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Abstract

Although fuzzy measures are powerful tools in economics,
decision theory and artificial intelligence, their use in practi-
cal applications is more difficult due to the fact that they re-
quire a large number of parameters. To reduce such number of
parameters several approaches have been considered in the lit-
erature. One of them is the so-called distorted probabilities or,
equivalently, fuzzy measures that can be represented in terms
of a probability distribution and a non-decreasing function (a
distortion function). In this work we review some results for
distorted probabilities and m-dimensional distorted probabil-
ities that have been recently proposed. We also present a new
result about m-dimensional probabilities.

Keywords : Fuzzy measure, Non-additive measure, Dis-
torted probability, m-dimensional distorted probability.

1 Introduction

Fuzzy integrals are often used as aggregation operators due to
their versatility. Among them, we can underline Sugeno [22]
and Choquet [3] integrals as they have been used in several
applications. See e.g., [10], or [25] for details on such inte-
grals. Fuzzy integrals combine (integrate) a set of numerical
values (a function) using fuzzy measures (or capacities) to
represent previous information about the data suppliers.

As fuzzy measures are set functions defined on the set of in-
formation sources (or data suppliers), their definition requires
2/X| parameters. Here, X denotes the set of information
sources and | X | is the cardinality of such set. In real applica-
tions, the definition becomes unfeasible when the number of
sources is of moderate or medium size.

At present, several families of restricted fuzzy measures
have been defined to ease the construction of applications.
Namely, restricted fuzzy measures are those measures that re-
quire less than 2/X| parameters because they are constrained
to satisfy some additional properties than the ones satisfied
by general or unrestricted ones. Examples of such measures
include Sugeno A-measures [22], | -decomposable measures
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(see e.g. [10] for details), k-additive fuzzy measures [8], p-
symmetric [16], or hierarchically decomposable ones [24].

In this paper we review some recent results on distorted
probabilities and m-dimensional distorted probabilities. Dis-
torted probabilities, that were suggested in experimental psy-
chology [4], are measures that can be represented in terms of
a probability distribution on X and a non-decreasing function
(a distortion function). See e.g. [11, 12] or [1] for exam-
ples and applications. m-dimensional distorted probabilities
is a concept similar to the vector measure game defined in [1].
We include in this paper a new result on m-dimensional prob-
abilities.

This paper has the following structure. First, we give in
Section 2 basic definitions that are needed in the rest of the
paper. Then, it follows Section 3 that reviews, among other
results, a characterization of distorted probabilities. Then, in
Section 4 the generalization of distorted probabilities to m-
dimensional probabilities is given. Section 5 concludes the

paper.

2 Prdiminaries

This section is devoted to a review of fuzzy measures. For the
sake of simplicity, we will consider X to be a finite set and,
in particular, that X := {1,2,--- ,n}.

2.1 Definitions

Definition 2.1. A function x on (X, 2%) is a fuzzy measure if
it satisfies the following axioms:

(i) u(0) =0, u(X) =1 (boundary conditions)
(i) A C B implies u(A) < u(B) (monotonicity)

In order to distinguish measures satisfying (i) and (ii) with
others that also satisfy some additional constraints (e.g. addi-
tivity u(A U B) = u(A) + p(B) when AN B = ), we use
the terms unconstrained fuzzy measures for the former ones
and constrained fuzzy measures for the others.



Definition 2.2. Let f be a real valued function on X and
let P be a probability measure on (X,2%). We say that f
and P represent a fuzzy measure p on (X,2%) if and only if
wu(A) = f(P(A)) for all A € 2%,

In the case that y is represented by f and P we will say
that f is a distortion function.

Definition 2.3. Let f be a real valued function on X. We
say that f is strictly increasing with respect to a probability
measure P if and only if P(A) < P(B) implies f(P(A)) <
f(P(B)).

Definition 2.4. Let p be a fuzzy measure on (X,2%). We
say that p is a distorted probability if it is represented by a
probability distribution P on (X, 2%) and a function f that
is strictly increasing with respect to a probability P.

Remark: Since we suppose that X is a finite set, a strictly
increasing function f with respect to P can be regarded as a
strictly increasing function on [0, 1] if there is no restriction
on the function f. Points except { P(A)|A € 2%} in [0,1] are
not essential in this paper.

2.2 m-symmetric fuzzy measures

We review now a particular family of fuzzy measures that
were proposed by Miranda et al. in [16].

Definition 2.5. [16, 17] Given a fuzzy measure u, we say
that 4 is at most m-symmetric fuzzy measure if and only if
there exists a partition of the universal set {X;,..., X},

with X1,...,X,, # 0 suchthat Xy, ...X,, are sets of indif-
ference.

Definition 2.6. [16, 17] Given two partitions {X1,...,X,}
and {Y7,...,Y.} of a referential set X, we say that
{X1,...,X,} is coarser than {Y;,...,Y.} if the following
holds:

VX,;3Y; such thatY; C X;

Definition 2.7. [16, 17] Given a fuzzy measure u, we say
that 4 is a m-symmetric measure if and only if the coars-
est partition of the universal set in sets of indifference is
{X1,..., X} with X; #0@foralli € {1,...,m}.

3 Distorted probabilities

This section details some of our results on distorted probabil-
ities. A characterization of such measures is included. We
start with a result that show that all fuzzy measures can be
characterized in terms of a probability distribution and a dis-
tortion function, or in terms of a probability distribution and
two strictly increasing functions.

Defining the probability measure P on (X,2%) such that
forall k € X by

2k—1
2n —1°

P({k}) =

we have the next theorem.

Theorem 3.1. [19] For every fuzzy measure x on (X,2%),
there exists a polynomial f and probability P on (X,2%)
suchthaty = fo P

Defining by, by br := ax V 0 and ¢ by ¢ = —(ak A 0)
where the ay, are the coefficients of the polynomial f, we can
define

() = Z b~k
k

and

f(z):= Z cpa? k.
k

As fT and f— are strictly increasing, the next corollary
holds:

Corollary 3.2. [19] For every fuzzy measure p on (X, 2%),
there exists strictly increasing polynomials f+, f~ and a
probability P on (X,2%) such that

p=ftoP—f oP. Q)

Therefore, any fuzzy measure can be expressed as the dif-
ference of two distorted probabilities.

It is important to underline that neither the difference of
two distorted probabilities is a fuzzy measure, nor any distor-
tion function applied to a probability leads to a fuzzy measure.
Only non-decreasing distortion functions are assured to lead
to a fuzzy measure.

Definition 3.3. [19] Let u be a fuzzy measure on (X, 2%). If
u(A) < u(B) & p(AUC) < u(BUC) forevery ANC = 0,
BNC =0 A,B,C € 2%, we say that y is a pre-distorted
probability.

Proposition 3.4. [19] Suppose that a function f and a prob-
ability P represent a fuzzy measure .

If f is strictly increasing with respect to P, then u(A4) <
w(B) & n(AUC) < u(BUC) forevery ANC = 0, BNC =
0 A,B,C € 2%. In other words, distorted probabilities are
pre-distorted probabilities.

If f is non-decreasing with respect to P, then u(A4
wu(B) implies (AU C) < u(BUC) forevery ANC = 0,
BNC=0A4,B,C € 2X.

Now, we turn intro the characterization of distorted and
pre-distorted probabilities. First, we define a condition that
plays a central role in such characterization.

Definition 3.5. [19] Let u be a fuzzy measure on (X, 2%), we
say that p satisfies condition A when for all A4;, B; € 2%,

() E?:l 1a; = E?:l 1,
(i) p(A4;) < p(B;) fori = 2,3,...,n implies u(A4;) >
w(B1)

Now, we give a characterization of distorted probabilities
in terms of such condition A.



Theorem 3.6. [19] Let u be a fuzzy measure on (X,2%),
then p is a distorted probability if and only if Condition A
holds.

In [2], Chateauneuf obtains results similar to the ones in
Theorem 3.6. He presents necessary and sufficient condi-
tions for the existence of a non-decreasing distortion function.
Here, instead, we consider a strictly increasing polynomial f.
Results by Chateauneuf are based on previous results by [6].

Theorem 3.6 and Proposition 3.4 imply the following
proposition.

Proposition 3.7. [19] Let u be a fuzzy measure on (X, 2%)
satisfying condition A, then g is a pre-distorted probability.

The reversal of Proposition 3.7 is not true. Not all pre-
distorted probabilities are distorted probabilities. The follow-
ing example illustrates this situation.

Example 1. [19] Let X := {1,2, 3}, and let x be the fuzzy
measure on 2X defined as:

p({1}) = =, u({2}) :=0,

P12 = 2, a2 3) =5 p({1,3)) =

wo | =

Then, this measure is pre-distorted probability because:

n({2}) < p({1}), ({2,3}) < p({1,3})
#({2}) < p({3}), ({1,2}) < p({1,3})
p({1}) < p({3}), n({1,2}) < p({2,3}).

However, this measure does not satisfy condition A. To
illustrate this, let us consider the following sets: A; :=
{1},A2 = {2},A3 = {3},./44 = X and B, =
{1,2}, By := 0, Bs := {2,3}, B4 := {1,3}. Then, it holds
that

1a, +14, + 14, +14, =1, +1B, +1p, + 1B,

and

p(A2) < pu(Ba), u(As3) < u(Bs), u(As) < p(Ba)

However,
u(A1) < p(Bi).

This example (considered in conjunction with Theo-
rem 3.6) shows that not all pre-distorted probabilities are dis-
torted probabilities. In particular, it shows that there is no
suitable strictly increasing distortion function f to represent
1. Nevertheless, the fuzzy measure p could be indeed repre-
sented with a non-decreasing function f. This is shown in the
next example.

Example 2. [19] Let us consider X and the measure p de-
fined in Example 1, then, there exists probability distributions
P and non-decreasing functions f such that u = f o P. Ta-
ble 1 gives one of such probability distributions together with
the fuzzy measure p.

set 0 {2} {1} {3}
P 0 1/5.5 2/5.5 2.5/5.5
p=/foP 0 0 /7 2[7
12) | {23} | {13 | {523}
3/5.5 3.5/55 | 45/55 | 55/55
3/7 a/7 717 717

Table 1: Probability and non-decreasing function f corre-
sponding to Example 1

This example shows that with a non-decreasing function f,
the fuzzy measure 1 of Example 1 can be represented as u =
foP. Nevertheless, this function f is no longer a polynomial.

We now turn into the study of distorted probabilities. We
will base our study on a condition A’ that is similar to condi-
tion A. This condition will be based on an equivalence rela-
tion ~ on 2% and a quotient set.

Definition 3.8. [19] Let ~ on 2% be the equivalence relation
defined by:

A~B & p(A) = u(B)
for A, B € 2X.

Now, given ~, let us consider the quotient set 2%/ ~ (i.e.,
if [A] € 2X/ ~, B € [A] implies A ~ B) and, then,
let B,, denote its representatives () and X are considered in
B,). Naturally, A, B € B, implies either u(A) < pu(B) or
u(B) < p(A). Let L be the real linear vector space generated
by the set of characteristic functions 14 : A € 2% and let X,
of L be defined by

X, = {1, —15|A,B € B,}.

Definition 3.9. [19] The function f : [0,1] — [0, 1] is said to
be strictly increasing with respect to B,, if and only if P(A) <
P(B) implies f(P(A)) < f(P(B)) for A,B € B,.

Finally, we define condition A’. This condition is analogous
to condition A (Definition 3.5) but restricted to sets in B C
2X,
Definition 3.10. [19] Let x be a fuzzy measure on (X, 2%),
and B be a subset of 2%, then we say that y satisfies condition
A’ when for all 4;, B; € B,

(I) Zinzl ]‘Ai = Zinzl ]‘Bi
(i) p(A;) < w(B;) fori = 2,3,...,n implies p(A;) >
w(Ba)

Suppose that A, B € B, and pu(A) < p(B). It follows
from the definition of B, that the equality occur if and only if
A=B.

Theorem 3.11. [19] Let p be a fuzzy measure on (X, 2%).
There exists a probability P on (X,2%) and a polynomial f
which is strictly increasing with respect to B,, such that

M:fOP

if and only if condition A’ holds for B,,.



Corollary 3.12. [19] Let p be a fuzzy measure on (X, 2%).
If 1 is represented by a probability on (X, 2%) and a non-
decreasing function f, then condition A’ holds.

The following examples illustrates previous results.

Example 3. [19] Let X := {1,2,3}, u(0) = u({1})
p({2}) = 0, p({3}) = 0.5 p({1,2}) = 0.7, u({1,3}) =
p({2,3}) = p(X) = 1. Then B, = {0,{3},{1,2},X}.
Since we have

1{1,2} + 1{3} = ].q) + lx,

u({1,2}) < p(X) and p({3}) > wu(@). Therefore there ex-
ist a probability P and a strictly increasing polynomial with
respect to B, such that u = f o P

Example 4. [19] Let X := {1,2,3,4}, u(0) = p({1}) =
n({2}) = p({3}) = p({4}) = 0, p({1,2}) = 03,
u({2,3}) = 0.2, u({1,4}) = 0.1, p({3,4}) = 0.4, and
u(A) = 1 otherwise. This fuzzy measure cannot be repre-
sentable in terms of a distortion function. There is no strictly
increasing polynomial w.r.t. B, and a probability P such that
u = f o P. This is so because we have

Blt = {Q)a {17 2}7 {27 3}7 {3a4}7 {174}aX}7
such that

Loy + 1zay = 1inay + Lz sy,

with u({1,2}) > u({2,3}) and u({3,4}) > u({1,4})

Definition 3.13. [19] Let ay,as,...,a,, € R™. The con-
vex cone [ai,as,...,a;,] generated by {ai,as,...,an} is
defined by

[al,az, . ,am] = {Z )\,-ai|)\,~ Z 0}.
i=1

1=

Theorem 3.14. [19] Let u be a fuzzy measure on (X,2%)
with B, = 2%. If there exist linearly independent vectors
a1,as,...,a,m € R suchthat X, C [a1,a2,...,an]\ 0,
then p is a distorted probability.

Corollary 3.15. [19] Let u be a pre-distorted probability on
(X,2%).

If | X| = {1,2,3,4} and B, = 2%, then p is a distorted
probability.

4 m-dimensional distorted probabili-
ties

In this section we review our definition of m-dimensional dis-

torted probabilities. The introduction of such measures is mo-

tivated by the fact that distorted probabilities are only a small

proportion of all possible fuzzy measures. m-dimensional

distorted probabilities are defined in a way that with increas-

ing values of m they cover the whole range between distorted
probabilities and general (unrestricted) fuzzy measures.

4.1 Definitionand basic properties

Definition 4.1. [19] Let { X1, X5, -+ , X, } be a partition of
X (i.e, UX; = X and for all X; and X itholds X; N X; =
(), then we say that y is at most m-dimensional pre-distorted
probability if for all X; it holds:

u(A) > p(B) & p(AUC) > u(BUC) )

forall A,B,C C X;suchthat CNA =@0andCNB = 0. We
say that at most m-dimensional pre-distorted probability y is
m-dimensional pre-distorted probability if 4 is not at most
(m — 1)-dimensional.

From the above definition for pre-distorted probabilities, it
is clear that:

Proposition 4.2. [19] All fuzzy measures are at most |X|-
dimensional pre-distorted probabilities.

Definition 4.3. [19] Let {X;, X5, ---,X,,} be a partition
of X (i.e, UX; = X and for all X; and X; it holds
X; N X; = 0), then we say that y is at most m-dimensional
distorted probability if there exists a function f on R™ and
probability P; on (X;,2%¢) such that

w(A) = f(PL(ANX1), P (ANX3),- -+, P3(ANXy)) (3)

where f is strictly increasing with respect to the i-th axis for all
i1 =1,2,...,m. We say that at most m-dimensional distorted
probability  is m-dimensional pre-distorted probability if u
is not at most (m — 1)-dimensional.

Definition 4.3 implies the next proposition.

Proposition 4.4. [19] All fuzzy measures are at most |X|-
dimensional distorted probabilities.

Also, the following holds:

Proposition 4.5. Let M, be the set of all fuzzy measures that
are k-dimensional distorted probabilities, then My, _1 C My,
forallk=2,3,...,|X]|.

Corollary 4.6. Given a fuzzy measure u, there exists a k =
1,2,...,|X]|suchthat p € My and p & My_1.

Therefore, the proposed family of fuzzy measures permits
to cover the whole set of fuzzy measures.

42 On m-dimensional OWA and m-

dimensional WOWA

The definition of m-dimensional distorted probability permits
to define a generalization of the WOWA operator. This opera-
tor, introduced in [23], was proven to be equivalent to a Cho-
quet integral with respect to a distorted probability. Based on
such interpretation of the WOWA operator, we define an m-
dimensional version as a Choquet integral with respect to a
m-dimensional distorted probability.



Definition 4.7. [20] The m-dimensional WOWA is defined
as the Choquet integral with respect to a m-dimensional dis-
torted probability.

This result extends another result that defines in a similar
way the m-dimensional OWA in terms of m-symmetric fuzzy
measures.

Definition 4.8. [20] The m-dimensional OWA is defined as
the Choquet integral with respect to a m-symmetric fuzzy
measure.

4.3 Some relationships with m-symmetric
fuzzy measures

Let us now consider some results that establish the con-
nections between m-symmetric fuzzy measures and m-
dimensional distorted probabilities.

Proposition 4.9. [20] Let u be a m-symmetric fuzzy mea-
sure with respect to the partition { X1, ..., X}, then, pis a
m—dimensional distorted probability.

Corollary 4.10. [20] m-dimensional OWA is a particular
case of m-dimensional WOWA. In other words, a Choquet
integral with respect to a m-symmetric fuzzy measure is a
particular case of a Choquet integral with respect to a m-
dimensional distorted probability.

As shown in Proposition 4.9, one special class of at
most m—dimensional probability are one special class of
m—symmetric fuzzy measures. We present another special
class of m-dimensional distorted probability.

Definition 4.11. [20] Let u be a m—dimensional distorted
probability.

We say that p is a type 2 m-symmetric fuzzy measure if there
exists functions fi,.. ., f,, and g such that

wA) =g(fio PL(ANX1),..., fmo Pn(ANXy)) (4)
where g is a symmetric function on R™.

We present now an example of type 2 m-symmetric fuzzy
measure.

Example 5. Let us consider an entrance examination con-
sisting on two parts: Mathematics and English. Each part is
divided in several exercises. On the one hand, the grade on
mathematics is defined by the grade on three exercices: al-
gebra (z1), geometry (x2) and probability (z3). On the other
hand, the rate of English is computed in terms of two exer-
cises: grammar (y;) and reading (y2).

In this case, it seems natural that there is some interaction
within mathematical exercises (i.e., within {z,z2,z3}) and
within English exercises (i.e., within {y1,y>}) but not among
an English and a Mathematics exercise. l.e., the scores of
Mathematics and English are treated equally. This situation
can be modeled in terms of a type 2 2-symmetric fuzzy mea-
sure. Symmetry of g precisely means that Mathematics and

English are evaluated equally, and that there is no interaction
between Mathematics and English. For the interaction among
exercises in Mathematics (or English) the distortion function
f1 (or f3) can be used on the probabilities (or importances)
of the corresponding exercises.

Type 2 m-symmetric fuzzy measures are also a generaliza-
tion of 1-symmetric fuzzy measures.

Proposition 4.12. [20] A type 2 n—symmetric fuzzy measure
w is @ 1—symmetric fuzzy measure if f;(z) = z forall 1 <
1 < n.

Theorem 4.13. [20] Let {X},...,X,,} be a partition of X
and p; ¢ = 1,...m be distorted probabilities. Then there
exists a type 2 m-symmetric fuzzy measure p on (X, 2%) such
that

S(© [ sy =©) [fa @

for all measurable function f.

4.4 Representation of m-dimensional distorted
probabilities

Let f be am-dimensional continuous function on [0, 1]™, that
is, f : [0,1]™ — [0, 1]. Kolmogorov [14] showed that there
exist one variable real valued continuous function x;, ¢; ; :
R—-R,(1=1,2,...,2n+1),(j =1,...,n) such that

2n+1 n
F@i,ma,mn) = Y xi(d ¢i5(@5)),
=1 j=1

where every ¢; ;(x;) is monotone and does not depend on f.
The Kolmogolov theorem is well known as the complete solu-
tion to the Hilbert’s thirteenth problem. It follows from con-
struction method in Kolmogorov theorem that ¢; ;(0) = 0.
Let Mi,j = maxwe[o,l]d)m (.’L‘) and fz',j = ¢i,j/Mi,j- Since
fi,;(0) = 0 and f; ;(1) = 1,a set function f; ;(P;(A)) :=
i, (A) is a fuzzy measure. Therefore we have the next
proposition.

Proposition 4.14. Let u be a m-dimensional distorted prob-
ability. There exist one variable real valued continuous func-
tionsx; : R —» R,(i = 1,2,...,2m + 1), non-negative
real numbers a; ; 1 dimensional distorted probabilities p;,;
(i=1,...,2m+1),(j =1,...m) such that

2m+1 m
w(A) = Z Xi(z @i jphij (A))
i=1 Jj=1

for A € 2X.

The proposition above says that a m-dimensional fuzzy
measure can caluculate in the following 3-steps;
1. for every 4,j: 1 dimensional distorted probabilities
aij i, (A),
2: for every i,a special form of m-dimensional distorted prob-
ablllty I/Z(A) = Z;n:l Q; j i, 5 (A),
3 p(4) = 30 xa(vi(4)).



5 Conclusions

In this paper we have reviewed our recent results on distorted
probabilities and on m-dimensional distorted probabilities.
We have given some representation results as well as the con-
nections between such measures and m-symmetric ones. Ad-
ditionally, we have given some new results on the calculation
of the m-dimensional distorted probabilities.
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