
End-User Programming by Linguistic Expression
employing Interaction and Paraphrasing

Nozomu Kaneko ∗1and Takehisa Onisawa ∗1

∗1 Graduate School of Systems and Information Engineering, University of Tsukuba
1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan

E-mail: nozom@fhuman.esys.tsukuba.ac.jp

An end-user programming system is presented in this paper, which applies the interaction and the paraphrase to
computer programming with non-programming language. Users can build computer programs through inputting
the procedures of problem-solving expressed with non-programming language into the presented system. The
interaction between users and the system can make up for the understanding gaps between users and computer,
which are caused by ambiguity of non-programming language. Paraphrase is used in order to change an undefined
expression into a defined one, and makes a computer understand users’ intention. Case-based reasoning is used for
paraphrase, so that users can add own paraphrase knowledge into the system. Experiments verify the validity of
the presented system.

1. Introduction

In recent years, personal computers have come to wide

use, and computer users are not necessarily experts in a

computer. On the other hand, a programming language

is not so easy to understand as a natural language be-

cause the logical correctness is considered preferentially in a

programming language and the conventional programming

language is based on the computer-centered view. That

is, although computer users should master a programming

language itself, a computer does not need to understand

human language. Therefore, the conventional software has

been usually developed by experts in the special knowledge

on computer programming. Users without programming

knowledge cannot help using ready-made software to enjoy

a computer.

In order to deal with such a problem, many studies on the

end-user programming have been progressed. One of them

is famous as the PBD (Programming By Demonstration)

technique [1], which generates a computer program auto-

matically by user’s illustration. However, there are some

open problems even in the PBD technique. For example,

illustrations show neither end conditions nor conditional

branches. Furthermore, a user cannot correct system’s mis-

understanding of user’s intention by illustrations.

A natural language is the easiest language for human to

understand and many intelligent systems using a natural

language have been developed from the early days of arti-

ficial intelligence [2]. For example, one of the well-known

early systems is SHRDLU [3], which interacts with human

using a natural language about the world of blocks. Lin-

guistic expressions are often used for computer program-

ming based on the formal specification in the automatic

programming field which aims at realizing the improvement

of reliability and productivity of software. Recently, the

concept of “everyday language computing” is proposed [5],

in which information processing is performed with every-

day language approach rather than with the conventional

one based on numerical value. As for the end-user program-

ming system with linguistic expressions, some systems are

presented. For example, in [6], the syntax tree of Java lan-

guage is generated from linguistic expressions. In [7], the

problem-solving is performed on the conceptual level using

the ontology. However, there are some open problems even

in these systems. For instance, the former system deals

with only limited world, and the latter one should prepare

a large amount of knowledge beforehand.

This paper considers our everyday communication in

which mutual understanding is possible even with ambigu-

ous linguistic expressions through the interaction. This

study tries to construct an end-user programming system

by which end-users perform computer programing accord-

ing to users’ requests through the interaction using linguis-

tic expressions. Text editing is considered as the example

of computer programming because users easily understand

the task and how to complete it, even if they have no any

experience of programming.

2. Programming by Paraphrasing

The conversion of linguistic expressions into a machine

language is regarded as a machine translation between two

languages. The translation process is divided into two

parts, the translation part (in a narrow sense) and the para-

phrasing part as shown in Fig. 1. The set L of linguistic

expressions has too many elements. On the other hand,

the set M of a machine language has a fewer elements than

that of L. Let L0 be the set of which elements have approx-

imately one-to-one correspondence to those of M .

tp

L M

L0

Linguistic Expressions Machine Language

Translation
Paraphrasing

Figure 1: Translation and paraphrasing



The translation in a narrow sense is defined by a map t

from specific linguistic expressions to a machine language.

Paraphrasing is defined as a map p from linguistic expres-

sion in L into some expression in L0 which is translated into

M . Since the paraphrase is the conversion within the lan-

guage L, it has the advantage that even users without the

special knowledge on a computer language understand the

conversion. As for the translation, however, it is assumed

that knowledge on the translation is prepared beforehand

and that users do not correct it nor add new knowledge.

Conventional programming languages have many key-

words whose meanings are strictly pre-defined. In this

study, the processes represented by linguistic expressions

are obtained by interaction with users dynamically, rather

than prepared beforehand. From this point of view, the

case-based reasoning method is used. Paraphrasing is the

way to compare cases with linguistic expressions and to add

new cases into the database.

3. System Structure

The structure of the presented system is shown in Fig. 2.

Computer programming is performed by the translation of

linguistic expressions of users’ requests to a machine lan-

guage, and by the paraphrase through the interaction be-

tween the system and users. In this paper, the case-based

reasoning method is used for the paraphrase and the trans-

lation, and users add the paraphrase case into the case

database through the interaction using linguistic expres-

sions. The system has two kinds of database, the para-

phrase case database which describes the correspondence

between two linguistic expressions, and the translation case

database which describes the correspondence between a lin-

guistic expression and a computer program expression. The

system outputs the paraphrase or the translation according

to the results of the case-based reasoning. The system is

implemented by Emacs Lisp on Meadow Version 2.00 pre1,

which is a Windows port of the GNU Emacs.

�����������
	��
���
��������� 	�	������

� ��� ��	�� � �������

��� �!� ��"#�!� 	 �

���$���$��"%��� 	 �
� � 	 �'&)(

� �!� ��	�� � �
�����
� � 	 �*&)(

��� �+� �,��-

����� �.�#�
�����

�0/#/ �1��� � � 	 � 	

2�3 	�� �.-

Figure 2: System structure

3.1 Morphological and Syntactic Analyses
The morphological and the syntactic analyses are applied

to the generation of a syntax tree of inputted linguistic ex-

pressions. The inputted expressions are compared with

the linguistic expressions in the case database based on

the generated syntax tree. Morphological analysis system

“ChaSen” [8] is used to obtain a morphological sequence

from Japanese linguistic expressions. A morphological se-

quence includes a part-of-speech, a conjugated type, a con-

jugated form, a base form, and a pronunciation of each

word. Context-free grammar rules shown in Table 1 are

defined for the syntactic analysis, and the syntax tree is

composed of words and phrases based on these grammar

rules. As the result of the syntactic analysis, some features,

which are obtained both from the grammar rule for the

generation of the phrase and from attributes of all words

in the phrase, are added to a phrase. Table 2 shows fea-

tures obtained from attributes of words. As for features

obtained from the grammar rules, for example, let us con-

sider the situation that the grammar rule for the generation

of a supplementary phrase from a noun and a case-marking

particle is applied to some phrase. The grammatical fea-

tures such as case-marking of “wo” and “ni” are added to

the phrase. The features obtained in this way are employed

in the case-based reasoning and the output generation.

Table 1: Grammar rules

Clause → Supplementary phrase + Predicate phrase
Clause → Supplementary phrase + Clause
Clause → Conjunction + Clause
Clause → Adverb + Clause
Clause → Noun (adverbal) + Clause
Clause → Exclamation
Supplementary phrase → Noun phrase + Case-marking particle
Noun phrase → Noun phrase (adnominal) + Noun phrase
Noun phrase → Noun phrase + Particle
Noun phrase → Adnoun + Noun phrase
Noun phrase → Clause + Noun
Noun phrase → Number + Numerative
Verb phrase → Verb phrase + Attached verb
Verb phrase → Verb phrase + Auxiliary verb
Verb phrase → Verb phrase + Particle

Verb phrase → Verbal noun (‘Suru’-verb stem)
+ Word “Suru”

Verb phrase → Verbal noun (‘Suru’-verb stem)
+ Period (clause end)

Predicate phrase → Verb phrase
Predicate phrase → Predicate phrase + Auxiliary verb
Predicate phrase → Noun phrase + Copula

Table 2: Features obtained from attributes of words

part-of-speech attribute value features

Auxiliary verb

Conjugated
form Subjunctive

subjunctive,
subordinative,
conjunctive

Conjugated
type

unusual “non” negative

Particle Part-of-speech
adverbial/coexistence/
sentence-final particle

interrogative

conjunctive particle conjunctive
Adverb Base form “all” all

3.2 Case-Based Reasoning
Once a syntax tree is obtained from inputted linguistic

expressions, the expressions are compared with cases in the

case database based on the syntax tree. The comparison

process is performed in the following way:

• The comparison of clauses is performed in the way that

the clause is divided into the predicate and supplemen-

tary phrases, and the comparison is performed between

predicates and between supplementary phrases. The



supplementary phrase is a part of a sentence, which is

expressed in the form of “Noun + Case-marking par-

ticle”, reinforcing the meaning of a predicate.

• The comparison of phrases is performed in the way

that words included in a phrase are compared with

each other sequentially. In the noun phrase compar-

ison, if the last noun fits some case in the database,

it is assumed that the presented noun phrase fits the

case. In the verb phrase comparison, if the first verb

fits some case in the database, it is assumed that the

verb phrase fits the case.

• As for the words comparison, the part-of-speech and

the reading of the base form are compared with each

other.

Words in the inputted linguistic expression not corre-

sponding to any words in the case are disregarded in or-

der to perform the comparison successfully even if there are

some extra words in the inputted linguistic expressions. On

the other hand, if any words in the case do not fit words

in the inputted linguistic expressions at all, the comparison

is assumed to be failure. If some cases are obtained as the

result of the comparison, the number of incomplete matches

is considered in order to choose. The case with the smallest

number of incomplete matches is chosen in the first place.

3.3 Output Generation
The translation case database is prepared beforehand in

the form as shown in Table 3. The part in the case, which

fits some part in the inputted linguistic expression, is called

variable. The variable has the type, integer or string, and

the variable fits any word or phrase if their types are same

as the variable. In the translation case, the variable is ex-

pressed, e.g., as “?x<type>”, in the linguistic expression and

is expressed as the parameter of a lambda expression in a

computer language. When a case is found in the transla-

tion case database, the corresponding part of the inputted

linguistic expressions is substituted into the variable in the

case.

The subordinate clause in a complex sentence is trans-

lated into the conditional clause. The subordinate clause

is a clause that has the feature subjunctive and subordi-

native. If the subordinate clause has the feature all, the

clause is translated into the while-clause. Otherwise, it is

translated into the if-clause. The clause without these fea-

tures is translated into the parallel clause. The sequence of

the translation results of all these clauses is the translation

result.

The paraphrase is performed in the same way as the

translation, where the output is not a computer program

but a linguistic expression.

3.4 Addition of Paraphrase Case
If no cases are found in the database corresponding to

the inputted linguistic expression, the system asks users to

paraphrase it into another expression in order to continue

the process. This is the addition of a paraphrase case, and

the added linguistic expression is available in the next inter-

action. An example of the addition of the paraphrase case

Table 3: Translation database (an extract)
linguistic expression translation result

1 move to the left (lambda nil (backward-char))

2 move to the right (lambda nil (forward-char))

3
move ?x<integer> charac-
ters left (lambda (x) (backward-char x))

4
move ?x<integer> charac-
ters right (lambda (x) (forward-char x))

5 move to the previous line (lambda nil (previous-line 1))

6 move to the next line (lambda nil (next-line 1))

7 move up ?x<integer> lines (lambda (x) (previous-line x))

8
move down ?x<integer>
lines (lambda (x) (next-line x))

9 move to the previous word (lambda nil (backward-word 1))

10 move to the next word (lambda nil (forward-word 1))

11
move to the beginning of
line (lambda nil (beginning-of-line))

12 move to the end of line (lambda nil (end-of-line))

13
move to the beginning of
document (lambda nil (goto-char (point-min)))

14
move to the end of docu-
ment

(lambda nil (goto-char (point-max)))

15 search ?x<string>
(lambda (x)

(re-search-forward x nil t))

16
replace ?x<string> to
?y<string> (lambda (x) (replace-regexp x y))

17 insert ?x<string> (lambda (x) (insert x))

18
delete ?x<integer> char-
acters

(lambda (x) (delete-char x))

19 begin selecting a region (lambda nil (set-mark-command nil))

20 cancel selecting a region (lambda nil (deactivate-mark))

21 delete the selecting region
(lambda nil

(and mark-active

(delete-active-region)))
22 is the beginning of line (lambda nil (bolp))

23 is the end of line (lambda nil (eolp))

24
is the beginning of docu-
ment

(lambda nil (bobp))

25 is the end of document (lambda nil (eobp))

26 copy
(lambda nil

(kill-ring-save (point) (mark)))
27 paste (lambda nil (yank))

28 cut
(lambda nil

(kill-ring (point) (mark)))

29
is ?x<string> at the be-
ginning of line

(lambda (x)

(save-excursion

(beginning-of-line)
(looking-at x)))

30
is ?x<string> at the end of
line

(lambda (x)

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" x "$"))))

through the interaction is shown in Fig. 3. In this interac-

tion, a user defines the meaning of the linguistic expression

“quote this line”.

> quote this line

No candidates: Please paraphrase ‘‘quote this line’’.

> insert "> " at the beginning of line

Performed normally.

>

Figure 3: Addition of paraphrase case

4. Experiment

In order to verify the usefulness of the presented sys-

tem, some subject experiments are performed. In the ex-

periments, the text shown in Fig. 4 is edited into the text

shown in Fig. 5. The subjects should (1) change JPEG files

and AVI files into IMG tags and A tags, respectively, and

(2) erase the other files, i.e. the files with “~”, “.BAK”

or “Thumbs.db”, because they are unnecessary. The ex-

perimental results are shown in Table 4 and Table 5. It is

found that different paraphrase cases are obtained by each

subject. Subject 1 obtains the computer program as shown



in Fig. 6. It is confirmed that the text shown in Fig. 4 is

transformed into the text in Fig. 5 by the execution of the

computer program shown in Fig. 6.

photo(hanami2004)/hanami2004-1.JPG
photo(hanami2004)/hanami2004-1.JPG~
photo(hanami2004)/hanami2004-2.JPG
photo(hanami2004)/hanami2004-3.JPG
photo(hanami2004)/hanami2004-4.JPG
photo(hanami2004)/hanami2004-5.JPG
photo(hanami2004)/hanami2004-6.AVI
photo(hanami2004)/hanami2004-7.JPG
photo(hanami2004)/Thumbs.db
photo(graduation2004)/DSCF1.JPG
photo(graduation2004)/DSCF2.JPG
photo(graduation2004)/DSCF3.JPG
photo(graduation2004)/DSCF4.JPG
photo(graduation2004)/DSCF5.JPG
photo(graduation2004)/DSCF6.JPG
photo(graduation2004)/DSCF6.JPG.BAK
photo(graduation2004)/DSCF7.JPG
photo(graduation2004)/DSCF8.JPG
photo(graduation2004)/DSCF9.JPG
photo(graduation2004)/DSCF10.JPG
photo(graduation2004)/Thumbs.db

Figure 4: Text before editing

<IMG SRC="photo(hanami2004)/hanami2004-1.JPG"><BR>
<IMG SRC="photo(hanami2004)/hanami2004-2.JPG"><BR>
<IMG SRC="photo(hanami2004)/hanami2004-3.JPG"><BR>
<IMG SRC="photo(hanami2004)/hanami2004-4.JPG"><BR>
<IMG SRC="photo(hanami2004)/hanami2004-5.JPG"><BR>
<A HREF="photo(hanami2004)/hanami2004-6.AVI">hanami2004-6.AVI</A><BR>
<IMG SRC="photo(hanami2004)/hanami2004-7.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF1.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF2.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF3.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF4.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF5.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF6.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF7.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF8.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF9.JPG"><BR>
<IMG SRC="photo(graduation2004)/DSCF10.JPG"><BR>

Figure 5: Text after editing

Table 4: Paraphrases obtained by subject 1
before paraphrasing after paraphrasing

1 do the image tag 1.
move to the beginning of line. in-
sert “<IMG SRC="”.

2 do the image tag 2.
move to the end of line. insert
“"><BR>”.

3 add an image tag.
do the image tag 1. do the image
tag 2.

4 add the image tag. add an image tag.

5 do the link tag 1.
move to the beginning of line. in-
sert “<A HREF="”. search “/”.

6 do the link tag 2.
begin the selecting. move to the end
of line. copy. insert “">”. paste.

7 do the link tag 3. move to end of line. insert “</A>”.

8 add the link tag.
do the link tag 1. do the link tag 2.
do the link tag 3.

9 delete one line.

move to the beginning of line. begin
the selection. move to the end of
line. delete the selection. delete 1
character.

10 do the tagging decision 2.
if there is “AVI” at the end of line,
add the link tag.

11 do the tagging decision 3.
if there is “JPG” at the end of line,
add the image tag.

12 insert the tag.
do the tagging decision 2. do the
tagging decision 3.

13 do the deletion 1.
if there is “.BAK” at the end of line,
delete one line.

14 do the deletion 2.
if there is “~” at the end of line,
delete one line.

15 do the deletion 3.
if there is “Thumbs.db” at the end of
line, delete one line.

16 delete the excessive line.
do the deletion 1. do the deletion 2.
do the deletion 3.

17 do the process.
insert the tag. delete the excessive
line.

Table 5: Paraphrases obtained by subject 2
before paraphrasing after paraphrasing

1
insert “<IMG SRC="” at the
beginning of line.

move to the beginning of line. in-
sert “<IMG SRC="”.

2
insert “"><BR>” at the end
of line.

move to the end of line. insert
“"><BR>”.

3 add the IMG tag.
insert “<IMG SRC="” at the beginning
of line. insert “"><BR>” at the end of
line.

4 is “JPG”. is “JPG” at the end of line.
5 do the image process. if there is “JPG”, add the IMG tag.

6
insert “">” at the end of
line.

move to the end of line. insert “">|’’.

7
insert “<A HREF="” at the
beginning of line.

move to the beginning of line. in-
sert “<A HREF="”.

8
do the end-of-line process
of A tag.

search “/”. begin selecting. move
to the end of line. copy. insert “">”
at the end of line. paste.

9
insert “</A><BR>” at the
end of line.

move to the end of line. insert
“</A><BR>”.

10 add the A tag.

insert “<A HREF="” at the beginning
of line. do the end-of-line process
of A tag. cancel selecting. insert
“</A><BR>” at the end of line.

11 is “AVI”. is “AVI” at the end of line.
12 do the anchor process. if there is “AVI”, add the A tag.

13 do the tagging process.
do the anchor process. do the image
process.

14 delete this line.

move to the beginning of line. begin
selecting. move to the end of line.
delete the selecting region. cancel
selecting.

15 is “BAK”. is “BAK” at the end of line.
16 delete the line of “BAK”. if there is “BAK”, delete this line.
17 is “db”. is “db” at the end of line.
18 delete the line of “db”. if there is “db”, delete this line.
19 is “~”. is “~” at the end of line.
20 delete the line of “~”. if there is “~”, delete this line.

21 do the deleting process.
delete the line of “~”. delete the line
of “db”. delete the line of “BAK”.

22 achieve the goal.
do the tagging process. do the
deleting process.

An example of interactions in the experiment is shown

in Fig. 7. The system confirms that the first input can

be paraphrased by the combination of the translation and

paraphrase cases already defined. The user answers “yes”,

and the translation is performed. On the other hand, the

input “do the tagging decision 2” is quite a new linguis-

tic expression. While the system retrieves some cases and

asks the user whether they have similar meaning of the

inputted expression or not, the user continues answering

“no”. Therefore, the system asks the user to paraphrase

inputted linguistic expression, and the user paraphrases it

into another expression.

Linguistic expressions not only prepared beforehand but

also saved in paraphrasing case database can be used for

paraphrasing. Any linguistic expression is used for making

a program, whether it is defined or not. If it is already

defined, the translation process is performed and the pro-

gram corresponding to the inputted linguistic expression is

generated. If it is not defined yet, the system asks a user

to paraphrase it. After paraphrasing, the translation pro-

cess is performed in the same way. At the same time, the

linguistic expression for paraphrasing is added to the case

database. Therefore, a user can make a program with their

own words by paraphrasing undefined linguistic expressions

into defined ones.

However the system has some problems. In this system,

translation cases must be prepared beforehand since a user

cannot input translation cases by paraphrasing. Therefore,

it is required to estimate how many translation cases are

necessary for the system.



(progn
(if

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" "AVI" "$")))

(progn
(beginning-of-line)
(insert "<A HREF=\"")
(re-search-forward "/" nil t)

(set-mark-command nil)

(end-of-line)

(kill-ring-save (point) (mark))
(insert "\">")
(yank)
(end-of-line)

(insert "</A>")))

(if

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" "JPG" "$")))

(progn
(beginning-of-line)
(insert "<IMG SRC=\"")
(end-of-line)

(insert "\"><BR>")))
(if

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" ".BAK" "$")))

(progn
(beginning-of-line)
(set-mark-command nil)

(end-of-line)

(and mark-active

(delete-active-region))
(delete-char 1)))

(if

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" "~" "$")))

(progn
(beginning-of-line)
(set-mark-command nil)

(end-of-line)

(and mark-active

(delete-active-region))
(delete-char 1)))

(if

(save-excursion

(beginning-of-line)
(looking-at (concat ".*" "Thumbs.db" "$")))

(progn
(beginning-of-line)
(set-mark-command nil)

(end-of-line)

(and mark-active

(delete-active-region))
(delete-char 1))))

Figure 6: Program generated for subject 1

> if there is ‘‘AVI’’ at the end of line, add the link tag.

Translation: Are you sure to execute ‘there is ‘‘AVI’’ at the end of line
(subjunctive). do the link tag 1. do the link tag 2. do the link tag 3.’?

> yes

Performed normally.

> do the tagging decision 2.

Translation: Are you sure to execute ‘do the link tag 2.’?

> no

Translation: Are you sure to execute ‘do the image tag 2.’?

> no

No candidates: Please paraphrase ‘do the tagging decision 2’.

> if there is ‘AVI’ at the end of line, add the link tag.

Performed normally.

Figure 7: Example of interactions in the experiment

5. Conclusion

This paper proposes an end-user programming system us-

ing linguistic expressions. The system consists of the para-

phrasing part and the translation part. In the former part

the system has the paraphrase case database. Users can

add paraphrase cases into the database by the interaction

with the system by linguistic expressions. In the latter part
the system has the translation case database that describes

corresponding between linguistic expressions and computer

program language expressions, which is fixed beforehand.

The result of the subject experiments using the present sys-

tem show the feasibility and the following usefulness of the

system: (1) Users can make computer programs without

any knowledge on a computer programming language. (2)

The computer programming with linguistic expressions is

easier than that with a special computer programming lan-

guage.

The followings are future problems: (1) the improvement

of the present system for the realization of more natural

interaction, and (2) the estimation of the amount of the

necessary translation cases.

References

[1] Henry Lieberman: “Your Wish is My Command: Pro-

gramming by Example”, Morgan Kaufmann Publish-

ers (2001).

[2] Amit Konar: “Artificial Intelligence and Soft Comput-

ing”, CRC Press (1999).

[3] Terry Winograd: “Understanding natural language”,

Academic Press (1972).

[4] Minoru Harada: “A New Paradigm for Automatic Pro-

gramming”, Journal of Japanese Society for Artifi-

cial Intelligence, Vol. 6, No. 2, pp. 19-23 (1991). (in

Japanese)

[5] I. Kobayashi, T. Sugimoto, S. Iwashita, M. Iwazume,

J. Ozawa and M. Sugeno: “A new communication

method using natural language as a computer com-

munication protocol”, Journal of Advanced Computa-

tional Intelligence and Intelligent Informatics, Vol. 7,

No. 2, pp. 215-222 (2003).

[6] David Price et al.: “NaturalJava: A Natural Language

Interface for Programming in Java”, Proc. of 5th In-

ternational Conference on Intelligent User Interfaces,

New Orleans, Louisiana, pp. 207-211 (2000).

[7] Kazuhisa Seta, Mitsuru Ikeda, Osamu Kakusho, and

Riichiro Mizoguchi: Capturing a Conceptual Model for

End-User Programming: Task Ontology As a Static

User Model, Proc. of 6th International Conference on

User Modeling, Chia Laguna, Sardinia, pp. 203-214

(1997)

[8] Yuji Matsumoto, et al.: Morphological Analysis Sys-

tem ChaSen Version 2.2.1 Manual, Nara Institute of

Science and Technology (2000).


