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Abstract— Support implant has been used to reconstruct an 
artificial hip joint on the acetabulum in total hip arthroplasty 
(THA).  After THA, we should diagnose periodically state of 
the support implant because the implants may be distorted or 
broken.  This paper proposes an in vivo evaluation method 
using multidetector-row computed tomography (MDCT) images.  
The proposed method estimates the distortion degree of the 
support implant by comparing the 3-D geometric model of the 
support implant with the support implant region segmented 
from the MDCT images.  The support implant region is 
segmented from the MDCT images using a fuzzy object model 
which can express knowledge about the shape of objects.  The 
distortion degree is estimated based on a multiscale matching 
algorithm.  The performance of estimating the distortion 
degree was validated through computer simulation experiments, 
phantom experiments in vitro, and subject experiments. 

I. INTRODUCTION 

Total hip arthroplasty (THA) is an operation to replace 
the hip joint with an artificial hip joint [1].  In this operation, 
a support implant is used to reconstruct the artificial hip joint 
on the acetabulum.  The artificial hip joints and support 
implants might be deformed or be broken by a strong load or 
with age.  Because the deformed or broken implants can 
cause serious problems for patients, we should periodically 
diagnose the shape of the implants after THA.   

There is a conventional method for diagnosing the 
support implant [2].  The method is that physicians visually 
evaluate the shape of the postoperative implant with X-ray 
images.  However, it is impossible to obtain the 3-D shape 
of the implant because the X-ray image is a projection image.  
Also, quality of diagnosis depends on the physicians or X-ray 
images.  Therefore, another method that quantitatively 
evaluates the implant based on 3-D form should be studied. 

State of the arts of computed tomography (CT) has 
produced a new imaging modality; multidetector-row CT 
(MDCT) scanner.  In comparison with conventional CT 
scanners, called singledetector-row CT (SDCT), the MDCT 
scanners can take 3-D images with high-contrast and 

high-spatial resolution by using multi detectors [3].  MDCT 
images have been applied to many studies, for example, to 
measure volumes of individual lobes [4] and to segment 
human airway [5]．  However, MDCT images have not been 
used to diagnose the support implant because many artifacts 
are caused by the support implant made of titanium.   

Our aim is to propose a computer-aided system to 
measure the distortion angle of the support implant and to 
detect lacks with MDCT images.  Although the MDCT 
images have many artifacts caused by metal, we can classify 
the metal regions because there are differences of CT values 
between metal and the artifacts.  Implants used by THA 
mainly consists of support implant, screw, cup, artificial 
condyle, and stem.  The support implant and stem are made 
of titanium.  Among metal implant, only the screw connects 
with the support implant and has same CT values to the 
support implant in MDCT images.  To classify the support 
implant from the other implants, our method uses a fuzzy 
object model.  The fuzzy object model assigns fuzzy 
degrees belonging to the support implant and the screws.  
By comparing the fuzzy degrees, we can segment the support 
implant.  The distortion angle is estimated by using the 
multiscale matching algorithm.  The proposed method was 
evaluated by three kinds of experiments that are computer 
simulation, phantom experiments and subjects experiments.   

II. MATERIALS 

The structure of an artificial hip joint is illustrated in Fig. 
1.  Acetabular bone loss is filled with cancellous morselized 

bone, and is associated with cemented or noncemented 
acetabular components.  The support implant is placed on 
the acetablum and is bolted by screws.  The cup made of 
polyethylene is put on the support implant.  The artificial 
condyle and the stem are embedded in the cup.  In this study, 



we used KT plate (Kobe steel, Ltd, Kobe) as implants.  The 
3-D geometric model of the support implant was given by 
Stereolithograpy (STL) format whose mesh size was 0.01 
mm.  Fig. 2 shows the 3-D visualization of the 3-D 
geometric model.   

We acquired MDCT images with two MDCT scanners 
(Aquilion; Toshiba, Tokyo, and Light Speed Ultra 16; GE 
Medical Systems, Milwaukee, WI).  An example of MDCT 
image is shown in Fig. 3.  As shown in this image, although 
there are artifacts caused by metal, there are differences of 
CT values between the implants and the artifacts.  Also, we 
could not find any differences between an MDCT image 
taken by the one scanner and that taken by the other scanner.   

III. PROPOSED COMPUTER-AIDED SYSTEM WITH  
MDCT IMAGES 

Our system consists of three components.  The first 
component extracts the support implant region from the 
MDCT images with a fuzzy object model.  The second step 
is to find correspondence of characteristic points of 3-D 
geometric model and the support implant region extracted 
from MDCT images by using the multiscale matching 
algorithm [6].  At the third step, the distortion degree of the 
support implant is estimated using the found characteristic 
points and landmarks given by a user.  The details of the 
each step are described in the following sections. 

A.  Extraction of the implant region and classification of the 
support implant using a fuzzy object model 

In the MDCT images, CT value of metal is ranged from 
3000 and 15000 Hounsfield unit (HU) and there are no 

human body soft/hard tissues that have similar CT values.  
So regions of the implants made of metal can be easily 
extracted by thresholding.  Because the extracted implant 
region is composed of the support implant, screw, artificial 
condyle and stem, the next step is to classify the support 
implant from the other implants.  Especially, the screw 
connects with the support implant, and it makes us difficult 
to classify the support implant.  Although the shape of the 
implants is given by the 3-D geometric model, the relational 
locations vary subject by subject.  That is, the screws are 
inserted through the holes of the support implant; however, 
the orientation and position in the holes are not strictly 
decided.  To overcome this difficulty, we introduce a fuzzy 
object model.  The fuzzy object model gives a fuzzy degree 
belonging to the implant based on the shape and the rough 
location.  By comparing the fuzzy degrees, we can classify 
the voxel of interest into the support implant or the screw.   

The fuzzy object model is defined based on the 3-D 
geometric model of the object.  For example, consider an 
object constructed by a geometric model illustrated in Fig. 4 
(a).  The object is fuzzified into the fuzzy object model 
shown in Fig. 4 (b) with a fuzzification parameter of α.  The 
fuzzy object model includes the blurred region of the 
boundary.  In the blurred region, we assign the higher fuzzy 
degree belonging to the object for the nearer points to the 
object and the lower degree for the farther points.  The 
fuzzy degree profile on the line from A to B is shown in Fig. 
4 (c).  Using the fuzzy object model, a fuzzy degree 
belonging to the object is calculated as shown in Fig. 4 (d) 
for each voxel.   

Our method classifies the implant region segmented by 
thresholding and labeling algorithms into the support implant 
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Fig.1.  The illustration of the structure of the artificial hip joint. 

 
Fig.2.  3-D visualization of the 3-D 
geometric model of the support 
implant. 
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Fig.3.  An example of MDCT 
image. (A; anterior, P; posterior, R; 
right, L; left) 
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Fig.4.  Fuzzy object model.  (a) Geometric model. (b) Fuzzy object model. 

(c) Fuzzy membership function. (d) The fuzzy degree map. 



or the screws using fuzzy object models of the screw and the 
support implant.  The fuzzy object model of the screw is 
defined as Fig. 5.  In this model, φs and φh are diameters of 
the body and the head of the screw, respectively.  To apply 
the fuzzy object model for the MDCT images, we first find 
the principal axis of the screw from the segment implant 
region.  As shown in Fig. 1, top of the screw is orient to the 
superior of the body.  So, we can segment parts of the 
screws by cutting the superior part of implant region with l 
mm (in our experiment, 30 mm was used).  By calculating 
the principal axes of the segmented regions, we estimate the 
principal axes of the screws.  Using the position of the 
superior top of the implant region and the principal axes, we 
can apply the fuzzy object model of the screw to the implant 
region.   

The fuzzy object model of the palette part of the support 
implant is defined as Fig. 6 (a).  In this model, Dp is the 
thickness of the palette part.  To find the location of the 
palette part of the support implant from the segmented 
implant region, we calculate the frequency of voxels 
belonging to the implant region for each point on the 
principal axis along to the vertical direction of the principal 
axis.  An example of frequency of voxels is given by Fig. 6 
(b).  In this figure, the small frequency means the body of 
the screw, and large frequency means the palette part of the 

support implant.  So, we put the fuzzy object model of the 
palette part of the support implant at the highest frequency so 
that the fuzzy object model lies along the vertical direction of 
the principal axis.   

Consequently, the fuzzy degree belonging to the screw, 
µs, and the fuzzy degree belonging to the support implant, µp, 
are assigned to all voxels of the implant region.  We then 
segment voxels of the implant region that µp is higher than µs.  
And the other voxels are classified into the screw.   

B. Multiscale matching on a 2-D projection 

We define the local coordinate system (u,v,w) of the 
support implant as shown in Fig. 7.  To apply this definition 
for the segmented support implant, we determine u-v plane 
by finding a plane parallelized to the palette part using the 
least-squares method (LSM).  The coordinate origin is set at 
the center of gravity of the palette part.  Also, the 3-D 
geometric model of the support implant is put according to 
the same coordinate system.   

In out system, distortion angles are evaluated on a 2-D 
image that the 3-D image is projected on a plane that a user 
desired.  The projection images are generated by means of 
maximum intensity projection (MIP) processing.  For each 
projected image, we first extract outline of the segmented or 
the 3-D geometric model of support implant.  We then apply 
the multiscale matching algorithm to find correspondences of 
the outline of the segmented support implant to that of the 
3-D geometric model.  The multiscale matching algorithm 
gives a set of characteristic points of the outlines.   

C. Estimating of the distortion angle 

Angles to be evaluated are defined by a user using 
landmarks set on the outline of the projection image of the 
3-D geometric model.  For example, when the user 
evaluates angle θc shown in Fig.8 (a), three landmarks, Lc1, 
Lc2 and Lc3, are given by the user.  Using the landmarks, θc 
can be defined as the angle between vector 12 cc LL  and 
vector 32 cc LL .  To calculate the same angle on the 
segmented support implant, we should find landmarks 
corresponding to the user-given landmarks from the outline 
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Fig.5.  The fuzzy object model of a screw. 
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Fig.6.  Fuzzy object model of the palette part: (a) The fuzzy object model. 
(b) Fuzzy membership function. 
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Fig. 7.  Local coordinate system of the support implant. 

 



of the segmented support implant.   
Let characteristic points of the 3-D geometric model be Pi 

(1≤i≤n), characteristic points of the segmented support 
implant be Mi (1≤i≤n), and Pi corresponds to Mi.   

The characteristic point number is cyclic because the 
object is a closed-shape object.  A landmark corresponding 
to a landmark Lcj on the 3-D geometric model is found by the 
following steps.   

 (1) Find the next characteristic points of the landmarks 
Lcj on the 3-D geometric model; Pi and Pi+1.  For 
example, the next characteristic points of Lc1 shown 
in Fig.8 (a) are P1 and P2.   

(2) Calculate the run length of the outline from Pi to Lcj, 
and the run length from Pi+1 to Lcj.  Let the run 
length be a and b. 

(3) On the outline of the segmented support implant, set 
a landmark, Lmj, at the point which internally divides 
the outline from Mi to Mi+1 in the ratio of a : b. 

In the same matter, the other landmarks on the outline of 
the segmented support implant are found.  In the case of 
Fig.8 (a), by applying the above steps, Lm1, Lm2 and Lm3 on 
the outline of the segmented support implant are found for 
Lc1, Lc2 and Lc3 on the outline of the 3-D geometric model, 
respectively, as shown in Fig.8 (b).  Using the found 
landmarks, we calculate an angle between vectors determined 
by the landmarks.  Then, the distortion angle is calculated 
by differencing θc, which is an angle on the 3-D geometric 
model, and θm, which is an angle on the segmented support 
implant.  For the reason of protecting the right of the 3-D 
geometric model, our system only shows the distortion 
angles but the measurement angles for users.   
 

IV. EXPERIMENTAL RESULTS 

A. Computer simulation experiments 

To evaluate the accuracy of measuring angles, we applied the 
proposed system to four angles of computer simulation data.   

An example of the 3-D geometric model of computer 
simulation data is shown in Fig. 9 (a).  The projection image 
that is shown in Fig. 9 (b) is same to 3-D geometric model.  
For this image, we set four landmarks shown in Fig. 9(a) to 
measure the angle between the lines.  Also, to evaluate the 
performance for noise change, Gaussian noise with 60% was 
convoluted into the image as shown in Fig. 9 (c).   

The angles measured by the proposed system are 
tabulated in Table I.  As shown in this table, the proposed 
system could measure the angles with a mean absoluted error 
of 0.05 degree for the images with no noise.  Also, for the 
images with 60% Gaussian noise, the proposed system could 
measure the angles with a mean absoluted error of 0.23 
degree.   

B. Experiments on MDCT images of phantoms  

To evaluate the accuracy of measuring angles in the MDCT 
images, we made four phantoms made from titanium that is 
the same material of the support implant.  The MDCT 
images used in this experiments were acquired with a matrix 
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(a)                       (b) 
Fig. 8.  Estimation of a distortion degree. (a) Outline of 3-D geometric 
model.  Landmarks are manually set by a user.  (b) Outline of the 
segmented support implant.   
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Fig. 9.  Examples of computer simulation data. (a) 3-D geometric 
model. (b) 80 degree with no noise. (c) 80 degree with 60 % noise. 
 

TABLE I. DISTORTION ANGLES OF SUMILATION DATA. 
0% noise [deg] 60% noise [deg] Truth-value 

Result Error Result Error 
90 90.00 0.00 90.12 0.12 
85 84.87 -0.12 84.84 -0.16 
80 79.93 -0.06 79.47 -0.53 
45 44.99 -0.01 44.88 -0.12 



of 512×512, a pixel size of 0.234×0.234 mm, a slice 
thickness of 0.5 mm, a tube current of 300 mA and a tube 
voltage of 120 kV.  The number of slices was 611.  The 
3-D geometric model and the landmarks to calculate the 
angle are same as those used in the computer simulation 
experiments.  Photography of the phantom is shown in Fig. 
10.  Fig. 11(a) and (b) show a slice of the MDCT image of 
the phantom.  A projection image of phantom is shown in 
Fig. 12.  The results of measuring the angles by the 
proposed method are tabulated in Table II．  This table 
shows that the system could measure the angles with a mean 
absoluted error of 0.81 degree.   

C. Experiments on THA patients  

We have applied the proposed system to MDCT images 
taken from 5 subjects (mean age [± SD] 66.3±7.9 years, and 
5-56 months after THA).  The MDCT images used in this 

study were acquired with a matrix of 512×512, a pixel size of 
0.441×0.441 mm to 0.637×0.637 mm, a slice thickness of 0.5 
mm, a tube current of 300 mA and a tube voltage of 120 kV.  
For each subject, over 460 slices were taken so that the whole 
implant was covered.   

For subject A, the extracted implant region by 
thresholding and labeling is shown in Fig. 13 (a).  The 
support implant region which was segmented by using the 
fuzzy object model of subject B, C, D, and E are shown in 
Fig. 13 (b), (c), (d), (e) and (f).  As shown in the images, the 
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Fig. 13  Segmentation of the support implant by fuzzy object model.  
(a) Segmented implant region of A. (b) Segmented support implant 
region of A. (c) Segmented support implant region of B. (d) 
Segmented support implant region of C. (e) Segmented support 
implant region of D. (f) Segmented support implant region of E. 
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Fig. 10  Photography of the phantom. 
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Fig. 11   Examples slice of the MDCT image of the phantom. (a) A 
slice of (a) in Fig. 10. (b) A slice of (b) in Fig. 10. 
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Fig. 12  A projection image of the MDCT image of the phantom. (a) A 

slice of (a) in Fig. 10. (b) A slice of (b) in Fig. 10. 

TABLE II. DISTORTION ANGLES OF PHANTOM DATA. 
Truth-value [deg] Result [deg] Error [deg]

90 90.95 0.95 
85 84.00 -1.00 
80 79.62 -0.38 
45 44.09 -0.91 



support implant region was well segmented. 
To evaluate the distortion of the support implant 

embedded in the body of the subjects, three distortion angles 
were defined by a physician  in w-u plane as shown in Fig. 14.  
Fig. 15 shows the 2-D projection images of the segmented 
support implant and the 3-D geometric model.  By applying 
the multiscale matching algorithm to the images, we obtained 
characteristic points.  The number of characteristic points 
was 27.  In Fig. 15, some of the characteristic points 
obtained by the multiscale matching algorithm are shown by 
dots.  The distortion angles measured by the proposed 
system are tabulated in Table III.  In this table, ∆θ3 of 
subject B was clearly larger than the other evaluating angles 
and the other subject B.  In the case of Subject B, a screw 
embedded in the body of the subject was hardly distorted.  
This means the support implant of subject B would be 
charged by a strong load.  The large distortion of ∆θ3 of 
subject B supports our hypothesis.   

V. CONCLUSION 

In this paper, we have proposed the in vivo evaluation 
system of the support implant using MDCT images.  Our 
proposed system can measure the distortion of evaluating 
angles in vivo.  This system can strongly support the 
postoperative periodical prognosis.   

To evaluate the performance of the proposed system, we 
have done three types of experiments; computer simulation, 
phantom experiments and subject experiments.  The first 
and second experiments for simple objects showed that the 
method could measure the angles within the error of 1.0 
degree although the images included 60% Gaussian noises.  

In the third experiment for five patients after THA, the 
proposed fuzzy object model segmented the support implant 
successfully.  Also, we have measured the distortion angles 
of the segmented support implants.  The results were 
correlated with the state of the screws.  Therefore, we are 
considering that the proposed system can find the irregular of 
the support implant before the serious problems such as 
broken or damage occur.  Because the support implants 
shown in our experiments have embedding the body of the 
subjects, we can not evaluate the accuracy of measuring the 
angles.  So, we will evaluate the accuracy by applying the 
proposed method to support implants that are distorted 
artificially in vitro.  Also, we will apply our method to find 
lack of the support implant, and will apply for another 
implants, for example, femoral component and tibia tray.   
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Fig.15.  Matching result of A. left; projection image of the 3-D geometric 
model, right; projection image of the segmented support implant.   
 

TABLE III. THE DISTORTION ANGLES OF SUBJECT’S DATA. 
SUBJECT ∆θ1[deg] ∆θ2[deg] ∆θ3[deg] 

A 2.71 9.32 -4.41 
B -0.83 1.72 16.31 
C 3.01 2.54 5.28 
D 3.95 4.85 -2.23 
E 0.66 0.62 3.72 


