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Abstract:--- Recently, the chaotic method is employed to 
forecast a near future using uncertain data. This method 
makes it possible by restructuring the attractor of given 
time-series data in the multi-dimensional space through 
Takens' embedding theory. However, many economical 
time-series data do not have a chaotic characteristic. In 
other words, it is hard to forecast the future trend of such 
economical data on the basis of chaotic theory. In this 
paper, time-series data are divided into wave components  
using wavelet transform. It is shown that the divided 
components of time-series data is much more chaotic 
based on correlation dimension than the original time-series 
data. The highly chaotic characteristic of the divided 
component of the time-series data enables us to forecast 
the value or the movement of time-series data in near future. 
The up and down movement of TOPICS value is shown so 
highly predicted by this method as 70%.  
Keywords:  Chaos theory, Short-term forecasting, Wavelet 
transformation. 
 

Ⅰ Introduction 
The chaotic short-term forecasting method[1-3] based 

on time-series data enables us to know a value, which 
we could not predict before. Nevertheless, it is still 
difficult to forecast a value in near future because many 
kinds of data have little chaotic characteristics.[4] Even 
though such data are very low chaotic, it is possible to 
find the chaotic characteristics in the partial portion of 
the data[4].  

In this research,  wavelet transformation[5]  is 
employed to divide the original time-series data into 
chaotic and non-chaotic portions and we can find the 
highly chaotic component out of the original data by 
measuring these correlated dimension. If we can 
successfully find the highly chaotic portion out of the 
original data, it is possible to improve the forecasting 
precision by the wavelet transformation.  

The correlation dimension[6][7] will be measured lower 
than the one of the original data, if the divided 
components are more highly chaotic than the original 
data. 

 
Ⅱ. Chaotic Approach and Forecasting 

A. Chaos Theory 
The understanding of chaos in common is that it 

means greatly disturbed state different from an ordered 

state. Although the chaos in science means a disturbed 
state, it doesn't mean so large a disturbed state, but does 
a medium-sized disturbed phenomenon, which changes 
irregularly along a time in a sense. In other words, it 
means an irregularity of a changing phenomenon that is 
controlled by relatively simple rules or a simple 
structure.  One typical example of a chaos system is a 
logistic mapping. The logistic mapping can be defined 
by a very simple relation.  But the resulted state seems 
to show very random movement on a graph. 

Especially, one characteristic of the chaos system is 
sensitivity to an initial state [8]. When the initial state is 
changed a little, the mapping by a chaotic mechanism 
shows almost the same trajectory in the initial state, but 
shows very different trajectory beyond a short term. 
This phenomenon is called “a sensitivity to an initial 
state”  Because of “the sensitivity to an initial state”, it 
is not appropriate to employ the chaos method in 
forecasting a value in long-term future using the chaos 
method. That is, it is possible to predict the state in near 
future, which is sufficiently influenced, by the present 
state. 
 
 
B. Forecasting by Chaotic Method  

The general objective to employ the chaos method in 
forecasting is 1) to find a deterministic structure in given 
time-series data and 2) to predict a value in such a near 
future from a certain point using this structure, that the 
present state can sufficiently influence. 

This chaotic method enables us to forecast with high 
precision its values in near future using time-series data 
which show very unpredictable and unpatriotically 
changes. 

 
This forecasting bases on the Takens' embedding 

theory [9] which tells us that it is possible to restructure 
the trajectory of a dynamic system in a high dimensional 
space by using only the information (that is, time-series 
data) of one component dimension (variable). 

Using time-series data x(t), let us define vector  Z(t) 
as follows: 
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( ) ( ) ( ) ( ) ( )( )( )τττ 1,,2,, −−−−= ntxtxtxtxtZ L    (1) 
 
where τ denotes an arbitrary constant time interval. 
The vector z(t) shows one point in n dimensional space 
(Data Space).  Therefore, changing t generates a 
trajectory in the n dimensional data space. When n is 
sufficiently large, this trajectory shows a smoothly 
changed one of the high dimensional dynamic system. 
That is, if the dynamic system has some attractor, the 
attractor obtained from  the original one should come 
out on the data space.  In other words, the original 
attractor of the dynamic system can be embedded in the 
n dimensional topological space. Number n is named 
an embedded dimension. Denoting the dimension of 
the original dynamic system by m, it can be proved that 
this n dimension is sufficiently large if n holds the 
following: 
 

12 += mn                          (2) 
 
Equation (2) is a sufficient condition on the embedded 
dimension. It is required to employ data with more than 
3m+1 to 4m+1 samples in time length in short-term 
forecasting. 

Next, let us describe the deterministic structure 
using a restructured trajectory. There are several 
methods. Figure 1 illustrates short-term forecasting 
using the chaotic method that is embedding discrete 
time-series data with equal time intervalτ=15 in 
embedded dimension n=3. 

Observed discrete time-series samples can be 
mapped into a topological space of embedded 3 
dimensions as shown in Figure 1.  As a result, the 
mapped vector is denoted as follows:  
 

( ) ( ) ( ) ( )( )ττ 2,, −−= txtxtxtZ           (3) 
 

Let z(i) denote a vector of 3 dimensions that observed 
data including the most recent time are mapped on a 
topological space. 

Figure 2 illustrates the relation of data which are 
mapped around the neighborhood of z(i) in 3 
dimensional space can be shown as Figure 2. 

These data in the neighborhood of z(i) is the data 
observed in past.  

The trajectory of z(i+1) at one step future has been 
observed as shown in Figure 1. 

These relations enable us to forecast behavior z(i+1) 
in near future. 

The future trajectory x(i+1) of the given time-series  
data (x(t), x(t-1),…) can be calculated  
1) by deciding the nearest point z(j) included in the 

neighborhood with diameter εfrom z(i),  
2) by calculating the distance I{t+1} between  z(i+1) 

and z(j+1) using the Jacobi matrix Aj of the nearest 
point z(j) and the distance It between z(i) and z(j) and 
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Figure 1. z(t) mapped into n dimensional    
topological space 
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3) by deciding the trajectory x(i+1) in one step future 
of the original time-series data. 
 

Ⅲ. Correlation Dimension 
Generally measurement of correlation dimension is 

employed in a method to evaluate whether the 
time-series data are chaotic or not. The method of 
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correlation dimension is pursued, by checking whether 
the time-series data distribute in the less dimension 
space than m dimension, if the data is embedded in m 
dimension space. 

At first, let us embed the time-series data into m 
dimension space. Then, the procedure is written as 
follows: 

 
1)draw the circle with radius r at the center of 

the points which each embedded vector has.  
2)count how many points are included within 

the drawn circle and measure its number C.  
 
When the radius is large, then the large number of 

points should be included in the circle with radius r. 
Therefore, as C is an increasing function of r, let us 
denote it as C(r). If plotted points are distributed evenly 
in the m dimensional space, the number of points 
included within the circle should increase proportionally 
to the area of the circle, as the r increases.  

 
    ( ) marrC =                              (4) 
 
On the other hand, if the structure has any regularity, 

C(r) should increase proportionally to the less value than 
m powered value 
 

( ) ( )xmbrrC −=                        (5) 
 
The value (m-x) is named correlation dimension. In 

the case of random data, the regularity could not be 
found in the space even if the embedded dimension is 
increased. Therefore, the correlation dimension should 
increase as the embedded dimension does.  When the 
time-series data has the deterministic structure in the 
embedded space,  the correlation dimension can not 
increase and should be matured at the same value, even 
if the embedded dimension increases.  
 
 

Ⅳ. Wavelet Transformation 
FFT is a famous method to transform signal into the 

portions of each frequencies. A sin function is 
employed as a base function. The sin function is a 
function, which is an infinitive smooth function.  
Therefore, the information obtained by the FFT 
transformation does not include the local information 
such as the place and the frequency where the original 
signals have which frequency. 

 On the other hand the wavelet transformation 
employs a compact portion of a wave as a base 
function. Therefore, it is a time and frequencies 
analysis such as it is possible to determine the signal 
using time and frequency 

  The mother wavelet transformationψ (x)  of a 
function f(x) can be defined as follows: 

 

( )( ) ( )dxxf
a

bx

a
abfW 






 −

= ∫
∞

∞−
ψϕ

1
,     (6) 

 
Where a is a scale of the wavelet, b is a translate. 
( )xψ  is a conjunction of a complex number. 
It is also possible to recover the original signal f(x) 

using wavelet transformation. That is, we can realize the 
inverse wavelet transformation as follows: 
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The wavelet transformation is a useful method to 

know the characteristics of the signal but not an efficient 
one. It is because the signal has a minimum unit and the 
wavelet method expresses many-duplicated 
information’s. This point can be resolved by discrediting 
a dimensional axis. Let us denote a dimension as 
(b,1/a)=(2-jk､2j), then the discrete wavelet transform can 
be written as 

 

( ) ( )∫
∞

∞−
−= dxxfkxd jjj

k 22)( ψ            (8) 

 
Inverse wavelet transform is 
 

( ) ( ) ( )∑∑ −
k

jj
k

j

kxdxf 2ψ～ .            (9) 

 
Let us denote the summation ( ) ( )∑ −

k

jj
k kxd 2ψ  

of the right term as  
 

( ) ( ) ( )kxdxg j

k

j
kj −= ∑ 2ψ               (10) 

 
Then let us define ( )xf j  as 

 
( ) ( ) ( ) L++= −− xgxgxf jjj 21            (11) 

 
where an integer j is named a level. If we can denote 

f(x) as f０(x), then 
 

( ) ( ) ( ) L++= −− xgxgxf 210             (12) 

 
This equation illustrates that the function f０(x) is 

transformed as wavelet components g-1(x), g-2(x), …, . It 
is required that the left side should be transformed 
uniquely into the right side and also the left side should 
be realized by composition from the right side 
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components. They can be realized by using a mother 
wavelet ψ  as a base function. 

The function fｊ(x) can be rewritten using a recursive 
forms  

 
( ) ( ) ( )xfxgxf jjj 11 −− +=                (13) 

 
This equation means that the original signal fｊ(x) 

can be transformed into wavelet components gj-1(x) and 
fｊ-1(x) . This equation enables us to denote the original 
into the wavelet components step by step. This method 
is named multi-resolution signal decomposition. 

 
 
Ⅴ. Measurement of correlation dimension 

transformed wavelet components 
Here we transformed the time-series data into 

frequent components by Wavelet multi-resolve 
analysis. Spline4 is employed as a mother wavelet 
function and the transformation was done until level 4. 
The time-series data analyzed is Tokyo stock average 
index TOPIX. The data are 2048 from January 1991. 
Figure 4 shows the result obtained by the multi-resolve 
analysis. The first figure in Figure 4 is the original one. 
The smaller value j is the lower frequency component 
it shows.  

 The result of Wavelet transformation shows 
TOPIX has each frequency component smoothly.  
  We measured the correlation dimension of each 

component divided by Wavelet transformation. The 
results are shown in Figure 5. The original TOPIX data 
shows that correlation dimension is matured at around 7. 
On the other hand, the wavelet component j=-1 is 
matured at around 6, the correlation dimension of the 
Wavelet component whose j is less than or equal to -2 is 
matured around 4 to 5. 
Therefore, the results illustrates that the transformed 
components has more chaotic than the original TOPIX 
time-series data. 

 

Figure 3 Spline4: Mother wavelet 

 
The measurement result of correlation dimensions 

shows that the component time-series data are more 
chaotic than the original time-series data. Let us forecast 
the short-term future using the original data and divided 
wavelet transformed component data and compare the 
preciseness between both results. The data is the same 
TOPIX data employed above. In this discussion the data 
were normalized into mean 0 and variance 1. The 
embedded dimensions are examined from dimensions 3 
to 9. We measured the forecast errors about them. 
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Figure ４. Divided Time-series Data 
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Figure 5. Measurement of Correlation dimension about 
transformed component data and the original data 

 

Figure 6. The prediction error of transformed 
component time-series data 

 
In the forecast, we employed remaining 100 data out of 

2024 in the recent portion for the original examination 
and the transformed component examination. 

Figure 6 shows the forecasted results employing wavelet 
transformed component time-series data. Vertical axis 
denotes error means and horizontal axis shows 
embedded dimension. 
 
The transformed component data shows lower 
forecasting error than the original data. This shows that 
the component data is much more chaotic than the 
original TOPIX. 
 
We could show that the wavelet transformed component 
time-series data are more chaotic than the original one 
both from the measurement of correlation dimension 
and from the forecasting error. 

 
Let us examine the forecasting of the up and down 
movements of the price. This is to forecast the 
movement to which direction the today’s price of a 
stock goes from the yesterday’s price. This forecasting 
is only done the movement instead of on the value.   
 

Let us check the prediction of up and down 
movements of the stock price based on the forecasted 
results. The up and down prediction was done for the 
movement of their following day’s price using the 
TOPICS index data. The prediction is correct, if the 
direction of the movement is the same between the real 
and predicted movements. The percentage of the correct 
predictions is shown for the 100 trials. 
 As shown in Figure 7, the vertical axis is correct 

prediction rate and the horizontal axis is embedded 
dimension.  

 The component data by Wavelet transform shows 
better than the original time-series data. The 
transformed component of the original data is much 
easier to predict the chaotic movement.  In the case 
j=-4 the prediction is better than 70%. This is very high 
prediction.  
 

Figure 7 Correct rates on up and down prediction 

 
Ⅵ. Concluding Remarks 

    The objective of this paper is to realize the 
short-term forecasting based on Wavelet transform. 
Original time-series data are divided into components 
through Wavelet transform. The chaotic short-term 
forecasting method is applied to the transformed 
component abstract by Wavelet transform.  
    It is noted that even if the given time-series data 
have lower chaotic characteristics, we can derive the 
chaotic structure in the components obtained by Wavelet 
transform. This means that even if the given data is 
lower chaotic, we can derive partially chaotic 
component from the original data through the Wavelet 
transform. 
   We discussed about the measurement of the 
correlation dimension, forecasting error and the correct 
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prediction rate by the comparison between the original 
data and the component of the Wavelet transform using 
TOPIX data which is a Japanese index of the stock 
market. The correlation dimension of the component is 
lower than one of the original data. TOPIX data 
obtained lower correlation dimension than individual 
stock-price data. The lower correlation dimension means 
higher chaotic characteristics.  TOPIX showed that the 
divided component data obtained by Wavelet transform 
obtained higher prediction rate than the original data.  
This shows the wavelet transform can abstract the 
chaotic component well from the original data.   
    
References 
 
[1] I.Matsuba: “Chaos and forecast”,  
Mathematical Sciences, No.348, pp.64-69, 1992, in 
Japanese. 
 
[2] T. Nagashima, Y. Nagai, T. Ogiwara, T. 
Tsuchiya: “Time series data analysis and Chaos”, t 
Sensing Instrument Control Engineering, Vol.29, 
No.9, 1990, in Japanese. 
 
[3] Sugihara, George, and May, Robert M.: 
“Nonlinear forecasting as a way of distinguishing 
chaos from measurement error in time series”,  
Nature, Vol.344, pp.734-741, 1990. 
 
[4] Y. Matsumoto, J. Watada: “Short-tem Prediction 
by Chaos Method of Embedding Related Data at 
Same Time”, Journal of Japan Industrial 
Management Association, Vol.49, No.4, 
pp.209-217, 1998, in Japanese. 
 
[5] C.K. Chui : “Introduction to wavelets”, Academic 
Press, New York, 1992. 
 
[6] Brock, W.A.: “Distinguishing Random and 
Deterministic Systems: A Bridged Version”, Journal 
of Economic Theory, 40, pp.168-195, 1986. 
 
[7] Scheinkman, J.A. and LeBaron, Blake: 
“Nonlinear Dynamics and Stock Returns”, Journal 
of Business, Vol.62, No.3, pp.311-337, 1989. 
 
[8] H. Serizawa : “Phenomenon knowledge of 
chaos”, Tokyo Books, 1993, in Japanese. 
 
[9] F. Takens : Detecting Strange Attractors in Fluid 
Turbulence, ed. by D.A.Rand and L.S.Young, Lect. 
Notes in Mathematics, vol.898, pp.366-381, 1981 


