
Abstract---This paper proposes the method for illuminance
measurement by using a vision-based mobile robot. The robot
should perform (1) to build a physical environmental map, (2)
to select the measurement points, (3) to measure illuminance
according to the environmental map, and (4) to build an
illuminance map. To perform the sequence of tasks, the robot
must know the self-location. Therefore, this paper proposes a
method for behavior coordination and self-location estimation.
Furthermore, we conducted several experiments of behavior
coordination and illuminance measurement.

I. Introduction

Robotic systems have been applied to various fields
such as manufacturing systems, building industry,
aerospace development, and human society. The aims of
robots are to assist a human and to perform a task instead of
a human. M.Brady defines robotics as the intelligent
connection of perception to action [1]. To build an
intelligent robot, various methodologies have been
developed by simulating human behaviors and by analyzing
human brains [2-8]. Actually, computational intelligence
techniques based on neural, fuzzy, and evolutionary
computing have been proposed to deal with real world
problems. As one stream of evolutionary computing,
genetic algorithms (GAs) have been effectively used for
optimization problems in robotics [12-20]. GAs can
produce a feasible solution, not necessarily an optimal one,
with less computational cost. The main role of GAs in
robotics is the optimization in modeling or problem-solving.
In fact, the optimization based on GAs can be divided into
three approaches of a direct use, machine learning, and
genetic programming. The direct use is often seen in
applications to the numerical optimization and the
combinatorial optimization for tuning control parameters
and for obtaining knowledge and strategies. The machine
learning is mainly used for optimizing a set of inference

rules in autonomous robots. Finally, genetic programming is
applied for obtaining computer programs that realize
complicated behaviors or tasks. In this way, GAs are used in
various problems of robotics. On the other hand, fuzzy
computing is often used for representing human expert
knowledge by using membership functions, while neural
computing is often used for learning input-output pairs as a
function approximator [4]. For example, fuzzy controllers and
neural controllers are used for behavior control of robots [24].
We have proposed a method of multi-objective behavior
coordination used in unknown and dynamic environments
[25]. Furthermore, the proposed method can be applied to
practical engineering problems.

This paper proposes the method for illuminance
measurement by using a vision-based mobile robot. The robot
should perform (1) to build a physical environmental map, (2)
to select the measurement points, (3) to measure illuminance
according to the environmental map, and (4) to build an
illuminance map. To fulfill the sequence of tasks, the robot
must know the self-location. Therefore, this paper proposes a
method for behavior coordination and self-location estimation.
In order to simplify the problem, we use landmark towers. In
this paper, we apply a genetic algorithm for detecting
landmark towers from an image, and fuzzy control for the
robotic behaviors. The effectiveness of the proposed method
is demonstrated through several experiments of target tracing
and collision avoiding behaviors.

II. Behavior Control of A Mobile Robot

A. A vision-based mobile robots

Figure 1 shows a mobile robot, ActivMedia Robotics
Pioneer 2, used for illuminance measurement. This robot is
provided with 8 ultrasonic sensors and 2 encoders. Since the
sensors and actuators are connected with the Hitachi H8 CPU
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board in the robot, sensory inputs are sent to the host
computer through H8. Furthermore, the robot is provided
with an omnidirectional sensor. Images from the
omnidirectional sensory are taken directly into the host
computer. Therefore, the host computer makes motor
outputs according to the image and other sensory inputs.

B. Multi-objective Behavior Coordination

A behavior of the robot can be represented using fuzzy
rules based on simplified fuzzy inference [2]. The logical
structure written by fuzzy rules is easy for humans to
understand and to design. In this paper, we apply the
proposed method for a navigation task of a mobile robot. A
mobile robot moves from start to target points, and avoids
dangerous states. Here we use two behaviors of target
tracing and collision avoiding. In general, a fuzzy if-then
rule is described as follows,

If x1 is Ai,1 and ... and xm is Ai,m

Then y1 is wi,1 and ... and yn is wi,n

where Ai,j and wi,k are a symmetric triangular membership

function for the jth input and a singleton for the kth output
of the ith rule; m and n are the numbers of inputs and
outputs, respectively. Fuzzy inference is generally described
by,
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where ai,j and bi,j are the central value and the width of the

membership function Ai,j; R is the number of rules. Outputs

of the mobile robot are steering angle and its velocity. In
our previous research [24], evolutionary optimization
methods are used for obtaining fuzzy rules in various
environment conditions. Next, we extend this fuzzy
controller to multiple behaviors.

We have proposed a multi-objective behavior
coordination mechanism(Fig.2). In general, a mobile robot
has a set of behaviors for achieving various objectives. A
behavior weight is assigned to each behavior. By extending
eq.(3), the output is calculated by
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where B and wgth(t) are the number of behaviors; a behavior

weight of the hth behavior over the discrete time step t,
respectively. By updating the behavior weights, the robot can
take a multi-objective behavior according to the time series of
perceptual information. This method can be considered as a
mixture of experts [22] where the a behavior and behavior
coordination mechanism are considered as a local expert and a
gating network, respectively.

III. Self-location Estimation Based on Vision

A. A Steady-state Genetic Algorithm

A steady-state genetic algorithm (SSGA) is applied
for detecting landmark towers (Fig.3). The SSGA simulates
the continuous model of the generation, which eliminates and
generates a few individuals in a generation (iteration). A
candidate solution (individual) is composed of numerical
parameters of the position and size of a landmark (gi,1 gi,2

gi,3) where i indicates the individual number. In SSGA, only a

few existing solutions are replaced by new candidate
solutions generated by genetic operators in each generation
[22]. In this paper, the worst candidate solution is eliminated
and replaced with the candidate solution generated by the
crossover and mutation. We use elitist crossover and adaptive
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mutation. Elitist crossover randomly selects one individual
and generates an individual by incorporating genetic
information from the selected individual and the best
individual. Next, the following adaptive mutation is
performed to the generated individual,
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where fiti is the fitness value of the ith individual, fitmax and

fitmin are the maximum and minimum of fitness values in

the population; aj and bj are the coefficient and offset,

respectively. In the adaptive mutation, the variance of the
normal random number is relatively changed according to
the fitness values of the population. Fitness value is
calculated by the following equation,

fit C p Ci LT Other= - ◊ (6)
where p is a coefficient for penalty, CLT and Cother indicate

the number of pixels of the color corresponding to a
landmark tower and other colors, respectively. Therefore,
this problem results in the maximization problem.

B. Landmark Detection and Self-location Estimation

The robot with the omnidirectional sensor can
estimate the self-location by using the angles among
landmark towers. In this study, we use three landmark
towers of red, green, and blue (Fig.3). Let P, A, B, and C be
the position of the robot, the centers of red, green, and blue
landmark towers, respectively. The coordinate axes are
defined as Fig.4. First, we make two circles satisfying that
A, B, and P are on the circle O1, and B, C, and P are on the

circle O2. Next, let D be the crossing point of the line

passing through B and O1, and let E be the crossing point

of the line passing through B and O2. Because the robot can

obtain the directions of A, B, and C according to the result
of image processing, the robot can know the angles

–BPA=–BDA=q1 and –BPC=–BEC=q2. Let (xA, yA), (xB,

yB), (xC, yC), (xD, yD), (xE, yE), and (xP, yP) be the points of

A, B, C, D, E, and P. To simplify this problem, we restrict
the moving range of the robot into xA<xP<xC, and yA<yP.

Accordingly we can obtain the following equations,
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tanq2 (8)

Furthermore, we can obtain the coordinate of the robot by
using the similar relationship of the quadrilaterals ABPD and
PECB,
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In this way, the robot can estimate the position relative to the
landmark towers. However, the robot should use several
images owing to noise of the images. Therefore, after the
robot performs the estimation of the self-location several
times, and the robot decides the self-location.

The total procedure for illuminance measurement is
shown in Fig.5. After the initialization, the robot performs a
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map building of the physical environment. Next, the robot
selects the intermediate points for illuminance
measurement. Next, the robot moves to each intermediate
target point and measures illuminance at the point. And
then, the robot updates the self-location according to the
estimated position based on the avobe image processing.
Here the sensory network[27] is used for updating the self-
location.

The self-locations estimated by dead-reckoning
and image processing are (xR ,yR) and (xP ,yP), respectively.

The self-location is updated by
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where WP and WR are the weight parameters. These

parameters are also updated by
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where Vmax is the maximal value of the motor output from

Ti to Ti+1; vr,t and vl,t are the outputs of right and left motors

at the discrete time t. Furthermore, WP is updated by
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c best= argmin ,

where fitk,best is the fitness value of the best individual. In

this way, the self-location is updated by the state of sensory
inputs.

IV. Experiments

This section shows experimental results of the vision-based
mobile robot for illuminance measurement. The size of the
environment is 7000 [mm] ¥ 3000 [mm]. We use three

landmark towers of blue, green and red colors (Fig.6). The

height and radius of each landmark tower are 400 [mm] and 200

[mm], respectively. The robot can move in the area with the
edge connecting landmark towers. In the SSGA, the number
of individuals is 200, and the number of evaluations is 2000.

Figure 7 shows an extraction result of landmark towers
by SSGA in a preliminary experiment. In this figure, RLT,
GLT, and BLT are corresponding to red, green and blue
landmark towers, respectively. The color condition of an
original image is not so good, because this sensor uses an
omnidirectional mirror (Fig.7 (a)). Furthermore, the taken
image is reversed. Figure 7 (b) shows a searching result of
landmark towers, but SSGA could not detect the red and blue
landmark towers. SSGA continues to search the landmark
towers by using the next image (Fig.7 (c)). At this image, the
red landmark tower was detected. Finally, SSGA detected all
landmark towers (Fig.7 (d)). The final position on the image
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of RLT, GLT, and BLT is (145,212), (98,173), and (157,23)

and the obtained relative angles; q1=79∞, q2=83∞. The

estimated self-location of the robot is xp=3478[mm],

yp=2494[mm] according to the detected landmark towers. The

error between the estimated values and the measured values is

Dxp=-22[mm], Dyp=-6[mm].

Figure 8 shows snapshots of the robot in the navigation,
and table 1 shows the estimated results. In Fig.8, (S), and (A)
~ (E) indicate the starting points and intermediate points, that
are (3500, 500), (6000, 500), (6000, 2500), (3500, 2500),
(1000, 2500), and (1000, 500) [mm], respectively.

Next, we show the experimental result of the illuminance
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Table 1 Estimation result of self-location
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measurement. In order to build an illuminance map, the
environmental size is measured by using wall following and
collision avoiding behaviors. Next, the intermediate target
points for illuminance measurement are determined using
the built map (Fig.9(a)). The intermediate points are
selected at intervals of 500 [mm] on the map. Figure 9(b)
shows the trajectory of the mobile robot in the environment.
Furthermore, Fig.10 shows snapshots of the robot
inillunimance measurement. Finally, Fig. 11 shows the
illuminance map in the experimental result. This map is the
half of the environment. We obtained the illuminance map
of the room.

V. Summary

This paper proposed the method for illuminance
measurement by a vision-based mobile robot. The proposed
method includes the behavior coordination method based on
fuzzy controllers and image processing for self-location
estimation. The experimental results show that the proposed
method can perform the illuminance measurement.

As future works, we intend to integrate various image
processing methods for behavior control of the mobile
robot.
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