(A∪{i})−ν(A∪{j})+
ν(A). Interaction involving more than two criteria can also be
defined [1]:

Iν(A) =
∑

K⊂N\A

(n − k − |A|)!k!

(n − |A| + 1)!
∆Aν(K) ,

where ∆Aµ(K) =
∑

L⊂A(−1)|A|−|L|ν(K ∪ L).

The notion of interaction can be generalized to bi-capacities.
Let us consider once more two criteria. Then, it is natural to
define four interaction indices for the parts which lead respec-
tively to [4]:

Iν({i, j} , ∅) = µ({1, 2} , ∅) − µ({1} , ∅) − µ({2} , ∅) + µ(∅, ∅)
Iν(∅, {i, j}) = µ(∅, ∅) − µ(∅, {1}) − µ(∅, {2}) + µ(∅, {1, 2})
Iν({1} , {2}) = µ({1} , ∅) − µ(∅, ∅) − µ({1} , {2}) + µ(∅, {2})
Iν({2} , {1}) = µ({2} , ∅) − µ(∅, ∅) − µ({2} , {1}) + µ(∅, {1})

When more criteria are involved, considering for instance the
third interaction, we set

∆{i},{j}µ(A, B) = µ(A∪{i} , B∪{j})−µ(A∪{i} , B)−µ(A, B∪{i})+µ(A, B)

and

Iµ({i} , {j}) =
∑

K⊂N\{i,j}

(n − |K| − 2)!|K|!

(n − 1)!
∆{i},{j}µ (K, N \ (ν(K) ∪ {i}))

(6)
One can show that the general formula is [4]:

Iµ(A, B) =
∑

K⊂N\(A∪B)

(n − |K| − |A| − |B|)!|K|!

(n − |A| − |B| + 1)!
∆A,Bµ(K, N\(A∪K)) .

(7)
where ∆A,Bµ(S, T ) =

∑

K⊂A,L⊂B(−1)(|A|−|K|)+(|B|−|L|)µ(S∪
K, T \ L). Iµ(A, B) is the interaction index of µ on A ∪ B for
attractive values of criteria A and repulsive values of criteria
B. The interaction index is a key notion to define symmetric
bi-capacities w.r.t. criteria P .

B. Bi-capacities with vanishing interaction indices

An interesting property for CPT-model (see Lemma 2) is that
the associated bi-capacity (see (3)) satisfies Iµ(A, B) = 0 for
all (A, B) ∈ Q(N) with A 6= ∅ and B 6= ∅. This property is not
surprising at all. Coming back to Section III-A, we have seen
that the interaction index between i and j is zero if i and j are
independent. This means that the contribution of the two crite-
ria put together is just the sum of the elementary contributions
of each criterion taken separately. Yet, from (3), the contribu-
tion in a CPT-model of the positive and the negative parts taken
together is the difference between the elementary contributions
of the positive and the negative criteria taken separately. Hence,
it is natural to say that the positive criteria are independent to
the negative criteria in the CPT model. This refers to a bipolar
independence characterized by a vanishing bi-interaction index.
Hence the property is intuitive.

We want to restrict this property to N \ P , leading to
Iµ(A, B) = 0 for all (A, B) ∈ Q(N) with A 6= ∅ and B 6= ∅.
In particular, we obtain Iµ({i} , {j}) = 0 for all {i, j} ⊂ N\P .
As we have seen with (5), if we restrict to a relation satisfied
only on N \ P , the gain in terms of complexity will be quite
negligible. So, we rather impose that all terms appearing in the
expression of Iµ({i} , {j}) vanish. We require thus by (6) that
∆{i},{j}µ(A, B) = 0 for all (A, B) ∈ Q(N) with A 6= ∅ and
B 6= ∅. Clearly, this property implies previous one.

Definition 1: Bi-capacity µ is said to be symmetric w.r.t. P
(called P -symmetric) if ∆{i},{j}µ(A, B) = 0 for all (A, B) ∈
Q(N \ {i, j}) and all {i, j} ⊂ N \ P .

Let G3
p(N) be the set of all bi-capacities defined on N that

are P -symmetric w.r.t. to a coalition P of cardinality p. The
following lemma can be shown:

Lemma 3: If µ is P -symmetric, then Iµ(A, B) = 0 for all
(A, B) ∈ Q(N) with A ∩ (N \ P ) 6= ∅ and B ∩ (N \ P ) 6= ∅.
In particular, Iµ({i} , {j}) = 0 whenever {i, j} ⊂ N \ P .

Let us see now the gain attained thanks to this definition. Set

QP (N) := {(A ∪ A′, B ∪ B′), (A, B) ∈ Q(P ) , (A′, B′) ∈ Q(N \ P )

with A′ = ∅ or B′ = ∅} .

Let νP be the restriction of µ on QP (N). νP contains 3n−p ×
(

2p+1 − 1
)

terms. The next lemma shows that µ is determined
only from a knowledge of νP , that is from µ on QP (N).

Lemma 4: If µ is P -symmetric, then for all (A, B) ∈ Q(P )
and all (A′, B′) ∈ Q(N \ P )

µ(A∪A′, B∪B′) = νP (A∪A′, B)+νP (A, B∪B′)−νP (A, B) .

It is interesting to investigate the two extreme cases. When
P = N , we obtain QN (N) = Q(N), so that usual bi-
capacities are recovered. Now, let us look at the case P = ∅.

Lemma 5: A ∅-symmetric bi-capacity is equivalent to the
CPT model.

Hence, P -symmetric bi-capacities derive from the CPT
model in the sense that we obtain the CPT model when P = ∅.
Thus we obtain a definition ranging from the CPT-models to
usual bi-capacities. Moreover, the number of unknowns is what
we wanted.



C. Comparison of the complexity of the models

Table I below gives a comparison of the number of unknowns
obtained in each model. For P -symmetric bi-capacities, we
consider the case where P is a singleton. The complexity of
G3

1(N) is 3/2 times as much as that of the CPT model G2
±(N),

and the complexity of G3
1(N) is roughly 3 times as much as

that of G2(N). We see that the gain in using G3
1(N) instead of

G3
1(N) is quite significative.

model complexity n = 3 n = 4 n = 5 n = 6 n = 7
G2(N) 2n 8 16 32 64 128
G2
±(N) 2n+1 16 32 64 128 256

G3
1(N) 3 × (2n − 1) 21 45 93 183 381

G3(N) 3n 27 81 273 819 2457

TABLE I
COMPARISON OF THE COMPLEXITY OF THE MODELS.

IV. AN ILLUSTRATIVE EXAMPLE

Let us conclude this paper by applying the concept of P -
symmetric bi-capacity on an example.

A. Description of the example

The director of a University decides on students who are ap-
plying for graduate studies in economics where some prereq-
uisites from school are required. Students are indeed evalu-
ated according to mathematics (M), statistics (S) and language
skills (L). All the marks with respect to the scores are given
on the same bipolar scale from −10 to 10 with neutral value
0. These three criteria serve as a basis for a pre-selection of
the candidates. The best candidates have then an interview with
a jury composed of members of the University to assess their
motivation in studying economics. In general, the applicants
have generally speaking a strong scientific background so that
mathematics and statistics have a big importance to the direc-
tor. However, he does not wish to favor too much students that
have a scientific profile with some flaws in languages. Besides,
mathematics and statistics are in some sense substituable, since,
usually, students good at mathematics are also good at statistics.
As a consequence, comparing two students good in mathemat-
ics, the director prefers the one that is better in languages even
if he is worst in statistics. Consider the following students :

M S L
student A 4 6 −3
student B 4 5 −2

Student A is highly penalized by his performance in languages.
Henceforth, the director would prefer a student (with the same
mark in mathematics) that is a little bit better in languages even
if the student would be a little bit worse in statistics. This means
that the director prefers B to A:

A ≺ B (8)

Consider now a student that has a weakness in mathematics.
In this case, since the applicants are supposed to have strong

scientific skills, a student good in statistics is now preferred to
one good in languages. Hence, the following two students

M S L
student C −1 6 −3
student D −1 5 −2

are ranked as follows :

C � D (9)

B. Attempt to model previous example with a bi-capacity

(8) and (9) cannot be modeled with the CPT model.
Let us try to model (8) and (9) with the extension
of the Choquet integral to bi-capacities. We have
BCµ(4, 6,−3) = 3µ ({M, S} , {L}) + µ ({M, S} , ∅) +
2µ ({S} , ∅) and BCµ(4, 5,−2) = 2µ ({M, S} , {L}) +
2µ ({M, S} , ∅) + µ ({S} , ∅). Hence (8) is equivalent to

µ ({M, S} , ∅) − µ ({M, S} , {L}) > µ ({S} , ∅)

Similarly, relation (9) is equivalent to

µ ({S} , {L}) > 0.

There is no contradiction between theses two inequalities.
Henceforth, BCµ is able to model the example. This aggre-
gation operator models the expertise that makes an explicit ref-
erence to an absolute value.

C. Attempt to model previous example with P -symmetric bi-
capacities

Let us try to model (8) and (9) with a bi-capacity with van-
ishing interaction indices. As in previous section, we consider
P = {M}.

Q{M}({M, S, L}) := {(A ∪ A′, B ∪ B′), (A, B) ∈ Q({M}) , (A′, B′) ∈ Q({S, L})

with A′ = ∅ or B′ = ∅} .

We consider µ{M}. Hence by Lemma 4

A ≺ B ⇐⇒ µ ({M, S} , ∅) − µ ({M, S} , {L}) > µ ({S} , ∅)

⇐⇒ −νM ({M} , {S}) + νM ({M} , ∅) > νM ({S} , ∅)

Similarly,

C � D ⇐⇒ µ ({S} , {L}) > 0

⇐⇒ νM ({S} , ∅) + νM (∅, {L}) > 0 .

There is no contradiction between previous two relations. A
{M}-symmetric bi-capacity is thus able to model previous ex-
ample.

When P = ∅, we obtain

A ≺ B ⇐⇒ −ν∅(∅, {L}) > ν∅({S} , ∅)

and
C � D ⇐⇒ ν∅(∅, {L}) + ν∅({S} , ∅) > 0

These two relations are contradictory, which is not surprising
since this model is equivalent to the CPT model.



REFERENCES

[1] M. Grabisch, M. Roubens, An axiomatic approach to the concept of inter-
action among players ic cooperative games, Int. J. of Game Theory, 28,
pp. 547-565, 1999.

[2] M. Grabisch, Ch. Labreuche. Bi-Capacities for decision making on bipo-
lar scales. In: EUROFUSE Workshop on Information Systems, Varenna,
Italy, September 2002, 185-190.

[3] M. Grabisch, Ch. Labreuche. Bi-Capacities. In Joint Int. Conf. on Soft
Computing and Intelligent Systems and 3d Int. Symp. on Advanced Intel-
ligent Systems. Tsukuba, Japan, Octobre 2002.

[4] C. Labreuche, M. Grabisch, Bi-cooperative games and their importance
and interaction indices, Human Centered Process international confer-
ence, Kirchberg, Luxembourg, pp. 287-291, 2003.

[5] T. Murofushi, S. Soneda, Techniques for reading fuzzy measures (III): in-
teraction index, 9th Fuzzy System Symposium, 693-696, Sapporo, Japan,
1993.

[6] P. Slovic, M. Finucane, E. Peters, and D.G. MacGregor. The affect heuris-
tic. In T. Gilovitch, D. Griffin, and D. Kahneman, editors. Heuristics and
biases: the psychology of intuitive judgment, pp. 397-420. Cambridge
University Press, 2002.

[7] A. Tversky and D. Kahneman. Advances in Prospect theory: Cumulative
Representation of Uncertainty. J. of Risk and Uncertainty 5, pp.297-323,
1992.


