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Abstract—Simplified incremental type of dynamic models, 

named cause-effect relation (CER) models are proposed and 
investigated in the paper. They are able to identify a wide class of 
dynamic plants and systems by revealing the relationships 
between the current change-of-output and the past 
changes-of-inputs of the process. The Least-Squares estimation 
algorithm, including some specially proposed modifications are 
used for identifying the parameters: CER functions of these 
models. In most practical cases, the identification results lead to a 
meaningful as shape and a logically interpretable CER function 
that can be further used in different human-like decision- making 
or fault diagnosis problems.  

The second part of the paper deals with an implementation of 
the CER dynamic models for synthesis of a feed-forward 
controller unit in an open loop reference control scheme. The 
result of this synthesis is a CER-dynamic model that forms a 
serial connection with the plant and tries to match as close as 
possible the performance of the preliminary defined reference 
model.  

The third part of the paper describes a special recursive 
computation scheme for calculation of the inverse dynamics of a 
single-input process. It is shown that this procedure can be 
successfully used for solving “backward tracking” and fault 
diagnosis problems in real dynamic systems.  

Finally, extensive simulations have shown the merits of the 
proposed modeling and control approaches, as well as their 
possible practical applications.  

 
I. Introduction 

The smooth operation of complex industrial systems 
requires frequent or real time monitoring and analysis of their 
dynamic behavior. The results  of such analysis are most often 
used for control purposes, but could also be useful in different 
procedures of decision making and fault diagnosis. Here the 
possible reason (origin) for the observed abnormal behavior of 
the system has to be discovered and analysed based on the 
preliminary identified dynamic system model. 

In recent years the research area of simulation and 
identification of dynamic systems have been very popular and 
a lot of interesting results have been reported in the literature. 
Most of the approaches use neural networks and fuzzy models 
[1],[3] or auto regressive techniques [2],[4],[5] for 
representing the system behavior and its internal cause-effect 
relationships.  

One problem in identification based on input-output data is, 
that the model accuracy and its interpretability and 
generalization ability are usually contradictory requirements. 
Standard identification procedures normally do not use human 
knowledge or hypothesis about the expected dynamics of the 
system in order to make it more interpretable. As a result 

accurate identified models with bad interpretability are often 
obtained as a result of a standard identification, based on pure 
numerical calculations. 

In this paper a general cause-effect type of dynamic model 
is considered, that uses the cause-effect relations between the 
past input changes and the current process output. This model 
has an incremental structure and needs a special identification 
procedure, proposed in the paper. The so called Cause-Effect 
Relation (CER) function, obtained by the identification 
procedure, keeps in most cases clear physical understanding 
about the strengths of relationships in the dynamic process. 
Therefore such a model has a better interpretability even if it is 
not necessarily better in accuracy, compared to other types of 
dynamic models.  

The CER dynamic model can be successfully used for 
identification of a wide class of dynamic systems and in fault 
diagnosis procedures. Further on, the proposed model is used 
in a special algorithmic scheme for synthesis of a reference 
model controller in open loop control structure. The obtained 
controller (the correction unit) converts the original input to 
the plant into appropriate control that tries to match as close as 
possible the output of a predefined reference model. The 
obtained controller has the same cause-effect structure as those 
of the reference model and the plant model, which makes the 
whole control structure more homogeneous. Finally, some 
results from various numerical simulations in this paper show 
the practical applicability and give ideas for further ideas and 
improvements. 

II. The Cause-Effect Relations Dynamic Models 

The dynamics of a process with control input )(tu  and a 

process output )(ty can be represented in many different 

formats and structures [1]-[5]. When a discrete dynamics is 
taken into account, the general cause-effect relation scheme is 
a suitable way of modeling the dynamic behavior, as shown in 
Fig. 1. 

  Cause-Effect 
Dynamic Model

Causes: Effect:

Future 
Output

PROCESS

Past Inputs
 (Controls)

Past Outputs

u(k), u(k-1) u(k-2),...

y(k),y(k-1)...

y(k+1)

 

Fig.1. The Cause-Effect Relations in Dynamic Models. 

Let k  be the current time sampling. Then the basic idea is 
that in order to predict the future process output )1( +ky  we 
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need to consider the previous inputs (controls) and previous 
outputs according to Fig. 1. 

The autoregressive type models such as ARX or 
ARMA-models and their non-linear modifications: NARX and 
NARMA models are widely used for identification of dynamic 
systems [2],[4],[5]. They use preliminary assumed parameters 
m and n  (a kind of order or memory  of the process) that 
represent the number of the delayed inputs and outputs 
respectively, as follows:  
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However the above dynamic models do not have explicit 
physical interpretation for 1m > . Therefore another 

cause-effect type model that has a better interpretability can be 
created if we assume 1m =  (one step past time output only) 
and also if we take as inputs the differences of the past inputs 
of the model. Then the new model, called cause-effect 
relations (CER) model as in [4],[5] uses the following 
variables: 
changes-of-the-past-inputs: ),...1(),( −∆∆ kuku and the 

respective change-of-the-current-output: )( ky∆ .  
The CER dynamic model has a clear human-interpretable  

structure and could be regarded as a kind of 
“rule-based-model” since differences, but not absolute values 
are taken into account in it. Its computational structure is 
shown in Fig. 2. 
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Fig. 2. Computational Structure of the One-Dimensional 

CER Dynamic Model. 

Let us denote by n the memory length of the dynamic 
model. Then the incremental type of the CER dynamic model 
used for prediction of a system behavior is written according 
to Fig. 2. as: 

)1()()1( +∆+=+ kykyky             (2) 
where:  

)]1(),...,(),...,([)1( +−∆−∆∆=+∆ nkuikukuFky   (3) 

with   

)1()()( −−−−=−∆ ikuikuiku        (4) 

Then the predicted increment of the output is : 
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In case of non-linear dynamic behavior, the strength levels 
niif ,...,2,1),( = are rather functions than simple constants , 

i.e. the CER-function changes its shape within the operating 
area of the model. In this case, a Fuzzy Inference System, as 
shown in Fig. 3. could be used to compute the non-linear CER 
model. 
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Fig. 3. Computation Scheme for Non-Linear CER Dynamic 
Model with Fuzzy Inference System. 

In Fig. 4. an example of two different shapes of CER 
functions, from two different CER Dynamic Models: M1 and 
M2 are displayed. Their respective dynamic behavior is shown 
in Fig. 5.  
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Fig. 4. Example of two Different CER Dynamic Models.  
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Fig. 5. Dynamic Responses of the CER Models from Fig. 4. 

By increasing the length of the memory n more precise 
dynamic behavior can be expressed while by changing the 
shape of the CER-functions different dynamic behaviors can 
be expressed. 

In most cases the CER-function is a physically interpretable  
due to its smooth shape (e.g. increasing-decreasing). However 
it has been found experimentally, that the CER dynamic 
models may lose easily their physical interpretability if noise 
data are used for identification. Quite often, even a slight noise 
may cause a significant distortion in the real (smooth) shape of 
the CER function, thus destroying its physical meaning. This 
demerit of the CER models could be avoided to some extent 
by introducing the concept of the Cellular Dynamic models 
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(not presented in this paper), as discussed in [5]. It is proven 
that the Cellular Dynamic Models are more robust against 
noised input-output data thus producing more interpretable and 
meaningful CER-functions. 

III. Identification of the Dynamic Model Based on 
the Least-Square Estimation Algorithm 

This is an off-line identification problem where a 
preliminary defined number of n  strength degrees 

niif ,...,2,1),( =  of the CER-function have to be identified 

based on a collection of M  input-output experimental data: 
1,2,...,Mkkdku =)},(),({ . During the Identification, the mean 

squared error (MSE) between the measured output )(kd and 

the estimated output )(ky should be minimized, as follows: 
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The actual number of data for evaluation is: nMm −= . 
Then the direct implementation of the Least-Squares 
Estimation Algorithm, as shown in [4] leads to the following 
(rectangular in size) linear system of equations:  

11 ××× = mnnm dfA ,                    (7) 

where d is a vector-column  with the following structure: 

T
m Mdndnd )](,...),2(),1([1 ∆+∆+∆=×d         (8) 

The unknown vector-column f with size n , that contains the 
strength degrees of the CER-function, has the format: 

T
n nfifff ])(...)(...)2()1([1 =×f             (9) 

The rectangular matrix A  is constructed as follows: 
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Then the Identification solution, based on the least-square 
estimation, is written as follows:  

dAA)(Af T1T −=                 (11) 

IV. Identification Results with CER Dynamic 
Models 

Further on we illustrate the above Identification scheme 
(11) on the well known and often used as a bench-mark 
example: the Gas-Furnace data set [3]. It consists of 296 pairs 
of input-output data, that represent the relationship in discrete 
time between the Methane gas (CH4) in the input and the 
concentration of Carbon Dioxide (CO2) in the exhaust gases 
of the furnace, as graphically depicted in Fig. 6. 

 We have identified 13 different CER dynamic models with 
different memory lengths from 1n =  to 13n = by using 
the input-output data from Fig. 6.  
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Fig. 6. Test Gas-Furnace Data Used in the Simulations. 

The obtained CER functions are shown in Fig. 7. It is seen 
that the maximum strength of the relation between the past 
inputs and the current output is at the 5th past sampling time. 
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Fig. 7. Different CER Dynamic Models Identified from the 

Gas-Furnace Data in Fig. 6. 

Even if not very smooth in shape, the most of the CER 
functions show the same tendency (and the same extremum). 
The deviation of the CER functions with shorter memory 
length ( 7n ≤  ) is due to the truncation of the model and the 

respective loss of useful information. At the same time, an 
excessively long memory ( 11n ≥ ) is not needed and does 
not improve the model accuracy. It may even cause sometimes 
a “reverse effect”, by “catching” nonexistent relationships 
from old past times. All these problems have to be considered 
during the preliminary phase of the “memory length selection” 
when creating the CER dynamic model. 

Fig. 8. shows the accuracy of the different identified CER 
models that can be further used for selection of the most 
appropriate CER model.  
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Fig. 8. Modeling Error of the Different CER Models  

from Fig. 7.  
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V. Feed-Forward Reference Model Control by use 
of CER Dynamic Models 

The above described CER dynamic model in Section 2 can 
be successfully used in different control schemes for synthesis 
of a controller with the same CER structure, as the plant 
model. . One interesting control structure, that is widely used 
in robotics and many other engineering fields is the so called 
reference model control [2],[4]. Here the desired dynamic  
behavior of the plant is given by a predefined and stable 
Reference Model. The main goal of the controller is to force 
the process to follow the reference model output. In the 
simplest case, the controller could be of the type of 
feed-forward controller, as shown in Fig. 9. 

From a control point of view, such a feed-forward controller 
can be regarded as a special “correction unit” that transforms 
the initial reference signal )(tr  into a modified control )(tu  
which is further applied as a plant input. 
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Fig. 9. Tuning the Feed-Forward Controller in a Reference 
Model Control Structure  

In order to design such a controller (correction unit), an 
identification procedure based on experimental data is 
proposed in the sequel.  

Let us assume that the dynamics of all units in Fig. 9. is 
represented by CER dynamic models with the following 
CER-functions and memory lengths: 

rF and rn for the Reference Model;  

pF and pn for the Plant and  

cF  with cn for the Controller.  

Suppose that maxk sampling times from the reference signal 

)(kr  are also available  for the identification. 

Then the general statement of this identification problem is 
as follows: 
Given rF , rn ; pF , pn ; maxk and cn ;  determine all cn  

points of the CER-function cF  of the Controller that 

minimize the following performance index: 
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The solution of this identification problem can be obtained 
in a non-iterative way by a proper modification of the LSM 
algorithm. 

Let us first derive the output of the serial connection of the 
controller (correction unit) and the Plant, as shown in Fig. 10. 
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Fig.10. Serial Connection of two Dynamic Units. 
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Finally the output of the plant is calculated as: 
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Obviously, the total memory length n  for the whole serial 
connection unit, which represents the number of all past times 
used for calculation of the current output )(kx is: 

cp nnp += . 

According to Fig. 10., for the identification procedure we 
use the condition that the increment of the reference model  
and that one of the serial connection (controller plus plant) 
should be equal at each sampling time k , that is:   

)()(ˆ kxkx ∆=∆                  (16) 
which yields the following equations: 
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Finally, the solution 
cc nllf ,...,2,1),( = for the correction 

unit is obtained by solving the following linear system of 
equations:  
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VI. Simulation Results for Reference Model Control 

The above Identification scheme (20), (21) and (22) has 
been used for extensive simulations in synthesizing different 
CER-type feed-forward controllers, according to Fig. 9.  

In Fig. 11. the predetermined CER-function for the 
Reference Model is shown, together with two different 
(supposed to have been preliminary identified) plant models, 
conditionally called: “Quick Plant” and “Slow Plant”.  
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Fig. 11. CER functions of the Assumed Reference Model and 
two Different Plant Models, Used in the Simulations. 

Then the same input, from the Gas-Furmace Example in Fig. 
6. has been used for identification of two groups of 
feed-forward controllers with different memory lengths within 
the range ]7,1[∈cn . Their respective identified 

CER-functions are shown in Fig. 12. for the “Quick Plant” and 
in and Fig. 13. for the ”Slow Plant”. 
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Fig. 12. Identified Feed-Forward Controllers with Different 

Memory Lengths: in the Case of “Quick Plant” Model 
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Fig. 13. Identified Feed-Forward Controllers with Different 

Memory Lengths in the Case of “Slow Plant” Model. 

As seen, the CER-functions for the controllers have 
“broken-shape” lines compared to the relatively smooth 
CER-functions of the plant and the reference model in Fig. 11. 
Nevertheless these shapes have also a physical interpretability, 
namely that the controller “tries” to follow the reference model 
trajectory by oscillations in its control inputs to the plant. It is 
obvious, that in such case an exact (faultless) matching in the 
dynamics cannot be expected, as shown later on.  

By comparing the strength levels of both groups of 
controllers, it is easy to notice that the controllers in Fig. 13. 
use much stronger actions (between –8 and +6) in order to 
force the “Slow Plant” to follow the Reference model 
trajectory. For comparison, the “Quick Plant” can be 
controlled with milder strength actions: between –1 and +1.5 , 
as seen in Fig. 12. These results have also clear physical 
interpretability.  

The following Fig. 14. shows the approximation error from 
the different identified feed-forward controllers. It is obvious 
that the case of “Slow Plant” is approximated with less 
accuracy compared to that of the “Quick Plant”. Moreover, the 
controllers with longer memory buffer (up to certain extent) 
have in general a better performance accuracy. 
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Fig. 14. Approximation Error for the Different Feed-Forward 

Controllers and Different Plant Models. 

Finally, the satisfactory performance of the identified 
feed-forward controller with memory length 4=cn in the 

case of “Slow Plant” is shown in Fig. 15. A specially 
generated periodical reference input signal is presented as a 
new (unseen) for the controller to check its performance. 
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Fig. 15. Performance of the Reference Model Control by use 

of the Feed-Forward Controller with 4=cn . 

The accuracy of the performance depends on the length of the 
memory and some experimental adjustment is needed before 
the real application. In addition, the synchronization in 
sampling time is very important for the accuracy of 
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simulations, because the serial connection: “Controller-Plant”, 
from Fig. 9. needs a longer memory buffer to be loaded before 
the start of the real simulation.  

VII. Inverse Dynamics Calculation Based on the 
CER Dynamic Models 

In many practical cases such as fault diagnosis and 
backward tracking  in dynamic systems, a possible input signal 
sequence to the system (believed to be a “cause of the failure”) 
has to be found, that is able to “explain” the observed output 
behavior (i.e. the malfunction) of the system. Here the 
assumption of “known in advance” dynamic model of the 
system (in the form of CER dynamic model) is made.  

In order to solve such an “inverse dynamics” problem we 
suppose that the following discrete time series for the output is 
known:  

)(...,),2(),1(),( mkykykyky +++ .      (23) 
Then, the input sequence: 

)(...,),1(),( nmkunkunku −++−−      (24) 
which is able to produce the above measured output could be 
recovered by an appropriate recursive calculation procedure.  

First, let us rewrite equation (5) in the following way:  
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Taking into consideration that: 
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we obtain the following expression for calculating the latest 
(current) input )(ku  that contributes to the future output 
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It is clear that at the beginning, all the initial 1−n  inputs: 
)1(...,),2(),1( +−−− nkukuku  have to be known in 

advance in order to start the recursive procedure (27) that 
would calculate the next inputs: ...),2(),1(),( ++ kukuku  
until the last measured output )( mky + is used for the 
calculations. Fig. 16.  gives a graphical illustration of this 
recursive procedure for finding the inverse dynamics.  
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Fig. 16. Calculation Scheme for the Inverse Dynamic. 

Here different optimization strategies with plausible  
constraints over the generated input sequence can be used for a 
practical implementation of the recursive procedure (27). 

It is important to notice that the above proposed calculation 
scheme leads to a deviation (bias)  in the computed input signal 
compared to the real input. It means that the real input remains 
still unknown, but its true incremental behavior is reproduced. 
In many fault diagnosis problems such a solution is sufficient 
and meaningful.  

One example of an input signal recovery is presented in Fig. 
17. for the case of a known CER dynamic model and a pure 
(noiseless) measured output data set.  
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Fig. 17. Results from the Inverse Dynamics Calculation of the 

Causal Dynamic Model 2  from Fig. 4. 

VIII. Discussions and Future Work 

Simplified incremental type of dynamic models that reveal 
the cause-effect relations in dynamic systems are proposed and 
identified in this paper. An important property of such models 
is their good interpretability of the system behavior. Two 
algorithms, namely for a Reference Model Control as well as 
for a Backward Tracking are derived as possible applications 
of such dynamic models for control and fault diagnosis.  

Some open problems for further research could be the 
proper (or optimal in some way) selection of the memory  
length of the models as well as the method of improving their 
robustness and interpretability in the presence of highly noised 
data. 
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