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Abstract— In this paper, we propose a method to target searching
method that have unstable limit cycles in a chaos trajectory
surface. We assume all targets in the chaos trajectory surface
have a Van der Pol equation with an unstable limit cycle. When a
chaos robots meet the targets in the Lorenz equation, Hamilton
and Hyper-chaos equation trajectory, the target absorptive the
robot.

We also show computer simulation results of L orenz equation,
Hamilton and Hyper-chaos equation trajectories with one or
more Van der Pol as a target. We proposed and verified the
results of the method to make the embedding chaotic mobilerobot
to searching target with the chaotic trajectory in any plane. It
sear ched the target, when it meetsor closesto thetarget.

Index Terms— chaos, mobile robot, Lorenz, Hamilton,

Hyper-choas equation, tar get searching.

1.INTRODUCTION

HAOS theory has been drawing agreat deal of attentionin

the scientific community for amost two decades.
Remarkable research efforts have been spent in recent years,
trying to export concepts from Physics and Mathematics into
real world engineering applications. Applications of chaos are
being actively studied in such areas as chaos control [1]-[2],
chaos synchronization and secure/crypto communication
[3]-[7], Chemistry [8], Biology [9] and robots and their related
themes [10].

Recently, Nakamura, Y. et a [10] proposed a chaotic mobile
robot where a mobile robot is equipped with a controller that
ensures chaotic motion and the dynamics of the mobile robot
are represented by an Arnold equation. They applied obstacles
in the chaotic trgjectory, but they did not mention obstacle
avoidance methods.

In this paper, we propose a method to target search using
unstable limit cyclesin the chaos trgjectory surface. We assume
that all obstacles in the chaos trajectory surface have aVan der
Pol equation with an unstable limit cycle. When chaos robots
meet target among their arbitrary wandering in the chaos
trajectory, which is derived using chaos circuit equations such
as the Lorenz equation, Hamilton and hyper-chaos equation,
the target absorptive the chaos robots.

Computer simulations also show multiple obstacles can be
avoided with a Lorenz, Hamilton equation and hyper-chaos
equation. We proposed and verified the results of the method to
make the embedding chaotic mobile robot to target search with
the chaotic trgjectory in any plane. It searched the target when it
meets or closes to the target.

2. CHAOTIC MOBILE ROBOT SEQUATION

A. Mobile Robot

As the mathematical model of mobile robots, we assume a
two- wheeled mobile robot as shown in Fig. 1.

Fig. 1 two-wheeled mobile robot

Let the linear velocity of therobot v[m/s] and angular velocity

w[rad/s] be the inputsin the system. The state equation of the
two-wheeled mobile robot iswritten as follows:

X Cos o 0
\
y = sn @ 0 ( J )
. w
o 0 1

where (X,y) isthe position of the robot and é isthe angle of
the robot.

B. Chaosequations

In order to generate chaotic motions for the mobile robot, we
apply chaos eguations such as a L orenz, Hamilton, hyper-choas
equation.

1) Lorenzequation
We define the Lorenz equation as follows:
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where o =10,r = 28,b =8/ 3. The Lorenz equation
describes the famous chaotic phenomenon.

2) Hamilton equation

Hamilton equation is one of the simplest physical models
that have been widely investigated by mathematical, numerical
and experimental methods. We can derive the state equation of



Hamilton equation as follows,
. 2 2
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3) Hyper-chaos Equation
Hyper-chaos equation is one of the simplest physical models
that have been widely investigated by mathematical, numerical
and experimental methods for complex chaotic dynamic. We
can easily make hyper-chaotic equation by using some of
connected N-double scroll. We can derive the state equation of
N-double scroll equation as followings.
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In order to make a hyper-chaos, we have composeto 1
dimensional CNN(Cellular Neural Network) which are
identical two N-double scrall circuits and then we have to
connected each cell by using unidirectional coupling or
diffusive coupling. In this paper, we used to diffusive coupling
method. We represent the state equation of x-diffusive coupling
and y-diffusive coupling as follows.

x-diffusive coupling
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y-diffusive coupling
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20 =—pyV j=12..L
where, L is number of cell.

C. Embedding of chaos circuit in the robot

In order to embed the chaos equation into the mobile robot,
we define and use the Lorenz equation, Hamilton equation,
Hyper-chaos equation as follows.

1) Lorenz equation
Combination of equation (1) and (2), we define and use the
following state variables:
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Eq. (7) isincluding Lorenz equation. The behavior of Lorenz
equation is chaos. We can get chaotic mobile robot trgjectory
such as Fig. 2 by using Eq. (7) with coefficient and initial
conditions as follows:

Coefficients: v=1[m/g]
Initial conditions:

X, =0.10, x, =0.265, X, =027, y=05

Fig. 2 Trajectory of mobile robot of Lorenz equation

2) Hamilton Equation
Combination of equation (1) and (3), we define and use the
following state variables (8)
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Using equation (8), we obtain the embedding chaos robot
trajectories with Hamilton equation. Fig. 3 shows the phase
plane of the Hamilton equation with coefficient and initial
conditions as follows:

Coefficients: v=1[m/g]

Initial conditions:

X, =random, x, =random, x=0.1, y=0.1

Fig. 3 Trajectory of mobile robot of Hamilton equation



3) Hyper-chaos equation
Combination of equation (1) and (5) or (6), we define and use
the following state variables (9) or (10)

).(1 S{y(i) —h(X(j)]+D (X(ifl) _2X(j) +X(i+1))
% | | X0 -y 420
% =~ A" ©)
X VCOSX,
y VSinX,
3.
)_(1 dy(j) _h(X(J')]
%, X0y 4 704 (xID 2xD 4x(09)
% |=| - (10)
X VCOSX,
y ) |vsinx

Using equation (8) and (9), we obtain the embedding chaos
robot trajectories with Hyper-chaos equation. Fig.43 showsthe
phase plane of the Hyper-chaos eguation with coefficient and
initial conditions as follows:

Coefficients:

a=9, =12.787, v=1m/s], Dy =0.01
Initial conditions:
X =01 x,=-01 x,=01 x=0, y=0

Fig. 4 Trajectory of mobile robot of Hyper-chaos equation

D. Mirror Mapping.

Equations (7) - (10) assume that the mobile robot movesin a
smooth state space without boundaries. However, real robots
move in space with boundaries like walls or surfaces of targets.
To avoid a boundary or obstacle, we consider mirror mapping
when the robots approach walls or obstacles using Eqg. (11) and
(12). Whenever the robots approach a wall or obstacle, we
calculate the robots’ new position by using Eq. (11) or (12).
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We can use equation (11) when the slope is infinity, such as
6 =90, and use equation (12) when the slope is not infinity.
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Fig. 5 Mirror mapping

3. THE CHAOTIC BEHAVIOR OF CHAOS ROBOT WITH
MIRROR MAPPING AND TARGET

In this section, we will study avoidance behavior of a chaos
trajectory with obstacle mapping, relying on the Lorenz
equation, Hamilton equation and hyper-chaos equation
respectively.

Fig. 6 through 8 shows that a chaos robot trajectories to
which mirror mapping was applied in the outer wall and in the
inner obstacles as well using Eq. (11) and (12), relying on
Lorenz equation (7), Hamilton equation(8) and Hyper-chaos
equation (9) or (10). The chaos robot has two fixed obstacles,
and we can confirm that the robot adequately avoided the fixed
obstacles in the Lorenz, Hamilton and Hyper-chaos robot
trajectories.

Fig. 6 Lorenz equation tragjectories of chaos robot with
obstacle

Fig.7 Hamilton equation trajectories of chaos robot with
obstacles
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Fig.8 Hyper-chaos equation trajectories of chaos robot with
obstacles

4. THE MOBILE ROBOT WITH VAN DER POL EQUATION TARGET.

In this section, we will discuss the mobile robot’ s avoidance
of Van der Pol(VDP) equation obstacles. We assume the target
has a VDP equation with an stable limit cycle, because in this
condition, the mobile robot can not moveto outsidein the VDP
target and the target is obstacle is searched.

A. VDP equation as a target
In order to represent an obstacle of the mobile robot, we
employ the VDP, which is written as follows:
X =y
y=(1-y*)y-x
From equation (13), we can get the following limit cycle as
shownin Fig. 9.
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Fig.9 Limit cycleof VDP

B. Magnitude of Distracting force from the obstacle
We consider the magnitude of distracting force from the
Target asfollows:

~ 0.325
(0.2D, +1)e*®?>™
where D, is the distance between each effective target and

the mobile robot.
We can also calculate the VDP target direction vector as
follows:

(14)
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where (x,, y, ) are the coordinates of the center point of each

target. Then we can calculate the magnitude of the VDP
direction vector (L), the magnitude of the moving vector of the
virtual robot (1) and the enlarged coordinates (1/2L) of the

magnitude of the virtual robot in VDP( Xk' .Y, ) asfollows:
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Finally, we can get the Total Distraction Vector (TDV) as

shown by the following equation.
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Using eguations (14)-(17), we can ca culate the target search
method of the obstacle in the Lorenz equation, Hamilton and
Hyper-chaos equation trajectories with one or more VDP
targets.

5. TARGET SEARCHING METHOD

In this section, we proposed a target searching method with
Lorenz equation, Hamilton equation, hyper-chaos equation in
the any surface. We designed target searching method which if
the robot has been find the target, the robot defined any radius
around target and then the robot has been a concentrated search
within the defined radius.

A. Lorenzequation

In Fig. 10, we can see the robot trgjectories of target
searching result, the trgjectory of target concentric search in the
chaos mobile robot with obstacle and target (a), the trajectory
of target concentric search in the chaos mobile robot with fix
and hidden obstacle and target (b), the trgjectory of target
concentric search in the chaos mobile robot with atarget in the
Lorenz chaos robot respectively.
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Fig. 10 Thetrajectory of target concentric search in the chaos
mobile robot with obstacle and target (&), the trajectory of
target concentric search in the chaos mobile robot with fix and
hidden obstacle and target (b), the trajectory of target
concentric search in the chaos mobile robot with atarget in the
Lorenz chaos robot .

B. Hamilton equation

In Fig. 11, we can see the robot trajectories of target
searching result, the trajectory of target concentric search in the
chaos mobile robot with obstacle and target (a), the trgjectory
of target concentric search in the chaos mobile robot with fix
and hidden obstacle and target (b), the trgectory of target
concentric search in the chaos mobile robot with atarget in the
Hamilton chaos robot respectively.
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Fig.11. The trajectory of target concentric search in the chaos
mobile robot with obstacle and target (a), the tragjectory of
target concentric search in the chaos mobile robot with fix and
hidden obstacle and target (b), the trgectory of target
concentric search in the chaos mobile robot with atarget in the
hamilton chaos robot .

C. Hyper-chaos equation

In Fig. 12, we can see the robot trgjectories of target
searching result, the trgjectory of target concentric search in the
chaos mobile robot with obstacle and target (a), the trgjectory
of target concentric search in the chaos maobile robot with fix
and hidden obstacle and target (b), the trgjectory of target
concentric search in the chaos mobile robot with atarget in the
hyper-chaos robot respectively.
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Fig.12 The trgjectory of target concentric search in the chaos
mobile robot with obstacle and target (a), the trgectory of
target concentric search in the chaos mobile robot with fix and
hidden obstacle and target (b), the trgectory of target
concentric search in the chaos mobile robot with atarget in the
hyper-chaos robot .

6. CONCLUSION

In this paper, we proposed a chaotic mobile robot, which
employs a mobile robot with Lorenz equation, Hamilton
equation and Hyper-chaos equation trgjectories, and aso
proposed an target searching method in which we assume that
the obstacle and target has a Van der Pol equation with an
unstable limit cycle.

We designed robot tragjectories such that the total dynamics
of the mobile robots was characterized by a Lorenz equation,
Hamilton and hyper-chaos equation and we also designed the
robot trgjectories to include an obstacle avoidance method and
target searching method. By the numerical analysis, it was
illustrated that obstacle avoidance methods and target
searching methods with a Van der Pol equation that has an
unstable limit cycle gave the best performance.

In order to make an obstacle avoidance and target searching
result in the robot system, we applied the Lorenz equation,
Hamilton equation and hyper-chaos equation with target and
obstacle. As a result, we readlized that there are satisfy to
obstacle avoidance method and target searching method.
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