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Abstract-In many biped control applications, it assumed that 
internal structure and dynamics of the robot is known to 
controller, but in real-world problems we don’t have exact model 
of the robot or such model is very complicated and is not useful 
in real-time control. As a matter of fact, we use many devices 
without any knowledge about their internal structure or 
analytical models. This idea motivated us to design a biped 
controller using human’s learning. In the previous works we 
proposed a linguistic controller designed in this way: a human 
with no robotics skills tried to control a biped using a joystick; 
visual information of robot posture was all the available 
information to the operator; Recognizing that the operator 
became enabled to control the robot successfully, we extracted 
his knowledge as 23 fuzzy rules. These rules fed to robot and the 
robot could walk autonomously. In this paper we show the 
robustness of this controller against actuator’s malfunctioning.  
To examine controller’s robustness, we set some tests upon the 
robot. These tests include: disabling left ankle, weakening left 
knee, weakening left hip, disabling both ankles, weakening both 
knees and weakening both hips. In all cases robot could walk 
successfully. 
 
Index terms-Biped robot, Fuzzy control, Robustness, Expertise 
extraction, Linguistic control 
 

I. INTRODUCTION 
Biped walking has been the most natural human motion for 

a long time, but it has been passed just 30 years since the first 
biped robot (WABOT-1, 1973) was physically developed.  

Bipeds have many advantages over other legged robots; 
they usually have less number of actuators, and hence they are 
lighter and have lower cost. They also require a smaller 
foothold area for locomotion and thus are more versatile [1]. 
Since they have human like structure they can live in 
environments specially designed for human (e.g. staircase), 
and can replace human in dangerous tasks; for example 
helping people after an earthquake can be entrusted to bipeds.  

Another important advantage of bipeds is acceptance by 
humans; as stated in [2], humans have a tendency to develop 
affinities based on resemblance.  

Despite these advantages, developing legged robots 
including bipeds started a long time after wheeled ones. 
Probably this is due to relative control complexity of such 
robots. As stated in [3], these robots are extremely difficult to 
control, since they are nonlinear, nominally unstable and 
Multi Input/Multi Output (MIMO). They operate throughout 
the range of their state space, act in a gravity field, interact 
with a semi-structured complex environment, exhibit time 

variant and intermittent dynamics and require both continuous 
control and discrete control (for step-to-step transitions). 

Two main approaches for solving the legged locomotion 
control problem are conventional and intelligent control. 
Conventional control techniques use the equations of motion 
and feedback from sensors to control the movement. One 
drawback of the conventional approach is that it does not 
allow the robot to adapt to changing conditions. If changes 
occur, such as difference in payload or terrain, the equations 
used while developing the controller may no longer apply [4]. 
References [5-9] show some examples of this approach.   

Intelligent control techniques do not use motion equations 
to control movement. Instead, they use general purpose 
learning algorithms, which enable the robot to learn from 
experience. Intelligent controllers remember past solutions, so 
they can be applied to similar situations in the future. 
Learning enables the robot to adapt to changing conditions, 
thereby increasing its range of operability [10]; and is critical 
to achieve autonomous behavior in robots [11]. Some 
examples of intelligent control can be found in [12-17]. 

In the previous works, we proposed a linguistic controller 
to control a seven-link planar biped called Spring Flamingo. 
This robot developed in MIT Leg Lab. by Jerry Pratt. This 
robot showed in Figure 1 and table 1 shows its physical 
parameters. Full description of its structure can be found in 
[18-20]; and Pratt’s approach to control this robot can be seen 
in [19-21].  

We extracted fuzzy rules from the knowledge of the 
operator who have learned how to control the robot without 
knowing its internal structure. Then we used these rules to 
build a fuzzy controller for Spring Flamingo. This controller 
is proved to be a very suitable and efficient one. In this paper 
we show its robustness against rough terrain. 

The paper is organized as follows: the next section 
describes designing steps of the controller; Section 3 shows 
some tests for examining the controller’s robustness against 
actuator’s disabling and weakening; and the conclusions come 
in the last section. 

II. DESIGNING THE CONTROLLER 
Despite recent advances in walking and running robots, 

legged systems in biology continue to outperform our robots 
in terms of energetic efficiency and their ability to cope with 
rough terrain. Many researchers believe that this success can 
be attributed to the ability to learn [22].  
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Figure 1: Spring Flamingo 
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Figure 3: Snapshots of a sample walking by the fuzzy controller 
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III. EXAMINING THE CONTROLLER’S ROBUSTNESS AGAINST 
ACTUATOR’S MALFUNCTIONING 

The robot’s actuators were working properly during 
learning phase, and operator learned to control robot on this 
assumption. All rules were designed and tuned for such a 
robot. In order to know how much the controller is robust 
against its actuators’ malfunctioning, we disabled or 
weakened some of its joints. In all these tests the controller 
knows nothing about changes in robot structure. It assumes 
that the robot is all right all the time and controls the robot on 
this assumption. These tests are as follows:  

A.  Disabling the left ankle 
In this test, the left ankle is completely disabled and is 

affected by external forces only. It means that there is no 
control signal on it. Robot’s success in this test suggests that 
we can leave support ankle passive in some situations. 
Snapshots and graphs of walking are shown in figures 4 and 5 
respectively.  

B.  Weakening the left knee 
In this test, robot’s left knee is weak. It means that it 

receives a portion of control signal. To determine maximum 
weakness that robot can accept on each joint we began with a 
small amount of weakness (about 5%) and increased it 
gradually. The robot can walk with 40% weakness of one 

    

   Figure 4: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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knee, i.e. it can walk with 60% of left knee’s control signal. 
Figures 6 and 7 show snapshots and graphs of movement, 
respectively.  

C. Weakening the left hip 
Operator believed that hip joints are the most important 

joints of the robot. The maximum weakness that robot can 
bear is 10%, showing that the operator was right. Snapshots 
and graphs of this test can be seen in figures 8 and 9.  

D.  Disabling both ankles 
In this experience both ankles are completely disabled and 

do not receive any control signal. Figures 10 and 11 represent 
the snapshots and graphs of this test.  

E.  Weakening both knees  
After robot’s success in walking with one weak knee, we 

tried to see what happens if both knees are weak. Snapshots of 
movement are shown in figure 12, and graphs can be seen in 
figure 13.  

F.  Weakening both hips  
In experience 3.3 we showed that robot can accept 10% 

weakness on one of its hips. It seems that robot can not accept 
more than this weakness on both hips, but in fact it can accept 
25% weakness on both hips. It is probably because that the 
robot do not have waist joint, and rational speed of hip joints 
controls the balance. Snapshots of movement are shown in 
figure 12, and graphs can be seen in figure 13.  

IV.  CONCLUSION 
We showed that we can control a robot without knowing its 

internal structure and dynamics in the same way that we use 
ordinal devices. We used an operator that knew nothing about 
dynamic equations of the robot and the operator become able 
to control the robot by looking at it. Finally we extract 23 

Figure 6: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 

   

    

Figure 5: Snapshots of walking with left ankle disabled 

Arrow indicates the weak foot 
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Figure 7: Snapshots of walking with left knee 40% weakened 

Arrow indicates the weak knee 

Figure 8: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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rules and successfully applied them on the robot. We put the 
robot in unknown terrain without telling it anything about 
changes in the surface. These tests showed that the controller 
is robust against changes in terrain.  
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Figure 9: Snapshots of walking with left hip 10% weakened 

Arrow indicates the weak leg 

Figure 10: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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Figure 11: Snapshots of walking with both ankles disabled 

Figure 12: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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Figure 13: Snapshots of walking with both knees weakened 

Figure 14: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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Figure 15: Snapshots of walking with both hips weakened 

Figure 16: (a) Height, (b) Distance traveled, (c) Pitch, (d) Velocity 
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