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Abstract— The feedback self-organizing map (SOM) is one
of the most effective methods for applying the SOM to spatio-
temporal pattern classification. In order to improve classification
ability, the hybrid system of the nonlinear adaptive manifold
SOM and feedback SOM is proposed in this paper. In the pro-
posed method, each unit on the competitive layer is represented
by nonlinear manifold in the input space. Thus the robust pattern
classification can be achieved. The effectiveness of the proposed
method is verified by applying it to a hand gesture classification
problem.

I. INTRODUCTION

Recently many researches that SOM is applied to spatio-
temporal pattern classification have been reported[1]-[4]. The
feedback SOM (FSOM), in which the feedback loops from
the competitive layer to the input layer are employed, to
embed temporal information into SOM was proposed by the
authors[4]. In the FSOM, the output of the winner unit is set
to 1, and those of the other units are done to 0. The outputs
are fed back to the input layer through the feedback layer. The
function of the units in the feedback layer is a leaky integrator.
The current winner unit is assigned in consideration of the
current input vector and the history of the winner units. Thus
the temporal information can be embedded without using the
tapped-delay or the hierarchical structure. The structure of the
FSOM is very clear and simple, and the learning algorithm is
the same to Kohonen’s one. The classification results show
that FSOM can successfully classify temporally expanded
or contracted spatio-temporal patterns. However, the patterns
which are spatially transformed can not be classified correctly
because of limitation of the classification ability of the SOM.

The nonlinear adaptive manifold SOM (NAMSOM) was
proposed by the authors in order to improve the classification
ability of the SOM[5]. In the SOM, each unit is represented
by one weight vector. In the NAMSOM, on the other hand,
each unit is represented by a nonlinear manifold characterized
by one mean vector and some basis vectors. The patterns
belonging to the same class can be correctly classified by the
NAMSOM even if the patterns are spatially transformed.

In this paper, the hybrid model of FSOM and NAMSOM,
named feedback nonlinear adaptive manifold SOM (FNAM-
SOM), is proposed. The proposed FNAMSOM is expected to

facilitate robust pattern classification, even when the spatio-
temporal patterns are temporally expanded or contracted
and spatially transformed. The effectiveness of the proposed
FNAMSOM is verified by applying it to a hand gesture
classification problem.

II. FEEDBACK SOM

Fig.1 shows the structure of the FSOM. It consists of the
input layer, the competitive layer and the feedback layer, in
which m + n, n and n units are included, respectively. The
j-th unit in the competitive layer is connected to all the units
in the input layer by the weight vector w j = [wj1, · · · , wjm,
wj,m+1, · · · , wj,m+n]. The outputs of the units in the feedback
layer are defined as the feedback vector h(t) = [h1(t),
· · · , hn(t)] and each element is calculated by:

hj(t) = zj(t) + γhj(t − 1), (1)

where γ is a constant representing retention of the past
outputs and zj(t) represents the output of the j-th unit in the
competitive layer. The vector [x1(t), · · · , xm(t), h1(t), · · · ,
hn(t)] obtained by combining the input vector x(t) = [x1,
· · · , xi, · · · , xm] with the feedback vector is referred to as
the learning vector I(t). When the learning vector is applied
to the input layer, the distance between the learning vector
and the weight vector of the unit j is calculated by:

Dj =

√√√√ m∑
i=1

(xi(t) − wji)2 +
n∑

i=1

η(hi(t) − wj,m+i)2, (2)

where η is a constant that determines the relative importance
of the feedback vector with respect to the input vector. A
small η causes that the input vector is to be the dominant
factor, while a large η causes the feedback vector to be the
dominant factor. The unit in the competitive layer which has
the minimum Dj is referred to as the winner unit c. The
output zc(t) of the winner unit is set to 1, and those of
the other units are done to 0. The units that are located
within the neighborhood of the winner unit are referred to
as the neighboring units. The weight vectors of the winner
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Fig. 1. The structure of the FSOM.
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Fig. 2. A schematic interpretation for the orthogonal projection and the
projection error of an input vector onto an affine subspace in a computational
unit.

and neighboring units are updated by:

wwwj(k + 1) = wwwj(k) + αFSOM(k)hcj(k)(III(t) −wwwj(k)), (3)

where wwwj(k + 1) and wwwj(k) are weight vectors after and
before the updating, respectively. α FSOM(k) is a learning rate
at the learning step k, which decreases with learning steps.
Also hcj(k) is learning rate which is based on the distance
between the winner unit and the unit to be updated. It is called
neighboring function. The learning algorithm of the FSOM is
the same to Kohonen’s one.

After learning, sequences of input vectors {xxx(t)|t =
0, · · · , T }, i.e. spatio-temporal patterns, are applied to the
input layer one after the other. The itinerancy of the winner
units, which depends on the spatial and temporal information
of the input vectors, can be observed. The winner unit at the
end of the sequence represents the class of the input pattern.

It is confirmed that spatio-temporal patterns which are
temporally expanded or contracted can be correctly classified
by the FSOM. However the patterns which are spatially
transformed, such as shifted, rotated and scaled, can not
be classified correctly. The SOM can not also classify such
patterns. In order to improve the classification ability of the
FSOM we employ the NAMSOM.

III. FEEDBACK ADAPTIVE NONLINEAR MANIFOLD SOM

The NAMSOM is an extension of adaptive manifold SOM
(AMSOM) by using kernel method. In this section the AM-
SOM and NAMSOM are explained at first, and the proposed
FNAMSOM is described.

A. AMSOM

The AMSOM is an extension of the SOM in which repre-
sentation of the the unit in the competitive layer is modified
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Fig. 3. (a) Clusters in 2-dimensional space: An example of the case which
can not be separated without a mean value. (b) Two 1-dimensional affine
subspaces to approximate and classify clusters.

from one weight vector to affine subspace[6]. The affine
subspace of the j-th unit in the competitive layer is composed
of one mean vector µµµ(j) and a subspace spanned by H basis
vectors bbb

(j)
h , h ∈ {1, · · · , H}.

The orthogonal projection of an input vector xxx onto the
affine subspace of j-th unit is calculated by:

x̂̂x̂x(j) = µµµ(j) +
H∑

h=1

(φφφ(j)T
bbb
(j)
h )bbb(j)

h , (4)

where φφφ(j) = xxx − µµµ(j). Therefore the projection error is
represented as

x̃̃x̃x(j) = φφφ(j) −
H∑

h=1

(φφφ(j)T
bbb
(j)
h )bbb(j)

h . (5)

Fig.2 shows a schematic interpretation for the orthogonal
projection and the projection error of an input vector onto the
affine subspace defined in the j-th unit. The AMSOM is more
general strategy than the adaptive subspace SOM (ASSOM),
where each computational unit solely defines a subspace. To
illustrate why this is so, let us consider a very simple case:
Suppose two clusters as shown in Fig.3(a) are given. It is
not possible to use one dimensional subspaces, that is lines
intersecting the origin OOO, to approximate the clusters. This is
true even if the global mean is removed, so that the origin
O is translated to the centroid of the two clusters. However,
two one-dimensional affine subspaces can easily approximate
the clusters as shown in Fig.3(b), since the basis vectors are
aligned in the direction that minimizes the projection error.



In the AMSOM, the input vectors are grouped into some
episodes in order to apply them to the network as an input
sets. For pattern classification, an episode input is defined
as a subset of training data belonging to the same category.
Assume that the number of input vectors in the subset is
E, then an episode input ωq in the class q is denoted as
ωq = {xxx1,xxx2, · · · ,xxxE} , ωq ⊆ Ωq, where Ωq is a set of
training patterns belonging to the class q. The set of input
vectors of an episode has to be recognized as one class, such
that any member of this set and even their arbitrary linear
combination should have the same winning unit.

The training process in AMSOM has the following steps:

(a) Winner Lookup
The unit that gives the minimum projection error for an
episode is selected. The unit is denoted as the winner, whose
index is c. This decision criterion for the winner c is repre-
sented as

c = argmin
j

{
E∑

e=1

||x̃̃x̃x(j)
e ||2

}
, (6)

where j ∈ {1, · · · , n}.

(b) Updating
The mean vectors of the winner and neighboring units are
updated by:

µµµ(j)(k + 1) = µµµ(j)(k)

+ λm(k)hcj(k)
(
xxxe −µµµ(j)(k)

)
, (7)

where λm(k) is the learning rate for µµµ(j) at learning step
k, and hcj(k) is the neighborhood function at learning step
k with respect to distance between the winner unit c and
the unit j. Both λm(k) and hcj(k) are monotonic decreas-
ing function with respect to k. In this paper, λm(k) =
λini

m (λfin
m /λfin

m )k/kmax and hcj(k) = exp(−|c−j|/γ(k)) and
used, where γ(k) = γ ini(γfin/γfin)k/kmax . The basis vectors
of the winner and neighboring units are updated by

bbb
(j)
h (k + 1) = bbb

(j)
h (k)

+ λb(k)hcj(k)
φφφ

(j)
e (k)Tbbb

(j)
h (k)

||φ̂̂φ̂φ(j)
e (k)||||φφφ(j)

e (k)||
φφφ(j)

e (k), (8)

where φφφ(j)
e (k) is the relative input vector in the manifold j

updated the mean vector, which is represented by φφφ(j)
e (k) =

xxxe − µµµ(j)(k + 1), φ̂̂φ̂φ
(j)
e (k) is the orthogonal projection of

the relative input vector, which is represented by φ̂̂φ̂φ
(j)
e (k) =∑H

h=1(φφφ
(j)(k)Tbbb

(j)
h (k))bbb(j)

h (k) and λb(k) is the learning rate
for the basis vectors, which is also monotonic decreasing
function with respect to k. In this paper, λb(k) = λini

b

(λfin
b /λfin

b )k/kmax is used.
After the learning phase, a categorization phase to deter-

mine the class association of each unit has to be achieved.
Input data used for learning is applied to the AMSOM again.
Then the unit j is labeled by the most major class of the
input data which defines the unit j as the winner. It could be
considered that some neighboring units are associated with
the same class.

Each unit is labeled by the class index for which is selected
as the winner most frequently when the input data for learning
are applied to the AMSOM again.

B. NAMSOM

1) Reproducing Kernels: Reproducing kernels are func-
tions k : X 2 �→ � which for all pattern sets

{xxx1, · · · ,xxxl, · · · ,xxxL} ⊂ X (9)

produce positive matrices Kpq := k(xxxp,xxxq). Here, X is some
compact set in which the data resides, typically a subset of
�n. In the field of Support Vector Machine (SVM), repro-
ducing kernels are often referred to as Mercer kernels. They
provide an elegant way of dealing with nonlinear algorithms
by reducing them to linear ones in some feature space F
nonlinearly related to input space: Using k instead of a dot
product in �n corresponds to mapping the data into a possibly
high-dimensional dot product space F by a (usually nonlinear)
map Φ : �n �→ F , and taking the dot product there, i.e.[7]

k(xxx,yyy) = (Φ(xxx), Φ(yyy)) . (10)

By virtue of this property, a map Φ is called as a feature
map associated with k. Any linear algorithm which can be
carried out in terms of dot products can be made nonlinear
by substituting a priori chosen kernel. Examples of such
algorithms include the potential function method[8], SVM
[9][10] and kernel PCA[11]. The price that one has to pay for
this elegance, however, is that the solutions are only obtained
as expansions in terms of input patterns mapped into feature
space. For instance, the normal vector of an SV hyperplane is
expanded in terms of Support Vectors, just as the kernel PCA
feature extractors are expressed in terms of training examples,

Ψ =
L∑

l=1

αlΦ(xxxl). (11)

2) AMSOM in the feature space: The AMSOM in the high-
dimensional feature space F is considered. The method is
referred to as Nonlinear Adaptive Manifold Self-Organizing
Map (NAMSOM). In NAMSOM, an affine subspace defined
by the unit j in the competitive layer take the nonlinear form

Mj = {Φ(xxx)|Φ(xxx) = Φ(µµµ(j)) +
H∑

h=1

ξΦ(bbb(j)
h )}, (12)

where ξ ∈ �. Given training data set {xxx1, · · · ,xxxL}, the mean
vector and the basis vector in the unit j are represented by
the following form

Φ(µµµ(j)) =
L∑

l=1

α
(j)
l Φ(xxxl), (13)

Φ(bbb(j)
h ) =

L∑
l=1

β
(j)
hl Φ(xxxl), (14)

respectively. α
(j)
l in Eq.(13) and β

(j)
hl in Eq.(14) are the

parameters adjusted by learning.



The derivation of training procedure in NAMSOM is given
as follows:

(a) Winner lookup
The norm of the orthogonal projection error onto the j-th
nonlinear affine subspace with respect to present input xxxp is
calculated as follows:

||Φ(x̃̃x̃xp)
(j)||2 = k(xxxp,xxxp) +

H∑
h=1

P
(j)
h

2

+
L∑

l1=1

L∑
l2=1

α
(j)
l1

α
(j)
l2

k(xxxl1 ,xxxl2)

− 2
L∑

l=1

αlk(xxx,xxxl)

+ 2
H∑

h=1

L∑
l1=1

L∑
l2=1

P
(j)
h αl1βhl2k(xxxl1 ,xxxl2)

− 2
H∑

h=1

L∑
l=1

P
(j)
h βhlk(xxx,xxxl), (15)

where P
(j)
h means the orthogonal projection component of

present input xxxp into the basis Φ(bbb(j)
h ) and it is calculated by

P
(j)
h =

N∑
l=1

β
(j)
hl k(xxxp,xxxl)−

N∑
l1=1

N∑
l2=1

α
(j)
l1

β
(j)
hl2

k(xxxl1 ,xxxl2). (16)

The reproducing kernels used in general applications are as
follows:

k(xxx,yyy) = (xxxTyyy)d d ∈ ℵ, (17)

k(xxx,yyy) = (xxxTyyy + 1)d d ∈ ℵ, (18)

k(xxx,yyy) = exp
(
−||xxx − yyy||2

2σ2

)
σ ∈ �, (19)

where ℵ and � are the set of natural numbers and the set of
reals, respectively. Eq.(14), Eq.(15) and Eq.(16) are referred
as to homogeneous polynomial kernels, non-homogeneous
polynomial kernels and gaussian kernels, respectively.

The winner unit for an episode input ωq = {Φ(xxx1), · · · ,
Φ(xxxE)} is decided by the same manner as the AMSOM as
follows:

c=arg min
j

{
E∑

e=1

||Φ(x̃̃x̃xe)
(j)||2

}
, j ∈ {1, · · · , n}. (20)

(b) Updating
The learning rule for α

(j)
l and β

(j)
hl are as follows:

∆α
(j)
l =

⎧⎪⎨
⎪⎩

−α
(j)
l (t)λm(k)hci(k) for l �= e

−α
(j)
l (k)λm(k)hcj(k) + λm(k)hcj(k)

for l = e

, (21)

∆β
(j)
hl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−α
(j)
l (k + 1)λb(k)hcj(k)T (j)

h (k)
for l �= e

−α
(j)
l (k + 1)λb(k)hcj(k)T (k)

+λb(k)hcj(k)T (k)
for l = e

, (22)

where

T (t) =
Φ(φφφ(j)

e (k))T Φ(bbb(j)
h (k))

||Φ(φ̂̂φ̂φ(j)
e (k))||||Φ(φφφ(j)

e (k))||
, (23)

‖Φ(φ̂̂φ̂φ(j)
e (k)))‖ =

{ H∑
h=1

[ L∑
l=1

β
(j)
hl k(xxxe,xxxl)

−
L∑

l1=1

L∑
l2=1

αl1βkl2k(xxxl1 ,xxxl2)
]2

} 1
2

, (24)

‖Φ(φφφ(j)
e )(k)‖ =

{
k(xxxe,xxxe) − 2

L∑
l=1

α
(j)
l k(xxxe,xxxl)

+
L∑

l1=1

L∑
l2=1

α
(j)
l1

α
(j)
l2

k(xxxl1 ,xxxl2)
} 1

2

, (25)

Φ(φφφ(j)
e (k))T Φ(bbb(j)

h (k)) =
L∑

l=1

βhlk(xxxe,xxxl)

−
L∑

l1=1

L∑
l2=1

α
(j)
l1

β
(j)
hl2

k(xxxl1 ,xxxl2). (26)

In Eqs.(21) and (22), λm(k), λb(k) and hcj(k) are the same
parameters as mentioned in the AMSOM training process.

After the learning phase, a categorization phase to deter-
mine the class association of each unit has to be achieved.
The procedure of the categorization phase is done in the same
manner as mentioned in previous section.

C. Proposed Method

In order to improve the classification ability of the FSOM,
the NAMSOM is embedded to the FSOM. Basic algorithm
of the FSOM is not changed, however only the method for
definition of the winner unit is modified. In the FNAMSOM,
the winner c units is assigned by:

c=argmin
j

{
‖Φ(x̃̃x̃x(t))(j)‖2 +

n∑
i=1

η(hi(t) − wj,m+i)2
}

.

(27)
where, Φ(x̃̃x̃x(t))(j) is the orthogonal projection error onto the
j-th nonlinear affine subspace with respect to present input
xxx(t).

IV. EXPERIMENTAL RESULTS

The proposed FNAMSOM is applied to the hand gesture
classification problem in order to verify its effectiveness.
Fig.4 shows the examples of the hand gestures used in the
experiments. These data is obtained from Sebastien Marcel’s
Gesture Database Web Page[12]. 3 spatio-temporal patterns
are included in each class. The lengths of all the sequences
t are adjusted to 30. Each image is down-sampled to 20×20.
Four spatio-temporal patterns (one from each class) are used
for learning of the FNAMSOM. In the learning, The number
of the units is 15 and each unit is represented by 2-dimensional
nonlinear affine subspace. Gaussian kernel shown in Eq.(19)
is used with σ = 0.01. γ = 0.5, η = 0.01. These four spatio-
temporal patterns are applied to the FNAMSOM after learning
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Fig. 4. Some examples of hand gestures used in the experiments. (a) Class 1:
‘Clic’, (b) Class 2: ‘No’, (c) Class 3: ‘Rotate’, and (d) Class 4: ‘StopGraspOk’.
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Fig. 5. The sequence of the winner units for four learning patterns.

again. Fig.5 shows the sequences of the winner units for the
patterns. The four patterns are successfully classified (unit 1
for class 1, unit 5 for class 2, unit 10 for class 3, and unit 15
for class 4). The final postures of the class 1 and 2 are very
similar but the different units are defined as the winner units,
because the winner units for the final postures are decided in
consideration of current postures and the sequences of the past
winner units. Fig.6 shows the sequences of the winner units for
the testing patterns. The sequences for the patterns belonging
to the same classes is very similar and the classification is
correctly achieved. When the ordinary FSOM and the FSOM
with AMSOM are applied to this hand gesture problem, the
patterns can not be classified. It means that the classification
ability of the FSOM can be improved by employing the
concept of the NAMSOM.
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Fig. 6. The sequence of the winner units for testing patterns.

V. CONCLUSIONS

In this paper, the FNAMSOM which is the hybrid system
of the FSOM and NAMSOM is proposed. The proposed
NAMSOM has an ability of robust classification even when
the spatio-temporal patterns are temporally expanded or con-
tracted and spatially transformed. The FNAMSOM is applied
to a hand gesture problem and the improvement of the
classification ability can be verified.
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