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Abstract--This paper proposes a hybrid particle swarm 

optimization for a practical distribution state estimation using 
constriction factor approach. The proposed method considers 
nonlinear characteristics of the practical equipment and actual 
limited measurements in distribution systems. The method can 
estimate load and distributed generation output values at each 
node by minimizing difference between measured and calculated 
voltages and currents. The feasibility of the proposed method is 
demonstrated and compared with an original particle swarm 
optimization based method on practical distribution system 
models. The results indicate the applicability of the proposed 
state estimation method to the practical distribution systems.  
 

Index Terms -- Distributed Generation, Distribution State 
Estimation, Hybrid Particle Swarm Optimization, Modern 
Heuristic Method, Voltage Regulator 

 

I.  INTRODUCTION 

On-line state estimation is becoming one of the key 
functions in distribution control centers considering 

deregulation environment and introduction of distributed 
generator (DG) in distribution systems. For example, when a 
DG supplies electric power to loads in a feeder, sending 
currents in a substation are reduced after introduction of the 
DG in the feeder. Namely, total load values in the feeder are 
estimated smaller than the actual values by the reduced 
sending currents in the substation. However, a power 
company has to supply electric power to all of the loads in the 
feeder when a fault occurs in the feeder. Therefore, on-line 
estimation of loads and DG outputs is one of the crucial tasks 
in the distribution systems with DG. Distribution state 
estimation (DSE) is required to consider error and time a-
synchronization of measurement data from actual distribution 
systems. Since limited measurement values are obtained from 
actual distribution systems, DSE has to realize high accuracy 
estimation with the limited measurement data. 
 DSE is usually formulated as a weighted least mean square 
(WLMS) problem. Equipment in distribution systems such as 
voltage control equipment, static var compensators (SVC) and 

DGs has nonlinear characteristics [1] and it causes nonlinear 
characteristics of the objective function of DSE. For example, 
SVCs have nonlinear output characteristics. Voltage 
regulation transformers with automatic tap changer, called 
step voltage regulator (SVR) in Japan, have a discrete tap 
control function. Output characteristics of induction 
generators can be described by a nonlinear function expressed 
by constant impedance, constant current, and constant power 
(ZIP) load [1]. Therefore, a target load flow equation of DSE 
may be changed because of the nonlinear characteristics of the 
actual equipment during search procedure of DSE. 
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 A number of DSE methods have been developed as an 
advanced function of distribution control centers [2-12]. The 
methods can be divided into categories: statistical [2][4-9][12] 
and load adjustment SE formulation [3][10][11]. The former 
methods usually utilize an iterative convergence method such 
as Quasi-Newton method and the latter methods usually 
utilize sensitivity analysis. Conventional DSE methods 
belonging to both categories assume that the objective 
function or equations related to DSE can be differentiable and 
continuous. However, considering the above-mentioned 
nonlinear characteristics of the practical equipment in 
distribution systems, the objective function and the equations 
cannot be differentiable and continuous, and it is difficult to 
apply the conventional methods practically. Therefore, A 
practical distribution state estimation method considering the 
above-mentioned requirements has been eagerly awaited. 
 Modern heuristic algorithms are considered as effective 
tools for nonlinear optimization problems [13]. The 
algorithms do not require that the objective function has to be 
differentiable and continuous. A particle swarm optimization 
(PSO) is one of the modern heuristic algorithms [14-16] and 
can be applied to nonlinear and non-continuous optimization 
problems with continuous variables such as DSE. It has been 
developed through simulation of simplified social models. A 
hybrid PSO (HPSO) adds a selection mechanism of 
evolutionary computation (EC) to PSO and it can generate 
high quality solution within short calculation time [17]. 
Moreover, recently developed constriction factor approach 
(CFA) can generate higher quality solutions than the 
conventional PSO [18]. Since the state estimation is one of the 
on-line functions in distribution control centers, HPSO with 
CFA must be an appropriate method for the target problem. 
 This paper proposes a distribution state estimation method 
using a hybrid particle swarm optimization with constriction 
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factor approach. The proposed method can handle nonlinear 
characteristics of the practical equipment in distribution 
systems. The method considers practical measurements in 
actual distribution systems and assumes that magnitude of 
voltage and current can be measured at the secondary side 
buses of substations (S/Ss) and remote control units (RTUs) in 
distribution systems. It can estimate load and distributed 
generation output values at each node by minimizing 
difference between measured and calculated voltages and 
currents such as the conventional methods. The feasibility of 
the proposed method is demonstrated and compared with the 
original PSO based DSE on practical distribution system 
models. The results indicate the applicability of the proposed 
DSE method to the practical distribution systems. 

II.  FORMULATION OF DISTRIBUTION STATE ESTIMATION 

A.  Measurement data and assumptions 
 The following data are assumed to be obtained from actual 
distribution networks: 
(a) S/S: magnitude of sending voltage and current, 
(b) RTU: magnitude of voltage and current. 
In addition, the following assumptions are required for the 
state estimation considering the actual limited measured data 
in distribution systems: 
(c) A contracted load value is known at each load section. 
(d) Estimated power factor of sending end at S/S and each 

section can be obtained. 
(e) If output of DG is fixed, the output and power factor of 

DG can be obtained. If output of DG is variable, the 
average output and power factor of DG can be obtained.  

Limited measurement values can be obtained in distribution 
systems. Therefore, we have large freedom for state 
estimation and the above assumptions are required for 
obtaining appropriate estimation results. Fig. 1 shows the 
measured and obtained data. The bold character shows the 
data in the figure. 

B.  Formulation 
 The objective function of the distribution state estimation 
is the same as that of conventional state estimation as follows: 
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  where,  x : state variable (active power loads and active 
   power output of DGs), 
      wi : weighting factor of measurement variable i, 
      zi : measurement value of measurement variable  

      (voltages and currents) i, 
 hi : state equation (power flow equation) of 

      measurement variable i. 

Namely, the function is to minimize the difference between 
measured and calculated measurement variables. It should be 
noted that one of the state variables is a load value at each 
section rather than voltage or current as utilized by the 
conventional state estimation. Load power factor is assumed 
to be fixed as mentioned above. Therefore, only an active 
power load value is utilized as a state variable. The active 
power output value of DG is also utilized as a state variable. 
The state variables are calculated among the following bounds. 
The center value of the bound at each load is calculated using 
the total input power to the target network and "load ratio", 
namely a ratio of the contracted load value of the target load 
section to the total contracted load values of the target 
network. The center value of the bound of each variable 
output DG is the average output of the DG. 

    (2) max,min, jjj xxx ≤≤
  where, xj,min : minimum value of state variable j, 
         xj,max : maximum value of state variable j. 

The output value of DG is omitted from state variables when 
we only have DGs with fixed power output values. Voltage 
and current can be calculated by fast distribution power flow 
(backward forward sweep (BFS) method) [1][19]. 
Consequently, the state estimation problem can be formulated 
as a constrained nonlinear optimization problem with 
continuous variables. Considering the nonlinear characteristic 
of actual equipment in distribution system, conventional 
nonlinear optimization methods based on nonlinear 
programming techniques cannot be applied and HPSO with 
CFA should be utilized as an optimization method as 
mentioned below.  

III.  HYBRID PARTICLE SWARM OPTIMIZATION WITH 
CONSTRICTION FACTOR APPROACH 

A.  Basic concept of Particle Swarm Optimization [14-16] 
Kennedy and Eberhart developed a PSO concept through 

simulation of bird flocking in two-dimension space. The 
position of each agent is represented by XY axis position and 
also the velocity is expressed by vx (the velocity of X axis) 
and vy (the velocity of Y axis). Modification of the agent 
position is realized by the position and velocity information.  

Bird flocking optimizes a certain objective function. Each 
agent knows its best value so far (pbest) and its XY position. 
Moreover, each agent knows the best value so far in the group 
(gbest) among pbests. Namely, Each agent tries to modify its 
position using the following information: 
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Substation 
Switch Load 

Pf 
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      Pf 

|V|: magnitude of voltage 
|I|: magnitude of current 
Pf: power factor  Ave. out.: average output 

 
Fig. 1 Measured and obtained data. 

- the distance between the current position and pbest 
- the distance between the current position and gbest 
This modification can be represented by the concept of 
velocity. Velocity of each agent can be modified by the 
following equation: 
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  where, vi

k : velocity of agent i at iteration k, 
   w : weighting function, 
   cj : weighting factor, 
   rand : random number between 0 and 1, 
   si

k : current position of agent i at iteration k, 
   pbesti : pbest of agent i, 

      gbest : gbest of the group. 

The following weighting function is usually utilized in (3): 
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  where, wmax : initial weight,  
 wmin : final weight, 
    itermax: maximum iteration number, 
    iter  : current iteration number. 

The model using (4) is called "inertia weights approach 
(IWA)" [15]. Using the above equation, diversification 
characteristic is gradually decreased and a certain velocity, 
which gradually moves the current searching point close to 
pbest and gbest can be calculated. The current position 
(searching point in the solution space) can be modified by the 
following equation: 

    (5) 11 ++ += k
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B.  Constriction factor approach (CFA) [15][18] 
 The basic system equation of PSO ((3), (4), and (5) in 
IWA) can be considered as a kind of difference equations. 
Therefore, the system dynamics, namely, search procedure, 
can be analyzed by the eigen value analysis. By analyzing the 
eigen values of simplified equations of (3), (4) and (5), Clerc, 
et al., found the following equations. Namely, the velocity of 
CFA (simplest constriction) can be expressed as follows: 
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For example, if ϕ=4.1, then K=0.73. As ϕ increases above 4.0, 
Κ gets smaller. For example, if ϕ=5.0, then K=0.38, and the 
damping effect is even more pronounced. The convergence 
characteristic of the system can be controlled by ϕ. Namely, 
Clerc, et al., found that the system behavior can be controlled 
so that the system behavior has the following features: 
(a) The system does not diverge in a real value region and 

finally can converge, 
(b) The system can search different regions efficiently by 

avoiding premature convergence. 
Unlike other EC methods, CFA of PSO ensures the 
convergence of the search procedures based on the 
mathematical theory. CFA can generate higher quality 
solutions than PSO with IWA [20]. However, CFA only 

considers dynamic behavior of one agent and the effect of the 
interaction among agents. Namely, the equations were 
developed with fixed best positions (pbests and gbest) 
although pbests and gbest can be changed during search 
procedure in the basic PSO equations. The effect of pbests and 
gbest in the system dynamics is one of the future works [18]. 
Details about the approach can be found in [15][18]. 

C.  PSO algorithm [14-16] 
Using the above concepts, the whole PSO algorithm can be 

expressed as follows: 
    1)  State variables (searching point) 

State variables (states and their velocities) can be 
expressed as vectors of continuous numbers. PSO utilizes 
multiple searching points for search procedures. 

    2)  Generation of initial searching points 
Initial conditions of searching points are usually generated 
randomly within their allowable ranges. 

    3)  Evaluation of searching points 
The current searching points are evaluated by using the 
objective functions of the target problem. Pbests and gbest 
can be modified by comparing the evaluation values of the 
current searching points, and pbests and gbest. 

    4)  Modification of searching points 
The current searching points are modified using the state 
equations ((3)(4)(5) in IWA and (6)(7)(5) in CFA). 

    5)  Stop Criterion 
The search procedure can be stopped when the current 
iteration number reaches the predetermined maximum 
iteration number. Otherwise, go to 3). The last gbest can 
be output as a solution. 

D.  Hybrid Particle Swarm Optimization [17] 
HPSO utilizes the mechanism of PSO and a natural selection 
mechanism, which is usually utilized by EC such as genetic 
algorithms (GAs). Namely, the number of highly evaluated 
agents is increased while the number of lowly evaluated 
agents is decreased at each iteration. Since search procedure 
by PSO deeply depends on pbests and gbest, the searching 
area is limited by pbests and gbest. Namely, using pbests and 
gbest, PSO changes the current searching points successively. 
On the contrary, HPSO can jump the current searching points 
into the effective (attractive) area directly by the selection 
mechanism. Agent positions with low evaluation values are 
replaced by those with high evaluation values using the 
selection. The replaced rate is called selection rate (Sr). It 
should be noted that pbest information of each agent is 
maintained even if the agent position is replaced by another 
agent's position. Therefore, intensive search in a current 
effective area and dependence on the past high evaluation 
position are realized. Fig. 2 shows a general flow chart of 
HPSO. 

The original PSO sometimes takes time to get into the 
current effective area in the solution space. On the contrary, 
HPSO moves the lowly evaluated agents to the current 
effective area directly using the selection method and 
concentrated search especially in the current effective area is 
realized. 
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Fig. 2 A general flow chart of HPSO. 

IV.  DISTRIBUTION STATE ESTIMATION BY HPSO 

A.  State Variables 
DG output and load values are considered to be state 

variables as mentioned above. The variables can be calculated 
as follows in HPSO algorithm: 
(1) Load values 

Average load value at each load section can be calculated 
with measurement data and load ratio. Upper and lower limits 
of the load values can be calculated considering heavy and 
light loading conditions of the target power system.  

An initial value of the load can be calculated between 
upper and lower limits of the load value at each agent. The 
state variables can be modified between the limits in search 
procedures.  
(2) DG output 

If the output of a DG is fixed, it is not utilized as a state 
variable and can be utilized as a specified value in load flow 
calculation.  

If the output of a DG is variable, the average and upper and 
lower limits of the output is set considering the target power 
system conditions. An initial value of DG output can be 
calculated between upper and lower limits of the output at 
each agent. The state variables can be modified between the 
limits in search procedures. 

B.  The proposed algorithm 
 The following algorithm is utilized for the state estimation: 
Step 1 Input data 

The following data are input. 
- network configuration, line impedance 
- contracted load value 
- measurement data (S/S, RTU, and DG) 

Step 2 Set calculation conditions 

(1) Calculation of initial values of state variables 
- Using measurement data and load ratio, initial value of 

each load is calculated. 
- Using average power output of each DG, initial value of 

each DG is calculated. 
Using initial values of state variables, initial load flow 
calculation by BFS is performed. 
(2) Set upper and lower bounds of state variables 
- Using the results of initial load flow calculation, upper and 

lower bounds of each state variable can be calculated. 
Step 3 State estimation 

A network condition, which minimizes error between 
measurement and calculated values, is found by HPSO. 

V.  NUMERICAL EXAMPLES 
 The proposed HPSO based method and a method based on 
the conventional PSO are applied to distribution model 
systems. The effectiveness of CFA compared with IWA is 
also investigated. As pointed out above, the conventional 
methods cannot be applied to the DSE problems. Therefore, 
the proposed HPSO based method is compared with only the 
method based on the conventional PSO in this simulation. 

A.  Simulation Conditions 
 The methods are applied to a model system as shown in fig. 
3, which models rural area. Load flow calculation results are 
utilized as measurement data. Namely, capability of the 
method converging to the values near to the measurement data 
is investigated. The model has one DG with fixed power 
output and two voltage regulators (SVR). SVR is widely 
utilized in Japan and it automatically changes tap position of 
the transformer to regulate the voltage at a target point in 
distribution systems. The equipment causes nonlinear 
characteristics of the objective function.  
 Weighting coefficients of (1) are set to 1.0. Parameters of 
HPSO with IWA are wmax, wmin, and Ci in (3) and (4), and 
selection rate (Sr). According to the pre-simulation, the 
following values are appropriate for DSE and utilized for 
simulations: wmax =0.9, wmin=0.4, Ci=2.0, Sr=0.5. The values 
are the same as those recommended by other papers [14-16]. 
The number of agent is set to 20. 100 trials are performed for 
simulations. At each trial, Different random numbers are utilized 
and the best-evaluated value is stored within 100 searching 
iteration.  

B.  Simulation Results 
 State estimation results are shown in Table 1, 2 and fig. 4. 
As shown in Table 1, the minimum evaluation values by 
HPSO and PSO are the same. However, the maximum 
evaluation value, which means a maximum error between 
measurement data and calculated value, by HPSO is 
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Fig. 3 A distribution model system for case No.1. 
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TABLE III 
COMPARISON OF OBJECTIVE FUNCTION VALUES BY IWA AND CFA BY 

THE PROPOSED METHOD. 
  IWA CFA 
 Ave. 0.000019 0.000019 
 Min. 0.000000 0.000000 
 Max. 0.000106 0.000072 

TABLE I 
COMPARISON OF OBJECTIVE FUNCTION VALUES BY BOTH METHODS . 
 Methods Max. Min. Ave. 
 HPSO 0.000106 0.000000 0.000015 
 PSO 0.000180 0.000000 0.000030 

approximately 59% of that by PSO and average evaluation 
value by HPSO is approximately 50% of that by PSO. The 
results indicate HPSO can generate higher quality solutions by 
PSO without measurement errors. Table 3 and fig. 8 indicates 
the high quality solutions by HPSO as well.  
 Table 3 shows comparison of the objective function values 
with the best parameters of IWA (wmax = 0.9, wmin = 0.4, ci  = 
2.0 in (3)(4)) and CFA (ϕ = 4.1 in (7)). In the simulation, Sr is 
set to 0.5. According to the results, maximum objective 
function value can be restricted to small value by CFA. 
Namely, even in the worst case, using CFA, the system has 
possibility to estimate the distribution system condition with 
minimum errors. As mentioned above, CFA leads state 
equations by eigen value analysis. Therefore, according to 
CFA, the appropriate values by IWA (wmax = 0.9, wmin = 0.4, ci  
= 2.0) should be related to the eigen values of the state 
equations of IWA. However, The state equations between 
IWA and CFA are different, and more mathematical analysis 
can be expected. 
 Effectiveness of the method considering measurement 
error has been investigated in [21]. 

VI.  CONCLUSIONS 
 This paper proposes a practical distribution state 
estimation method using a hybrid particle swarm optimization 
with constriction factor approach. The results of the paper can 
be summarized as follows: 

(1) This paper develops a hybrid particle swarm optimization 
which can handle the non-differential and non-continuous 
objective function of distribution state estimation caused 
by nonlinear characteristics of the practical equipment 
such as SVC, SVR. 

(2) The proposed method can estimate appropriate load and 
distributed generation output values at each node with 
actual and limited measurement values in distribution 
systems. 

(3) The results of the numerical simulations indicate that the 
proposed method can estimate the target system conditions 
more accurate than the original PSO. 

(4) The appropriate parameter values for distribution state 
estimation by inertia weights approach are the same as 
those recommended by other PSO papers. The robust 
convergence characteristic of HPSO-based methods is also 
ensured in distribution state estimation application. 

(5) HPSO with constriction factor approach has possibility to 
generate more accurate estimation conditions than HPSO 
with the inertia weight approach. However, the 
constriction factor approach only considers dynamic 
behavior of each agent and the effect of the interaction 
among agents. Therefore, more mathematical analysis can 
be expected. 

Various problems in power system fields can be formulated as 
nonlinear optimization problems with non-differential and 
non-continuous functions practically. Therefore, the results in 
this paper indicate applicability of HPSO based optimization 
for such problems. 
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