
 

 

Electricity Quality Control of Wind Power Generation Plants  
by a Fuzzy-Neural Hybrid Controller 

 
 

Hee-Sang Ko,   T. Niimura 

Department of Electrical and Computer Engineering 
The University of British Columbia 

Vancouver, BC V6T 1Z4  
Canada 

R. Yokoyama 

Department of Electrical and Computer Engineering 
Tokyo Metropolitan University 

Hachioji, Tokyo 
Japan 

 
 

Abstract- Wind power generation is gaining popularity as the 
power industry in the world is moving toward more liberalized trade 
of energy along with public concerns of more environmentally 
friendly mode of electricity generation.  The weakness of wind 
power generation is its dependence on nature—the power output 
varies in quite a wide range due to the change of wind speed, which 
is difficult to model and predict.  The excess fluctuation of power 
output and voltages can influence negatively the quality of 
electricity in the distribution system connected to the wind power 
generation plant.  In this paper, the authors propose an intelligent 
adaptive system to control the output of a wind power generation 
plant to maintain the quality of electricity in the distribution system.  
The target wind generator is a cost-effective induction generator, 
while the plant is equipped with a small capacity energy storage 
based on conventional batteries, heater load for co-generation and 
braking, and a voltage smoothing device such as a static Var 
compensator (SVC).  Fuzzy logic controller provides a flexible 
controller covering a wide range of energy/voltage compensation. A 
neural network inverse model is designed to provide compensating 
control amount for a system.  The system can be optimized to cope 
with the fluctuating market-based electricity price conditions to 
lower the cost of electricity consumption or to maximize the power 
sales opportunities from the wind generation plant.  
 
Keywords:  Wind power generation, fuzzy controller, neural 
network inverse model. 

I. INTRODUCTION 

Autonomous renewable energy systems such as wind, solar, 
and micro-hydro require control methods to maintain stability 
due to the real time variation of input energy and load, while 
maximizing the use of the renewable resources.  

Since the early eighties, wind-Diesel energy conversion 
system (WDECS) have been accepted and widely used as 
electricity generating systems for remote areas. In such cases, 
the WDECS serves an entire isolated load and is responsible 
for maintaining frequency and voltage stability.  The main 
driving force in WDECS design was to secure both fuel 
saving and reliable power supply.  Usually, Diesel generator 
installed capacity is sized to meet the peak power demand, 
but is used in practice to supply power only when the wind 
power output is insufficient to meet the load demand [1].  

 
The random power disturbances at the output of wind-

turbine generators can cause relatively large frequency and 
voltage fluctuations.  In a large grid, these fluctuations can 
have a little effect on the overall quality of the delivered 
energy. However, with weak autonomous networks, these 
power fluctuations can have a marked effect, which must be 
eliminated regardless of the penetration rate [2,3]. Hence, the 
control of the voltage and frequency of a weak wind-Diesel 
system is considered more challenging than in large grids. 

In this paper, fuzzy-neural hybrid controller is proposed 
and applied for pitch control of wind turbine. Fuzzy logic is 
applied for designing a feedback controller. Neural network 
inverse model is designed for a dynamic feed-forward 
controller. Therefore, fast damping from fuzzy controller and 
fast reference tracking can be accomplished.  

II. SYSTEM DESCRPTION 

Figure 1 shows the prototype of a wind-Diesel turbine 
generator system [3]. 
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Figure 1.  The prototype of wind-Diesel system.  

 

Generator dynamics model consists of a synchronous 
machine driven by Diesel engine through flywheel and 
connected in parallel with an induction machine driven by a 
wind turbine.  
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Superconducting magnetic energy storage (SMES) is a 

control unit for a synchronous machine. When there is a 
sudden rise in the demand of load, the stored energy is 
immediately released through power system. As the governor 
and pitch control mechanism start working to set the power 
system to the new operating condition, a SMES unit charges 
back to its initial value of current. In the case of sudden 
release of the loads, a SMES immediately gets charged 
towards its full value, thus absorbing some portion of the 
excess energy in the system, and as the system returns to its 
steady state, the excess energy absorbed is released and 
SMES current attains its normal value. 

When wind power rises above the power set point and 
SMES unit is fully charged, the pitch control system begins 
operating to maintain an average power equal to the set point. 
The pitch control system consists of a power measurement 
transducer, a manual power set point control, a proportional 
plus integral feedback function, and hydraulic actuator, which 
varies the pitch of the blades.  Variable pitch turbines 
operates efficiently over a wider range of wind speeds than 
fixed pitch machines. The study in this paper is focused on 
the designing of turbine blade pitch controller based on fuzzy 
logic and neural network. 

The simplified description of figure 1 is in figure 2 with  
SMES [4].  
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Figure 2.  The basic configuration of WDECS. 

 
The simulation model for figure 2 can be found in [4].   

III. FUZZY-NEURAL HYBRID CONTROL 

1.    Feedback Controller Based on Fuzzy Logic 

Fuzzy control systems are rule-based systems in which a 
set of fuzzy rules represents a control decision mechanism to 
adjust the effects of certain system conditions. Fuzzy 
controller is based on the linguistic relationships or rules that 
define the control laws of a process between input and output 
[5,6].  This feature draws attention toward a fuzzy controller 
due to its nonlinear characteristics and no need for an 
accurate system modeling.  The fuzzy controller consists of 
rule base, which represents a fuzzy logic quantification of the 
expert’s linguistic description of how to achieve good control, 
fuzzification of actual input values, fuzzy inference, and 
defuzzification of fuzzy output. 

 
In this paper, total of 121 rules are used for the power 

system under study. The general form of the fuzzy rule is 
given in the if-then form as follows: 

 if ( ) is and ( ) is , then ( ) is ,x k A x k B y k C!  (1) 

where 
,x x!  : input signals, 

y   : controller output, 
, ,A B C  : linguistic variable. 

 

The linguistic values extracted from the experimental 
knowledge are NH (negative high), NL (negative large), NB 
(negative big), NM (negative medium), NS (negative small), 
ZE (zero), PS (positive small), PM (positive medium), PB 
(positive big), PL (positive large), PH (positive high).   

In the power system under study, generator power 
deviation ( )P!  is chosen for the input of a fuzzy controller.  
The linguistic descriptions provide experimental expressions 
of the expert for a control decision-making process and each 
linguistic variable is represented as triangular membership 
functions shown in figures 3 and 4. In the fuzzy controller, 
the input normalization factors are chosen to represent the 
proper membership quantifications of linguistic values. In 
addition, normalization factors can be used to yield the 
desired response of the fuzzy controller. 1 2,g g  stand for a 
normalization factor for input of fuzzy controller and 

0g stands for a denormalization factor for output of fuzzy 
controller. Figure 3 shows the membership function for error 
and change in error, figure 4 depicts the membership function 
for output.  
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Figure 3.  Membership function of error and change in error. 
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Figure 4.  Membership function of output. 
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In figures 3 and 4, the membership functions are 

overlapped with each other to smooth a fuzzy system output 
and a fuzzy controller is designed to regulate a system 
smoothly when an error and a change in error are near zero. 
The rules are established to control transient stability problem 
for all possible cases.  It is required to find the fuzzy region 
for the output for each rule.  The centroid or the center of 
gravity defuzzification method [6] is used which calculates 
the most typical crisp value of the fuzzy set and “ y is C” in 
(1) can be expressed by (2). 
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where Aµ  is a degree of membership function. 

2. Feedforward Compensator Based on Neural Network 
Inverse Model 

In [7], a two layer neural network is applied to obtain a 
dynamic feedforward compensator. In general, the output of a 
system can be described with a function or a mapping of the 
plant input-output history [7,8]. For a single-input single-
output (SISO) discrete-time system, the mapping can be 
written in the form of a nonlinear function as follows: 

 
( 1) ( ( ), ( 1),..., ( ),

( ), ( 1),..., ( )).
y k f y k y k y k n

u k u k u k m
+ = − −

− −
    (3) 

Solving for the control, (3) can be represented as following: 

( ) ( ( 1), ( ), ( 1), ( 2),..., ( ),
( 1), ( 2), ( 3),..., ( )),

u k g y k y k y k y k y k n
u k u k u k u k m

= + − − −
− − − −

 (4) 

which is a nonlinear inverse mapping of (3).  The objective of 
the control problem is to find a control sequence, which will 
drive a system to an arbitrary reference trajectory. This can 
be achieved by replacing ( 1)y k +  in (4) with reference 

output refy or the temporary target ( 1),ry k +  evaluated by   

 ( 1) ( ) ( ( )),r refy k y k y y kα+ = + −    (5) 

where α  is the target ratio constant (0 1).α< ≤  The value of 
α  describes the rate with which the present output ( )y k  
approaches the reference output value, and thus has a positive 
value between 0 and 1. In figure 5, the training mode is 
introduced, where ∆  denotes the vector of delay sequence 
data. Figure 6 shows the neural network inverse model 
(NNIM) in training mode. All activation functions in hidden 
layer are tanh(x) (described as jf in figure 5) and the 

activation function in output layer is x (depicted as iF   in 
figure 6). 
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Figure 5. Training mode of NNIM. 
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Figure 6. Neural Network Inverse Model (NNIM). 
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ϕ

ϕ

ϕ ϕ ϕ ϕ ϕ

= + − − −

=

… …

…
 

jlw     : weight between  input and hidden layer, 

,hn nϕ : number of hidden neurons and external input, 

ijW     : weight between hidden and output layer. 

The above neural network inverse model is trained based 
on the input-output data described in figure 5.  To train the 
neural network inverse model, Levenberg-Marquardt method 
is applied which is fast and robust [7,8]. The trained NNIM is 
used as a feedforward compensator.   

The total control scheme is indicated in figure 7.  ∆  denote 
the vector of delay sequence data.  The total control input is 

( ) ( ) ( ).fb ffu k u k u k= +  ( )fbu k  is the output of fuzzy 
controller and the output of the feedforward controller, 

( ),ffu k  can be represented as following: 
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( ) ( ( 1), ( ), ( 1),..., ( ),

( 1), ( 2),..., ( )).

ff r r r r

fb fb fb

u k g y k y k y k y k n

u k u k u k m

= + − −

− − −
 (7) 
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Figure 7. The fuzzy-neural hybrid control. 

 
In figure 7, once a signal of a feedforward compensator is 

given into the control system, the fuzzy controller provides a 
signal that minimizes the inputs of controller, which contains 
a compensated system output.  This control scheme can be a 
soft way of generating a control signal to minimize the 
tracking error and improve a system performance in the point 
of view of giving compensating signal in advance [9].  This 
implies the optimization of existing controller, which is the 
main purpose of a feedforward controller in a hybrid control 
scheme.  

IV. SIMULATION 

First, a fuzzy controller is designed for a feedback 
controller and a neural network inverse model is obtained for 
a feedforward compensator. In this paper, α  is 0.1 and 

1 2 0, ,g g g  are 5, 50, and 5 by trial and error, respectively.  
Levenberg-Marquardt method is applied to train a neural 
network inverse model.  The sampling time is 0.01 sec. for 
the proposed control action. 

The proposed fuzzy-neural hybrid controller is tested in a 
wind-Diesel autonomous power system (WDAPS). Two cases 
are considered: first, the sudden step load increase of 0.01 
[p.u.] and SMES is in discharging mode (rectifier) mode). 
Second, the SMES fully discharged and there is sudden step 
load increase. In this case, SMES is in recharging mode 
(inverter mode). 

 

Case 1:  A Sudden Step Load Increase 

A load is suddenly increased by 0.01 [p.u.].  The SMES 
releases the charged current (2 p.u.). The governor and pitch 
mechanism start operating for charging current of SMES and 
damping of WDAPS.  Figure 8 shows improvement of the 
system frequency oscillations and power deviations. 
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Figure 8.  Comparison of system response among PI, FC, and FNHC. 

PI stands for conventional proportional-integral controller 
and FC stands for fuzzy logic feedback controller. 

Case 2:  Sudden Step Load Increase with fully discharged 
SMES  

In this case, the SMES is fully discharged (0 p.u.). Then, 
the SMES needs to recharge current to set point (2 p.u.). The 
wind power generation from the wind turbine is assumed as 
not sufficient. Figure 9 also shows that the FNHC 
performance is much better than the PI and the FC. 
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Figure 9.  Comparison of system response among PI, FC, and FNHC. 

V. CONCLUSION 

In this paper, the fuzzy-neural hybrid controller (FNHC) 
for electricity quality control of wind power generation plants 
is presented. The main idea of hybrid control is that the 
dynamic feedforward control can be used for improving the 
reference tracking while feedback is used for stabilizing the 
system and for suppressing disturbances.  Feedforward 
controller is a neural network inverse model, which is trained 
by Levenberg-Marquardt method and feedback controller is a 
fuzzy controller.   

 
The FNHC was tested in a wind-Diesel autonomous power 

system and compared with the PI and the fuzzy controller.  In 
all cases, the FNHC out-performed the PI controller and the 
fuzzy controller. The FNHC provides quite small frequency 
deviation and fuel saving of Diesel system. Thus, the 
usefulness of FNHC based controller design is demonstrated. 
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