Cournot Equilibrium with Possibilistic Information

Peijun Guo Faculty of Economics, Kagawa University Takamatsu, Kagawa 760-8523, Japan guo@ec.kagawa-u.ac.jp

Abstract— In this paper, the uncertainty of duopoly market is characterized by the possibility distribution, the new Cournot equilibrium, called optimistic Cournot equilibrium and pessimistic equilibrium, are proposed to analyze duopoly market.

I. COURNOT EQUILIBRIUM WITH SYMMETRICAL POSSIBILISTIC INFORMATION

We image an industry with only firm 1 and firm 2 (duopoly market), each producing and selling a single good. Consumers do not care from which firm they purchase the good. A very concrete and simple case of linear demand is considered as follows:

$$P = a - b(q_1 + q_2), \quad (P > 0) \quad (1)$$

where p is price, q_1 and q_2 are sale quantities from Firm 1 and Firm 2, respectively, b > 0 is a constant.

The plausible information on market is characterized by the possibility distribution of a in (1).

Definition 1. The possibility distribution of *a*, denoted as π_A , is defined by the following continuous function

 $\boldsymbol{\pi}_A : [a_l, a_r] \to [0, 1], \tag{2}$

where a_i and a_r are the lower and upper bounds of a. $\exists a_c \in [a_i, a_u]$ so that $\pi_A(a_c) = 1$, $\pi_A(a_i) = 0$, $\pi_A(a_r) = 0$. π_A increases within $[a_i, a_c]$ and decreases within $[a_c, a_r]$.

Proposition 1. The region of the profit of firm i is $[0, \frac{a_r^2}{4b}]$.

Definition 2. The utility function of firm i (i=1, 2) is defined by the following strictly increasing function,

$$u:[0,\frac{a_r^2}{4b}] \to [0,1] \tag{3}$$

where u(0) = 0 and $u(\frac{a_r^2}{4b}) = 1$.

Definition 3. Conjecturing the output level of firm j being q_j and possibility degree of a, the optimistic value of the output level q_i of firm i, denoted as $V_{io}(q_i, q_j)$ is defined as follows:

$$V_{io}(q_i, q_j) = \max(\min(\pi_A(a), u(w_i(q_i, q_j, a)))), \quad (4)$$

which is called as optimistic criterion.

It can be seen from (4) that a higher evaluation value of q_i is given by optimistic criterion if q_i can produce a higher utility with higher possibility, which is of risk-preference.

Definition 4. Conjecturing the output level of firm j being q_j and possibility degree of a, the pessimistic value of the output level q_i of firm i, denoted as $V_{ip}(q_i, q_j)$ is defined as follows

$$V_{ip}(q_i, q_j) = \min(\max(1 - \pi_A(a), u(w_i(q_i, q_j, a)))), \quad (5)$$

,which is called as pessimistic criterion.

It can be seen from (5) that a lower evaluation value of q_i is given by pessimistic criterion if q_i can produce a lower utility with higher possibility, which is of risk-aversion.

It is reasonable that firm i chooses its output level according to the following criteria:

(I) Firm i chooses its output level q_i to maximize $V_{io}(q_i, q_j)$. That is,

$$q_{i} = \arg \max_{a} V_{io}(q_{i}, q_{j}) = g_{io}(q_{j}), \qquad (6)$$

which is a reaction function of Firm i, called optimistic reaction function.

(II) Firm i chooses its output level q_i to maximize $V_{ip}(q_i, q_j)$. That is,

$$q_{i} = \arg \max_{q_{i}} V_{ip}(q_{i}, q_{j}) = g_{ip}(q_{j}), \qquad (7)$$

which is a reaction function of Firm i, called pessimistic reaction function.

Definition 5. The solutions of the following equations (8) and (9), denoted as (q_{1o}^*, q_{2o}^*) and (q_{1p}^*, q_{2p}^*) , are called as

optimistic Cournot equilibrium and pessimistic Cournot equilibrium, respectively.

$$\begin{cases} q_1 = g_{1o}(q_2) \\ q_2 = g_{2o}(q_1) \end{cases}$$
(8)

$$\begin{cases} q_1 = g_{1p}(q_2) \\ q_2 = g_{2p}(q_1) \end{cases}$$
(9)

Proposition 2. The optimistic Cournot equilibrium (q_{1o}^*, q_{2o}^*) is the solution of the following equations.

$$\begin{cases} q_1 = \frac{\hat{a}_{1o}(q_2) - bq_2}{2b} \\ q_2 = \frac{\hat{a}_{2o}(q_1) - bq_1}{2b} \end{cases}$$
(10)

where $\hat{a}_{io}(q_j)$ is the horizontal coordinate of the right intersection of $\pi_A(a)$ and $u(w_i(a, q_i^*(q_j), q_j))$, which is called as optimistic focus point of Firm i to represent the most considerable value of *a* by the optimistic viewpoint.

Corollary 1. $\hat{a}_{1o} = \hat{a}_{2o}, \ q_{1o}^* = q_{2o}^*$

Proposition 3. The pessimistic Cournot equilibrium (q_{1p}^*, q_{2p}^*) is the solution of the following equations.

$$\begin{cases} q_1 = \frac{\hat{a}_{1p}(q_2) - bq_2}{2b} \\ q_2 = \frac{\hat{a}_{2p}(q_1) - bq_1}{2b}, \end{cases}$$
(11)

where $\hat{a}_{ip}(q_j)$ is the horizontal coordinate of the left intersection of $1-\pi_A(a)$ and $u(w_i(a, q_i^*, q_j))$, which is called as pessimistic focus point of firm i to represent the most considerable value of *a* from pessimistic viewpoint.

Corollary 2.
$$\hat{a}_{1p} = \hat{a}_{2p}$$
, $q_{1p}^* = q_{2p}^*$

Theorem 1. There is one and only one optimistic Cournot equilibrium (q_{1o}^*, q_{2o}^*) and pessimistic Cournot equilibrium (q_{1p}^*, q_{2p}^*) for these two firms.

Theorem 2. The optimistic equilibrium outcomes are large than the pessimistic equilibrium outcomes, that is, $[q_{1o}^*, q_{2o}^*] > [q_{1p}^*, q_{2p}^*].$

Definition 6. Suppose that there are two possibility distributions, π_A and π_B . If for any arbitrary x $\pi_A(x) \ge \pi_B(x)$ holds, then π_B is said to be more informed than π_A , which is denoted as $\pi_A \ge \pi_B$.

Theorem 3. Suppose that $(q_{1o}^{a^*}, q_{2o}^{a^*})$ and $(q_{1o}^{b^*}, q_{2o}^{b^*})$ are the optimistic Cournot equilibriums based on possibility distributions π_A and π_B , respectively, $(q_{1p}^{a^*}, q_{2p}^{a^*})$ and $(q_{1p}^{b^*}, q_{2p}^{b^*})$ are pessimistic Cournot equilibriums based on possibility distributions π_A and π_B . If $\pi_A \ge \pi_B$, then $[q_{1o}^{a^*}, q_{2o}^{a^*}] \ge [q_{1o}^{b^*}, q_{2o}^{b^*}]$ and $[q_{1p}^{a^*}, q_{2p}^{a^*}] \le [q_{1p}^{b^*}, q_{2p}^{b^*}]$ holds.

The procedure for solving the equation (10)

Step 0. Arbitrarily choose a $a \in [a_c, a_r]$.

Step 1. Take \hat{a}_{io} as *a* and solve Equation (10) to obtain (q_{1o}^*, q_{2o}^*) .

Step 2. Calculate $e(a) = \pi_A(a) - u(w_i(a, q_{1o}^*, q_{2o}^*))$ If $|e(a)| \le \varepsilon$ then $\hat{a}_{io} = a$ and stop; If $e(a) > \varepsilon$, then go to step 3; if $e(a) < -\varepsilon$, then go to step 4.

Step 3. Take *a* as $a = a + \Delta a(\Delta a > 0)$ and go back to step 1. Step 4. Take *a* as $a = a - \Delta a(\Delta a > 0)$ and go back to step 1.

The procedure for solving the equation (11)

Step 0. Arbitrarily choose a $a \in [a_1, a_c]$.

Step 1. Take *a* as \hat{a}_{ip} and solve Equation (11) to obtain (q_{1p}^*, q_{2p}^*) .

Step 2. Calculate $e(a) = 1 - \pi_A(a) - u(w_i(a, q_{1p}^*, q_{2p}^*))$ If $|e(a)| \le \varepsilon$ then $\hat{a}_{ip} = a$ and stop; If $e(a) > \varepsilon$, then go to step 3; if $e(a) < -\varepsilon$, then go to step 4.

Step 3. Take *a* as $a = a + \Delta a(\Delta a > 0)$ and go back to step 1. Step 4. Take *a* as $a = a - \Delta a(\Delta a > 0)$ and go back to step 1.

II. COURNOT EQUILIBRIUM WITH ASYMMETRICAL POSSIBILISTIC INFORMATION

Let us consider asymmetrical information case. That is, some new information s on a can be used by firm 2 and not be used by firm 1. In this case, the output level of firm 2 is the function of s, that is, $q_2 = q_2(s)$. The profit of firms 1 and 2 are as follows:

$$w_1(a, q_1, q_2) = aq_1 - bq_1^2 - bq_1q_2(s)$$
(12)

$$w_2(a, q_1, q_2) = aq_2(s) - bq_2^2(s) - bq_1q_2(s)$$
(13)

For firm 1, the certain value of *s* is unknown but the possibility distribution of *s* is known. Based on extension principle, the possibility distribution of the output level of firm 2, denoted as $\pi_Q(q_2)$, can be calculated.

Definition 7. Conjecturing output level of firm 2 being q_2 and considering the possibility degree of q_2 , the optimistic value of output level q_1 of firm 1 with information *s*, denoted as $Z_{1o}(q_1, q_2)$ is defined as follows:

 $Z_{1o}(q_1, q_2) = \max(\min(\pi_A(a), \pi_Q(q_2) \cdot u(w_1(q_1, q_2, a))))$ (14)

It can be seen from (14) that a higher evaluation value of q_1 is given by optimistic criterion if q_1 can produce a higher utility with higher possibility of a and q_2 , which is of risk-preference.

Definition 8. Conjecturing output level of firm 2 being q_2 and considering the possibility degree of q_2 , the pessimistic value of output level q_1 of firm 1 with information *s*, denoted as $Z_{1p}(q_1, q_2)$ is defined as follows:

 $Z_{1p}(q_1, q_2) = \min_{a} (\max(1 - \pi_A(a), (1 - \pi_Q(q_2)) \cdot u(w_1(q_1, q_2, a))))$ (15)

It can be seen from (15) that a lower evaluation value of q_1 is given by pessimistic criterion if q_1 can produce a lower utility with higher possibility of a and q_2 , which is of risk-aversion.

It is reasonable that firm 1 chooses its output level according to the following criteria.

(I) Firm 1 chooses its output level q_1 to maximize $Z_{1o}(q_1, q_2)$. That is,

$$q_1 = \arg\max Z_{1o}(q_1, q_2) = h_{10}(q_2)$$
(16)

, which is a reaction function of firm 1, called optimistic reaction function with information s.

(II) Firm 1 chooses its output level q_1 to maximize $Z_{1p}(q_1, q_2)$. That is,

$$q_{1} = \arg \max_{q_{1}} Z_{1p}(q_{1}, q_{2}) = h_{1p}(q_{2})$$
(17)

, which is a reaction function of firm 1, called pessimistic reaction function with information s.

Firm 2 can refine $\pi_A(a)$ by using additional information s. The renewed information is a kind of conditional possibility distribution, denoted as $\pi_{A|s}(a)$, which means that if information is s, then the possibility distribution of a is $\pi_{A|s}(a)$. Based on the renewed information, the optimal output level is decided by firm 2. For simplicity, it is supposed that $\pi_{A|s}(a)$ continuous function such that is а $\pi_{A|s}(a):[a_l,a_r] \to [0,1]$, where $\pi_{A|s}(a_c)=1$, $\pi_{A|s}(a_l)=0$ and $\pi_{A|s}(a_r) = 0$ ($a_l \le a_l' < a_c' \le a_r$) . $\pi_{A|s}(a)$ is an increasing function within $[a_1, a_c]$ and decreasing function within $[a'_{a}, a_{r}]$.

Definition 9. Conjecturing output level of firm 1 being q_1 , based on conditional possibility distribution $\pi_{A|s}(a)$, the optimistic value of output level of firm 2, denoted as $Z_{2o}(q_1, q_2)$, is defined as follows:

$$Z_{2o}(q_1, q_2) = \max(\min(\pi_{A|s}(a), u(w_2(q_1, q_2, a))))$$
(18)

Definition 10. Conjecturing output level of firm 1 being q_1 , based on conditional possibility distribution $\pi_{A|s}(a)$, the pessimistic value of output level of firm 2, denoted as $Z_{2p}(q_1, q_2)$, is defined as follows:

$$Z_{2p}(q_1, q_2) = \min_{a} (\max(1 - \pi_{A|s}(a), u(w_2(q_1, q_2, a))))$$
(19)

It is reasonable that firm 2 chooses its output level according to the following criteria.

(I) Firm 2 chooses its output level q_2 to maximize $Z_{2q}(q_1, q_2)$. That is,

$$q_{2} = \arg\max_{q_{2}} Z_{2o}(q_{1}, q_{2}) = k_{2o}(q_{1})$$
(20)

, which is a reaction function of Firm 2, called optimistic reaction function with conditional possibility distribution.

(II) Firm 2 chooses its output level q_2 to maximize $Z_{2p}(q_1, q_2)$. That is,

$$q_2 = \arg \max Z_{2p}(q_1, q_2) = k_{2p}(q_1)$$
 (21)

, which is a reaction function of firm2, called pessimistic reaction function with conditional possibility distribution.

Definition 11. The solutions of the following equations (22) and (23), denoted as (q_{1o}^*, q_{2o}^*) and (q_{1p}^*, q_{2p}^*) , are called as optimistic and pessimistic Cournot equilibriums with information *s*, respectively.

$$\begin{cases} q_1 = h_{1o}(q_2) \\ q_2 = k_{2o}(q_1) \end{cases}$$
(22)

$$\begin{cases} q_1 = h_{1p}(q_2) \\ q_2 = k_{2p}(q_1) \end{cases}$$
(23)

Proposition 4. The optimistic Cournot equilibrium with information s, (q_{1o}^*, q_{2o}^*) , is the solution of the following equations.

$$\begin{cases} q_1 = \frac{\hat{a}_{1o}(q_2) - bq_2}{2b} \\ q_2 = \frac{\hat{a}_{2o}(q_1) - bq_1}{2b}, \end{cases}$$
(24)

where $\hat{a}_{1o}(q_2)$ is the horizontal coordinate of right intersection of $\pi_A(a)$ and $\pi_Q(q_2) \cdot u(w_1(a, q_1^*, q_2))$, which is called as optimistic focus point of firm 1 to represent the most considerable value by the optimistic viewpoint of firm 1. $\hat{a}_{2o}(q_1)$ is the horizontal coordinate of right intersection of $\pi_{A|s}(a)$ and $u(w_2(a, q_1^*, q_2))$, which is called as optimistic focus point of firm 2 to represent the most considerable value by the optimistic viewpoint of firm 2.

Proposition 5. The pessimistic Cournot equilibrium (q_{1p}^*, q_{2p}^*) is the solution of the following equations.

$$\begin{cases} q_1 = \frac{\hat{a}_{1p}(q_2) - bq_2}{2b} \\ q_2 = \frac{\hat{a}_{2p}(q_1) - bq_1}{2b}, \end{cases}$$
(25)

where $\hat{a}_{1p}(q_2)$ is the horizontal coordinate of left intersection of $1-\pi_A(a)$ and $(1-\pi_Q(q_2))\cdot u(w_1(a,q_1^*,q_2))$, which is called as pessimistic focus point of firm 1 to represent the most considerable value by the pessimistic viewpoint of firm 1. $\hat{a}_{2p}(q_1)$ is the horizontal coordinate of left intersection of $1-\pi_{A|s}(a)$ and $u(w_2(a,q_1,q_2^*))$, which is called as pessimistic focus point of firm 2 to represent the most considerable value by the pessimistic viewpoint of firm 2.

Theorem 4. There is one and only one optimistic Cournot equilibrium (q_{1p}^*, q_{2p}^*) in (24) and pessimistic Cournot equilibrium (q_{1p}^*, q_{2p}^*) in (25).

Proposition 6. The possibility distribution of profit of firm i is as follows:

$$\pi_{W}^{i}(w) = \pi_{A}\left(\frac{w + bq_{i}^{*2} + bq_{i}^{*}q_{j}^{*}}{q_{i}^{*}}\right),$$

(26)

where (q_1^*, q_2^*) is equilibrium outcomes of firms 1 and 2.

REFERENCES

- [1] Dubois, D. and Prade, H., Possibility Theory, Plenum Press, New York, 1988.
- [2] Kreps, D., A Course in Microeconomic Theory, Princeton University Press, New Jersey, 1990.
- [3] Tanaka,H. and Guo, P., Possibilistic Data Analysis for Operations Research (Heidelberg; New York; Physica-Verlag, Feb., 1999).
- [4] Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1978) 3-28.
- [5] Guo, P., Cournot market analysis based on possibility theory, The 18th Symposium of Japan Society for Fuzzy Theory and Systems (Nagoya, August 23-25, 2002).