
Control of Nonholonomic Mobile Robots Using a
Neurointerface with a Fuzzy Feedback Compensator

Rafiuddin Syam, Keigo Watanabe, Sang-Ho Jin∗, and Kiyotaka Izumi
Department of Advanced Systems Control Engineering
Saga University, 1-Honjomachi, Saga 840-8502, Japan

*Department of Mechanical Engineering, Doowon Technical College
678, Jangwon-ri, Juksan-myon, Ansung-shi, Kyonggi-do, 456-718 Korea

02td74@edu.cc.saga-u.ac.jp, {watanabe,izumi}@me.saga-u.ac.jp,
shjin@doowon.ac.kr

Abstract— A design method for neural network (NN) based
feedforward controller in the framework of neurointerface has
been proposed for nonholonomic robots by applying a concept of
virtual master-slave system, in which a master robot was assumed
to have a stable inverse dynamical model that includes unknown
physical parameters. To reduce an output deviation caused by
the mapping error of NN or a change of the mass of the robot, we
here introduce a PD-based feedback compensator or an adaptive
fuzzy compensator. The effectiveness of the present approach
is shown by a simulation for a tracking control problem of a
nonholonomic mobile robot with two-independent driving wheels.

I. INTRODUCTION

Widrow and Lamego[1] proposed a neurointerface (WL-
neurointerface) approach to ease the control of nonholonomic
systems by nonexpert. This method is composed mainly of
two parts: one is an inverse system realized by neural network
(NN) to generate a feedforward control input according to
a reference value or the output of a reference model and
the other is a feedback mechanism to suppress the effect
of disturbances due to the change of initial state, mapping
errors of NN, etc. This approach is explored[2] to be very
similar to IMC approach[3] and it can also be regarded as
one method of the so-called two-degrees-of-freedom design
for robust control.

Note however that Widrow and Lamego[1] suggested no
systematic ways for constructing NNs for nonholonomic sys-
tems, though a usage of any tapped delay inputs was recom-
mended for the NN, and that Izumi et al.[2] also reported a
fact that a good result cannot be obtained for a nonholonomic
system, even if a feedback error learning mechanism is applied
forcedly to acquire an inverse dynamical system. This is
attributed to a reason that a unique inverse dynamical system
cannot be solved for nonholonomic systems, because most of
them include an unstable zero dynamics.

The present authors have already proposed a method for
constructing a feedforward part in the framework of neuroint-
erface for a nonholonomic mobile robot by applying a concept
of virtual master-slave systems[4]. It was assumed that there
exists an inverse dynamics for a master robot that can be rep-
resented by a steering model and that the transformation from
the generalized coordinate of a slave robot to the coordinate

of a master robot was known. Simulation results for a case,
where the dynamical and kinematic parameters except for the
offset distance of steering axis d are all unknown, have been
already reported in Syam et al.[5].

Note however that the inverse system acquired by NN will
generally yield a modeling error between it and the ideal
model-based inverse system obtained from a known master
robot, because a finite amount of output error is normally
used to terminate the training process. Therefore, to suppress
the effect of such modeling errors, changes of initial con-
figurations (initial disturbances), and unexpected disturbances
for test cases, we further have to introduce any feedback
controller. From this point of view, we have already proposed
a neurointerface with a PD feedback controller in Syam et al.
[6] to reduce the effect of mapping error. However it should
be noted that such a PD controller is effective for a fixed or
slowly time-varying environment such as a case where there
are no sudden changes of mass of the robot.

In this paper, we further consider a case when an adaptive
fuzzy compensator is introduced. In particular, we here inves-
tigate a mixing use of a neurointerface and a PD controller
or a PD controller plus a fuzzy compensator as a simple
feedback compensation. The effectiveness of such a method
is demonstrated by simulations.

In what follows, we first review a concept of virtual master-
slave system in section II. In sections III and IV, we derive a
learning method for the design parameters in a simplified fuzzy
reasoning to obtain an adaptive fuzzy compensator. In section
V, several simulation results are presented to demonstrate the
effectiveness of the present method.

II. A CONCEPT OF VIRTUAL MASTER-SLAVE SYSTEM

Let the nonlinear plant to be controlled be described by a
general nonholonomic two-wheeled robot,

q̈(t) = fS(q̇(t), q(t), τ(t)) (1)

where q(t) �= [x(t) y(t) θ(t)]T is the generalized coordi-
nate vector, in which let the center of gravity of the robot be
(x, y) and the azimuth of the robot be θ. Moreover, fS ∈ �3

and τ
�
= [τr(t) τl(t)]T ∈ �2, where τr and τl are the driving

torques of the right and left wheels, respectively. This inverse

Kinematic
Transformation

Kinematic
Transformation

Slave
Robot
Slave
Robot

Virtual
Master
Robot

Virtual
Master
Robot

)(tq)(tτ)(trv)(trq

Interface

Fig. 1. Construction of an interface using master-slave concept

dynamical model cannot be solved stably and uniquely, so that
we further consider the so-called steering model,

v̇(t) = fM(τ (t)) (2)

where v(t) �= [v(t) θ̇(t)]T and fM ∈ �2, where v(t) denotes
the translational velocity of the robot. The inverse of this
model is known to be solved stably and uniquely.

Hereafter, it is assumed that the model (1) represents the
slave robot to be controlled, while the model (2) represents a
master robot to control the slave robot described in Eq. (1).

A. Torque Generation by an Inverse Model of Master Robot

In general, we can solve the inverse model of the steering
model such as

τ (t) = gM (v̇(t)) (3)

where gM ∈ �2 is a stable and unique vector-valued inverse
function of fM . In order to discretely give v(t) at any time t,
we here consider a backward difference model approximation
for v̇(t). Then, the above equation can be reduced to

τ (t) = gM ([v(t) − v(t − 1)]/∆t) (4)

where ∆t is the sampling width. Given the reference velocity
vectors vr(t) and vr(t−1) at times t and t−1 for the master
robot, we can easily obtain the desired input torque vector
τ r(t) at time t using the above relation.

At this stage, we must be aware of the direct kinematic
relation given by

q̇(t) = J(θ(t))v(t), J(θ(t))=


cos(θ) −d sin(θ)

sin(θ) d cos(θ)
0 1


 (5)

because the slave robot has its desired reference as qr(t),
where d denotes an offset distance of steering axis. Therefore,
the references vr(t) and vr(t−1) for the master robot can be
generated by

vr(t) = J+(θr(t))
[
qr(t) − qr(t− 1)

∆t

]
(6)

vr(t− 1) = J+(θr(t− 1))
[
qr(t− 1) − qr(t− 2)

∆t

]
(7)

where J+(·) denotes the pseudoinverse matrix of J(·).
Thus, given the desired references qr(t) for the slave robot,

we can discretely generate τ (t) by using Eqs. (4) to (7). Figure
1 shows the construction of an interface using a master-slave
concept.

)1(−trv

)(trv

)(trτ
t∆

1
+

−
)(⋅Mg

Coordinate transformation
from slave to master Inverse model of master

dτ

)1(−trq

)(trq
))((tJ rθ+

1−z

+
t∆

1

−
1−z

Fig. 2. Model-based feedforward controller with a virtual master-slave system

)1(−trq

)(trq

)1(−trv

)(trv
)(trτ))((tJ rθ+

1−z

+
t∆

1

−

Coordinate transformation
from slave to master

Inverse mapping of master
dτ

1−z

Fig. 3. NN-based feedforward controller with a virtual master-slave system

B. Addition of a Known Torque Compensation due to Floor
Frictions etc.

As can be found from Eq. (4), if vr(t) is constant, then the
desired torque τ r(t) will be zero in the sequel. However, in
practice, there exist some disturbances such as floor frictions
etc., so that we include a small disturbance torque τ d(t) to
avoid a zero input torque such as

τ r(t) = gM ([vr(t) − vr(t − 1)]/∆t, τd) (8)

Figure 2 shows the block diagram for a feedforward con-
troller by using the inverse dynamical model of a virtual master
robot with backward difference approximation, together with a
coordinate transformation with a pseudoinverse of a Jacobian
matrix. This system is here called a “model-based feedforward
controller” to control a slave robot as the final controlled
objective.

III. CONSTRUCTION OF FUZZY FEEDBACK COMPENSATOR

We have already proposed a neurointerface with a PD
feedback controller as shown in Fig. 4 to reduce the effect
of mapping error when constructing a feedforward controller
through an inverse dynamical model of the virtual master
robot. However it should be noted that such a PD controller is
effective for a fixed or slowly time-varying environment such
as a case where there are no sudden changes of mass of the
robot.

In this paper, we further consider a case when the mass
of the robot will be changed drastically, as a disturbance. In
particular, we here introduce an adaptive fuzzy compensator
as shown in Fig. 5 and Fig. 6.

A. Fuzzy Reasoning with a Simplified Reasoning

Let us consider a case with n input variables (e1, ..., en)
and p output variables (τF1 , ..., τFp) as the consequent.

The simplified reasoning method can be interpreted as a
special case of the Sugeno’s fuzzy reasoning. In fact, this

)(trq

)(trτ

+
)(tq

)(tPDτ
)(tτ

−

)(tq&

)(trq&
+−

+
+

PD ControllerPD Controller RobotRobot

NN-based Feedforward
Controller

NN-based Feedforward
Controller

Fig. 4. A neurointerface with a PD feedback controller

)(trq

)(trτ

+
)(tq

)(tPDτ
)(tτ

−

)(tq&

)(trq&
+−

+
+

NN-based Feedforward
Controller

NN-based Feedforward
Controller

PD ControllerPD Controller RobotRobot

Adaptive Fuzzy
Compensator

Adaptive Fuzzy
Compensator

)(tFτ

+

)(te

Disturbance

Fig. 5. A neurointerface with a PD feedback controller and an adaptive fuzzy
compensator

method coincides with a case when a function in the con-
clusion becomes a constant wij , or a case when the width
of the fuzzy set in the conclusion of the min-max-centroidal
method becomes an infinitesimal value, that is, a singleton.
Therefore, any i-th control rule can be written by

Ri : If e1 = Ai1 and ... and en = Ain

then τF1 = wi1 and ... and τFp = wip (9)

where Ri denotes the i-th control rule, Aij the fuzzy set (or
fuzzy variable) in the antecedent associated with the j-th input
variable at the i-th control rule, and wij denotes a constant
associated with the j-th variable in the conclusion at the i-th
control rule. Applying n confidences µAi1(e1), ..., µAin(en),
the confidence in the antecedent hi is defined by

hi = µAi1(e1) · µAi2(e2)... · µAin(en) (10)

where “·” is the algebraic product. If the fuzzy set Aij(ej)
is adopted as a Gaussian like membership function, it follows
that

µAij (ej) = exp{ln(0.5)(ej − cij)2w2
dij} (11)

Here, cij denotes the center value (e.g. the mean value)
associated with the membership function for the j-th input
data at the i-th rule, and wdij denotes the reciprocal value
of the deviation from the center cij to which the Gaussian
function of the j-th input data at the i-th rule has value 0.5.

Then, the j-th output consequent can be calculated as the
following weighted mean of fij(·) with respect to the weight
hi:

τ∗
Fj =

∑r
i=1 hiwij∑r

i=1 hi
, j = 1, ..., p (12)

)(trq

)(trτ

+)(tq)(tτ

−

+
+

NN-based Feedforward
Controller

NN-based Feedforward
Controller

RobotRobotAdaptive Fuzzy
Compensator

Adaptive Fuzzy
Compensator)(tFτ

)(te

Disturbance

Fig. 6. A neurointerface with only an adaptive fuzzy compensator

where r denotes the total number of control rules; if the
number of membership functions (i.e., the number of labels)
in the antecedent is �, then in general r = �n.

B. Learning of Consequent Part

We here consider the following squared error as a cost
function:

J =
1
2

3∑
k=1

e2
k(t) (13)

where ek(t) = qrk(t) − qk(t). Then we have the update
algorithm for the constant in the consequent part such as

wij(t + 1) = wij(t) − η
∂J

∂wij(t)
(14)

Here, it follows that

∂J

∂wij(t)
=

3∑
k=1

∂J

∂ek(t)
∂ek(t)
∂wij(t)

(15)

=
3∑

k=1

ek(t)
∂ek(t)
∂qk(t)

∂qk(t)
∂wij(t)

(16)

= −
3∑

k=1

ek(t)
∂qk(t)
∂wij(t)

(17)

∂qk(t)
∂wij(t)

=
∂qk(t)
∂τj(t)

∂τj(t)
∂τ∗

Fj(t)
∂τ∗

Fj (t)
∂wij(t)

(18)

Since τj(t) = τ∗
Fj(t) + τrj(t) and from the fact of (12), we

have
∂qk(t)
∂wij(t)

=
∂qk(t)
∂τj(t)

hi∑r
i=1 hi

(19)

Therefore,

wij(t + 1) = wij(t) + η

3∑
k=1

ek(t)
∂qk(t)
∂τj(t)

hi∑r
i=1 hi

(20)

C. An Approximate Evaluation of Output Jacobian with Re-
spect to Input Torque

For the simplicity of the problem, let us consider the case
of d � 0. Then, it is easily found, from the dynamical model
of the slave robot [2] or [7], that

M−1 =




1
m 0 0
0 1

m 0
0 0 1

I


 , M−1B(q) =




1
mr cos θ 1

mr cos θ
1

mr sin θ 1
mr sin θ

1
Ir

R − 1
Ir

R




(21)

+
IT−

Torque transformation

)(tFZv&Adaptive Fuzzy
Compensator

(t)*Fτ

)(trq

)(tq

Fig. 7. An adaptive fuzzy compensator with a torque transformation

Therefore, the evaluation of ∂q̈/∂τi(t) is equivalent to

∂M−1B(q)τ (t)
∂τ1(t)

=




cos θ
mr
sin θ

mr
R

Ir


 ,

∂M−1B(q)τ (t)
∂τ2(t)

=




cos θ
mr
sin θ

mr

− R

Ir




(22)

Now, using an approximation of q̇ = [q(t) − q(t − 1)]/∆t
and noting that the evaluation of ∂q(t)/∂τj(t) is equivalent
to ∂(∆t)2M−1B(q)τ (t)/∂τj(t), we have

∂q(t)
∂τ1(t)

=


 (∆t)2 cos θ

(∆t)2 sin θ
(∆t)2RmIR


 ,

∂q(t)
∂τ2(t)

=


 (∆t)2 cos θ

(∆t)2 sin θ
−(∆t)2RmIR



(23)

where a new learning rate should be interpreted as η/mr
�
= η′,

and the ratio of mass to the moment of inertia RmI
�= m/I

and the tread 2R are assumed to be known to use the above
evaluation of the output Jacobian with respect to the input
torque in the online learning.

D. A Transformation of Fuzzy Compensator

If we have an acceleration reasoning from a fuzzy compen-
sator as shown in Fig. 7, then we need a torque transformation

matrix TI
�= {TIij}, i, j = 1, 2 to obtain τ ∗

F (t) = TI v̇FZ(t).
Therefore we obtain

∂qk(t)
∂wij(t)

=
∂qk(t)
∂τj(t)

∂τj(t)
∂τ∗

Fj(t)
∂τ∗

Fj(t)
∂v̇FZj(t)

∂v̇FZj(t)
∂wij(t)

(24)

∂τ∗
Fj (t)

∂v̇FZj(t)
= TIjj (25)

so that it follows that

∂qk(t)
∂wij(t)

=
∂qk(t)
∂τj(t)

TIjj
hi∑r

i=1 hi
(26)

In the sequel,

wij(t + 1) = wij(t) + η

3∑
k=1

ek(t)
∂qk(t)
∂τj(t)

TIjj
hi∑r
i=1 hi

(27)

IV. LEARNING OF ANTECEDENT PART

Similarly, we can derive the update algorithms for the design
parameters in the antecedent part, i.e., cij(t) and wdij(t).

A. Case of cij(t)

cij(t + 1) = cij(t) − η
∂J

∂cij(t)
(28)

Here, it follows that

∂J

∂cij(t)
=

3∑
k=1

∂J

∂ek(t)
∂ek(t)
∂cij(t)

(29)

=
3∑

k=1

ek(t)
∂ek(t)
∂qk(t)

∂qk(t)
∂cij(t)

(30)

= −
3∑

k=1

ek(t)
∂qk(t)
∂cij(t)

(31)

∂qk(t)
∂cij(t)

=
∂qk(t)
∂τj(t)

∂τj(t)
∂τ∗

Fj(t)
∂τ∗

Fj(t)
∂hi(t)

∂hi(t)
∂µAij (ej)

×∂µAij (ej)
∂cij(t)

(32)

Since

∂τj(t)
∂τ∗

Fj(t)
= 1 (33)

∂τ∗
Fj(t)

∂hi(t)
=

wij∑r
i=1 hi

−
∑r

i=1 hiwij

(
∑r

i=1 hi)
2 (34)

∂hi(t)
∂µAij (ej)

=
n∏

j=1,i �=j

µij(ej) (35)

∂µAij (ej)
∂cij(t)

= (−2 ln(0.5)(ej − cij)w2
dij)

× exp{ln(0.5)(ej − cij)2w2
dij} (36)

we have

∂qk(t)
∂cij(t)

=
∂qk(t)
∂τj(t)

fc(wij , ej, cij , wdij) (37)

in which

fc(wij , ej , cij, wdij) =
[
(−2 ln(0.5)(ej − cij)w2

dij)

× exp{ln(0.5)(ej − cij)2w2
dij}

]
×

[
wij∑r
i=1 hi

−
∑r

i=1 hiwij

(
∑r

i=1 hi)
2

]

×
n∏

j=1,i �=j

µij(ej) (38)

Therefore,

cij(t + 1) = cij(t) + η

3∑
k=1

ek(t)
∂qk(t)
∂τj(t)

fc(wij , ej, cij , wdij)

(39)

B. Case of wdij(t)

wdij(t + 1) = wdij(t) − η
∂J

∂wdij(t)
(40)

Here, it follows that

∂J

∂wdij(t)
=

3∑
k=1

∂J

∂ek(t)
∂ek(t)
∂wdij(t)

(41)

=
3∑

k=1

ek(t)
∂ek(t)
∂qk(t)

∂qk(t)
∂wdij(t)

(42)

= −
3∑

k=1

ek(t)
∂qk(t)

∂wdij(t)
(43)

∂qk(t)
∂wdij(t)

=
∂qk(t)
∂τj(t)

∂τj(t)
∂τ∗

Fj (t)
∂τ∗

Fj (t)
∂hi(t)

∂hi(t)
∂µAij (ej)

×∂µAij (ej)
∂wdij(t)

(44)

Since

∂µAij (ej)
∂wdij(t)

= (2 ln(0.5)(ej − cij)2wdij)

× exp{ln(0.5)(ej − cij)2w2
dij} (45)

we have

∂qk(t)
∂wdij(t)

=
∂qk(t)
∂τj(t)

fwd(wij , ej, cij , wdij) (46)

in which

fwd(wij , ej, cij , wdij) =
[
(2 ln(0.5)(ej − cij)2wdij)
× exp{ln(0.5)(ej − cij)2w2

dij}
]

×
[

wij∑r
i=1 hi

−
∑r

i=1 hiwij

(
∑r

i=1 hi)
2

]

×
n∏

j=1,i �=j

µij(ej) (47)

Therefore,

wdij(t + 1) = wdij(t)

+η

3∑
k=1

ek(t)
∂qk(t)
∂τj(t)

fwd(wij , ej , cij, wdij)

(48)

V. SIMULATIONS

The dynamical model given in Izumi et al. [2] or Fierro
and Lewis [7] as a slave robot, is now transformed into a
steering model for controlling a master robot. That is, an actual
model of Eq. (2) as a master robot can now be reduced to the
following equation:[

m 0
0 I −md2

] [
v̇

θ̈

]
+ τ d =

1
r

[
1 1
R −R

][
τr

τl

]
(49)

where m denotes the mass of the robot, d is the offset distance
of steering axis, I is the moment of inertia of the robot, 2R

denotes the tread of the robot, and r denotes the radius of
wheel.

We conducted the training of NN to obtain an inverse
mapping of the virtual master robot and after that implemented
the neurointerface together with a feedback compensator for
controlling the actual (slave) robot. The steering model of
Eq. (2) and the slave model given in Izumi et al. [2] were
all simulated by using a simple Euler’s method, under the
condition of the sampling width ∆t = 0.02 [s].

When training the NN, known friction inputs as distur-
bance torques were supplied to the NN, where {τ1d, τ2d} =
{0.005, 0.005}[Nm] for all simulations. Note also that the
initial values of connection weights wi for the NN were set
by using uniform random numbers.

We collected the input-output data from the steering model
with deterministic input torques, as the training data for the
NN. That is, it was assumed that the torque inputs were
generated by using sinusoidal functions [6].

In the following, we considered a case where the dynamical
and kinematic parameters except for the offset distance of
steering axis d were all unknown.

A. A PD Feedback Compensation

We first tested for untrained reference by applying the
neurointerface with a PD feedback compensator, where the PD
feedback gains were set to kip = 1 and kid = 2 for i = 1, 2, 3,
through trial and error. The resultant test trajectories are shown
in Fig. 8.

It is found from this figure that as expected, a simple use
of only the NN-based feedforward controller has some output
deviations in Cartesian coordinate due to the mapping errors
of NN, whereas adding a PD feedback compensator gives a
better response.

B. An Adaptive Fuzzy Compensation

The second tested was implemented with the neurointerface
together with a PD-based feedback controller used above and
a fuzzy feedback compensator, where the constant parameters
in the consequent part of reasoning were learned online with
a learning rate η of 0.1, i.e., the center value cij and the
reciprocal value of the deviation were all fixed in advance.
The resultant test trajectories are shown in Fig. 9.

It is found from this figure that as expected, a simple use of
only the NN-based feedforward controller and a PD feedback
compensator has some output deviations in Cartesian coordi-
nate, whereas adding an adaptive fuzzy feedback compensator
gives a better response.

VI. CONCLUSIONS

We have presented a design method for a fuzzy compen-
sator in constructing an NN-based feedforward controller, i.e.,
neurointerface, by applying a concept of a virtual master-slave
system. Since there was a practical mapping error of NN, a
PD-based feedback compensator or fuzzy compensator was
further added to the neurointerface to suppress the output
deviations. The effectiveness of the proposed method was

-0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4
Reference
Feedforward only
PD Controller only

Start

x-position [m]

y-
po

si
tio

n
[m

]

0.6

Fig. 8. A tested reference using a neurointerface with a PD feedback
controller

-0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.6

Reference
PD and fuzzy controller

x-position [m]

y-
po

si
tio

n
[m

]

Start

Fig. 9. A tested reference using a neurointerface with fuzzy compensator
and PD feedback controller

shown through a simple simulation for solving a trajectory
tracking control problem of a nonholonomic mobile robot with
two-independent driving wheels.

We have to further investigate a more general adaptive fuzzy
compensator, learning all of design parameters in the fuzzy
reasoning, to obtain satisfactory results against any variational
deviations caused by the changes of the robot’s mass or against
any external disturbances.

REFERENCES

[1] W. Widrow and M. L. Lamego, Neurointerfaces, IEEE Trans. on
Control System Technology, vol. 10, no. 2, pp. 221–228, March
2002.

[2] K. Izumi, R. Syam, and K. Watanabe, “Neural network based
disturbance canceller with feedback error learning for nonholo-
nomic mobile robots,” in Proc. of the 4th Int. Symposium on AI
System (ISIS 2003), Sept. 25–28, 2003, Jeju, Korea, pp. 443–
446.

[3] C. Kambhampati, R. J. Craddok, M. Tham, and K. Warwick,
“Inverse model control using recurrent networks,” Mathematics
and Computers in Simulation, vol. 51, pp. 181–199, 2002.

[4] R. Syam, K. Watanabe, and K. Izumi, “A study on constructing
a neuro-interface using the concept of virtual master-slave
system,” in Proc. of the 9th Int. Symposium on Artificial Life
and Robotics (AROB 9th ’04), Jan. 28–30, 2004, Beppu, Oita,
Japan, vol.2, pp. 527–530.

[5] R. Syam, K. Watanabe, and K. Izumi, “A neurointerface using
a concept of virtual master-slave for controlling nonholonomic
mobile robots,” in Proc. of Int. Workshop on Fuzzy Systems
& Innovational Computing 2004 (FIC2004), June 2–3, 2004,
Kitakyushu, Japan.

[6] R. Syam, K. Watanabe, and K. Izumi, “Concept of Virtual
Master-Slave Systems and Its Application to the Design of a
Neuro-Interface,” in Proc. of the 43rd SICE Annual Conference
(SICE2004), August 4–6, 2004, Sapporo, Japan.

[7] R. Fierro and F. L. Lewis, “Control of nonholonomic mobile
robot using neural networks,” IEEE Trans. on Neural Networks,
vol. 9, no. 4, pp. 589–600, 1998.

[8] M. Teshnehlab and K. Watanabe, Intelligent Control Based on
Flexible Neural Networks, Dordrecht, The Netherlands: Kluwer
Academic Publishers, 1999, pp. 47–49.

[9] K. Watanabe, T. Fukuda, and S. G. Tzafestas, “An adaptive
control for CARMA systems using linear neural networks,” Int.
J. Control, vol. 56, no. 2, pp. 483–497, 1992.

