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Abstract— We investigate the structure of an eval-
uation process using a multi-dimensional fuzzy mea-
sure formulated as follows. Let pui,pu2,...,u. be the
measures of subjective evaluation and f(z;) be a score
function (of an object in consideration) for items z;,i =
1,2,... ,k. We consider the evaluation process such that
the final evaluative value (of an object) is given by

7 <(C)/fdu1,... ,(C)/fdun>, where (C’)/fdui is the

Choquet integral and ¢ : [0,1]* — [0,1] be a decision
operation.

As an example, we give an evaluation process tak-
ing account of the dual measure p4, the 2-dimensional
fuzzy measure p = (u,pq), reducing the degree of dis-
satisfaction.
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I. INTRODUCTION

The measure of subjective evaluation is formulated as a
fuzzy measure on the set of items X = {z;,x2,... 21}
A fuzzy measure is a set function p : 2% — [0, 1] satisfying

u(0) = 0,u(X) =1, and

if AC B,A,B,c 2%, then u(A) < u(B)
(monotonicity).

If an object has a score function f(z) : X — [0,1],
then its evaluated value is given by the Choquet integral

©) /X fdu (RIBIA].

In this paper, we consider the n-fuzzy mea-
sures 1,2, -, M, and the decision operation ¢
0,11 — [0,1]. And in our evaluation pro-

cess, the final evaluation is examined by the value

” ((C) /X fdun, (C) /X fdps, .. ,(C) /X fdun>. In the

sequel, we shall only consider the case n = 2 for simplic-
ity.

II. 2-DIMENSIONAL MEASURE AND INTEGRAL

Definition 1 2-dimensional measure p is the set function
w 2% —[0,1] x [0, 1] satisfying

1(0) = (0,0) and p(X) = (1,1).

Remark that the monotonicity is not assumed on pu.

Definition 2 The decision operation ¢ is a function ¢ :
[0,1] x [0, 1] — [0, 1] satisfying
©(0,0) =0.

The score function f (of an object) is a function f(x) :
X — [0,1]. The value f(z;) is the score (of an object) for

fdp is defined by

X
the manner same to the Choquet integral as follows.

the item z;. The integral Iy (f) =

Suppose that f(z1) > f(z2) > --- > f(x,) > 0 without
loss of generality. We set f(zn+1) = 0. Then f(z) is
represented as

n

f(il’) = Z (f(xz) - f(xiJrl)) l{z1,zz,...,zi}(m)‘

i=1

Then the integral Iy (f) = / fdu is defined by
X

/X fdun

= Z (f(z;) = f(ziz1)) p ({212 - - - 23})

i=1

In(f) =

If we denote by p(A) = (u1(4), pu2(4)), pi = 2% — [0,1],
then
Ip(f) = (L (), L (F))
where
Iuj(f) =

/X fdp;

= > (f) = fwip) py (e ai})

i=1



Remark that I, (f) € [0,1] and Iy, (f) € [0,1] x [0,1]. The
final evaluated value (of an object) is given by ¢ (I (f)).

ITII. DECISION OPERATION
The decision operation ¢(z,y) : [0,1] x [0,1] — [0,1]
must be determined depending on the evaluated values z =

/ fduy and y = / fdus and also on some interactions
X X

between z and y. We introduce the following interaction
terms;

(i) s-lz—yl (seR)
(i) tyzy  (t20),

and we suppose that ¢(z,y) is of the form

o(x,y) =z +c2y +s- |z —y| +ty/zy,

where c1,c2 > 0, s € IR and t > 0. Furthermore, to assure
o(z,y) > 0, we assume ¢y Acz > |s|,and ¢; + 2+t =1
for (1,1) = 1.

Remark 3 The term s - |z — y| means that, for s < 0, an
object with /fdul R /

/Ty means that an object such that both

fdus has a priority. The term
/ fduy and

/ fdus are different from 0 has a priority.

Proposition 4 ¢(z,y) is monotone in the following sense:

r1 < 22,41 < Y2 = @(21,y1) < @(T2,Y2).

Proof 1t is sufficient to prove the case t = 0. We have

o(T2,y2) — o(T1,1)
= c(r2 —21) +c2(y2 —y1) + s (|v2 —y2| — |71 — y1)
> ciwe — @) + ea(y2 — y1) — [s] [(@2 — 1) = (2 — y1)|
> c(@2 —a1) +eay2 —y1) — |s|(x2 — 1) — [s|(y2 — y1)
> 0,

since ¢; A cg > |s].

Example 5 (1) o(z,y)=xVy= w

Tt+y—|jz—y

2) @y =zAy= %
(3)  wlz,y) = Lry (arithmetic mean)
4)  ¢(z,y) = /7y (geometric mean)

Proposition 6 If y; and pp are fuzzy measures, then
e(p(A)) = p(u1(A), p2(A)) is also a fuzzy measure.

IV. DECISION OPERATION AND ORDER RELATION
Definition 7 A binary relation v < v on [0,1] x [0,1] is
called a comparable quasi-order if

(i) (comparability): for every w,v € [0,1] x [0, 1],
either u < v or v < u holds,

(i)  (reflexivity): for every w € [0,1] x [0,1], u < u

(iii)

holds, and
(transitivity): v < v,v < w implies u < w.
Remark that we do not suppose the antisymmetric law:

u < v and v < v implies u = v.

If we set u ~v & u <wv and v < u, then ~ is the equiv-
alence relation and the quotient [0, 1] x [0, 1]/~ becomes a
totally ordered set naturally.

Using the decision operation ¢ :
we can define the order <, in [0, 1] x

[0,1] x [0,1] — [0, 1],
[0, 1] by

u <, v & p(u) <) for u,v € [0,1] x

Then ¢ : ([0,1] x [0,1],<,) —

[0,1].

[0, 1] is monotone.

Proposition 8 The comparable quasi-order <, is coarser
than the usual order, that is,

up <v,u2 Sve = u <, v
for u = (u1,us2),v = (v1,v2).
Proof The assertion follows from Proposition 4.

We say an comparable quasi-order < on [0, 1] X
p-adequate if <, is coarser than <.

[0,1] — [0,1] be a decision
[0, 1] be a set function. We

[0,1] is

Definition 9 Let ¢ : [0,1] x
operation and g : 2% — [0, 1] x
say p is p-adequate if

ACB,A,Be2" = u(A) <, u(B).
Proposition 10 p is p-adequate if and only if p(u(A)) :
2% — [0,1] is a fuzzy measure.

Definition 11 Let < be any comparable quasi-order in
[0,1] x [0, 1] such that (0,0) < (1,1). Then a set function
p 2% —[0,1] x [0,1] is called a 2-dimensional fuzzy mea-
sure on X with values in ([0, 1] x [0, 1], <) if the following
conditions are satisfied:

p(0) = (0,0), u(X) = (1,1),
ACB,A,Be€2X = u(A) < u(B).

Proposition 12 (1) Let < be a y-adequate compa-
rable quasi-order in [0, 1] x [0, 1] and let g : 2¥ —
([0,1] x [0,1], <) be a 2-dimensional fuzzy mea-
sure. If < is p-adequate, then ¢(u(A)) : 2% —
[0,1] is a fuzzy measure, that is, pu is p-adequate.

and

(2)  Assume that | X| = 3. Assume also that for every
2-dimensional fuzzy measure p : 2% — (]0,1] x

[0,1], <), pis p-adequate. Then < is p-adequate.



Proof

(1) s clear.

(2)  For every u,v € [0,1] x [0, 1] with u < v, we can
find a fuzzy measure p such that p({z;}) = u,
p({z1,22}) = v. So it follows that p(u({z1}) <
e(p({z1,22}), that is, u <, v.

If o(u(A)) is a fuzzy measure, we say ¢(u(A)) the amal-
gamated measure, or the distortion of pu(A) by ¢ ([5]).

Proposition 13 Left p : 2% — ([0,1] x [0,1],<) be a 2-
dimensional fuzzy measure. Then there exists a decision
operation ¢ such that p is p-adequate.

Proof Let A= {u(A)|4€2¥} ={wy=0<w; <w>
< - < wee = (1,1)}. Then we can classify A as fol-
lows:
e A=AgUAL U--- AL (disjoint sum),
.Ak:{w’f,w’g,... k}w1:0wL
o for every w* w € Ag, wk ~ w , and
o for every k < 14 and for every u E Ap,v € Ag,u < v
holds.

We define ¢ by
plu) =0if ue AyN A",

(1,1),

and
k.
cp(u):z if wedy,k=1,2,...,L.

Then for A C B, A, B,€ 2%, we have pu(A) < u(B). If
p(A) and pu(B) belongs to same class Ag, p(u(4)) =
e(u(B)). If p(A) < p(B) and p(A) = p(B) (not equiv-
alent), then p(A) € Ai, n(B) € Ay for k < ¢, so that
p(pr(A)) < p(u(B)). This shows p is p-adequate.

Proposition 14 ¢ : ([0,1] x [0,1],<) — IR is monotone
if and only if there exits a strictly monotone function A :
[0,1 x [0,1]/~ — IR such that ¢(u) = h(7(u)), where
m:[0,1] x[0,1] — [0,1] x [0, 1]/~ is the quotient mapping.

Example 15 Consider the comparable quasi-order <
given by
u<v&u +u v+ v

Then ¢ is monotone if and only if there exists a strictly
increasing function h : [0,1] — [0, 1] such that

cp(s,t)zh(s_;t>.

V. EXAMPLES

A. Evaluation by geometric mean

The evaluation process, by the geometric mean
" /riry - - -1y of the score r; for the item z;, is in our for-
mulation as follows. Put p(A4) = (0z,(A),... 0., (4)) :

X — [0,1], where 6, is the point mass at x;. Then
we have /fdém = f(z;) = ri. If we set ¢ : [0,1]" —
[0,1] by o(u1,uz,...,u,) ="y/urus---u, then we have

7“1 T "Tnp.

o(f )~

B. Ewaluation taking account of the dual measure g

Let pq be the dual measure of p, pg(A) = 1—p(A°). Set
p(A) = (u(A), pa(A)). Then the value ¢ ([ fdu) reflects
a contribution of pg4.

The meaning of (C) / fdua is as follows. The score

b'e
function f(x) can be considered as a degree of satisfac-

tion, so 1 — f(x) be a degree of dissatisfaction. Conse-
quently, the Choquet integral (C)/ (1 — f)du is a to-
X

It is desirable to minimize

-(© [ (-

tal score of dissatisfaction.

() / (1— f)du, equivalently, to maximize 1
X

fHdu = (C) / fdpg to reduce the dissatisfaction.
X
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