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Abstract--A pattern recognition algorithm based on
Synergetics is applied to match stereo images. This algorithm
needs to numerically solve differential equations called order
parameter equations. Thus, this method had a high-matching
precision but much computation time. This paper proposes a
high-speed stereo matching algorithm without loss of matching
precision. The algorithm is developed by the way without solving
the order parameter equations directly.

I. INTRODUCTION

3-D reconstruction from stereo images is one of the most
typical problems in computer vision. The main issue in
processing stereo images is to decide the correspondence
points between a left image and a right image, that is, a stereo
matching problem. Stereo matching on the images including
occlusion and reversal position is still a remained difficult
problem. Although many methods [1] have been proposed for
solving this problem, efficient and effective method is not
explored yet.

For the problem, We proposed a new stereo matching
algorithm [2] using the pattern recognition based on
Synergetics proposed by H.Haken [3]. This method needed to
numerically solve differential equations called order parameter
equations, which have two kinds of parameters, order
parameter and attention parameter. Thus, this method had high
matching precision but required much computation time.

In this paper, we propose a high-speed stereo matching
algorithm that can judge the correspondence points only by
initial values of order parameters and attention parameters,
namely without solving the differential equations.

Chapter II describes the outline of the stereo matching
algorithm that used Synergetics. Chapter III analyzes the
meaning of the order parameter equation and, thereby,
constitutes the high-speed algorithm. Chapter IV compares the
previous method and the proposed method in computation
time and matching precision. Chapter V is conclusive remarks.

II. OUTLINE OF A STEREO MATCHING ALGORITHM 

BASED ON SYNERGETICS

A. Outline of Synergetics

A certain state in a dynamical system autonomously
changes to another ordered state by external controls or
fluctuation forces. This process is called self-organization.
Synergetics explains self-organization as follows: When a
system receives an external environmental change, the system
prepares stable modes and unstable modes for the
reconstruction of its state. The stable modes are dominated by
the unstable modes, and then vanish. This mechanism is called
a slaving principle of Synergetics. The unstable modes are the

candidates for a future ordered state in the system. A specific
unstable mode wins the growing competition among the
modes, and then forms a new ordered state in the system. The
equations representing this competition are called order
parameters equations of Synergetics.

Let us consider an autonomous system equation (1) with an
external control parameter α and nonfluctuation force and a
state vector be q (x, t),

)),,(( αtxqNq =& .   (1)

After this, q (x, t) is written in q for simplicity. Furthermore, let
us suppose equation (1) has a stable solution q0 for a certain
value of α and then q =q0+w(x, t), where x is a position vector,
and w represents a small change. Here, expanding N in a
power series around q0,

)(ˆ)( 0 wNLwqNq ++=& .   (2)

Here, the third term of right-hand side contains the second and
/ or higher powers of w. Furthermore, disregarding terms of
more than second orders and adjusting the scale N(q0)=0, (2) is
transformed into
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The solutions of (3) can be written in the general form
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In the case of nondegenerate eigenvalues, let us suppose the
state vector q is presented as
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Here, λj and vj are the j-th eigenvalue and its eigenvector. Now,
a set of adjoint vector v+

k , which satisfies an orthogonal
condition, is introduced. The symbol < > means inner product.
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Then, inserting (5) into (2) and multiplying (2) by v+
k,
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From (6), the following is obtained.
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Equations (8) are divided into two set of unstable modes (the
real part of eigenvalue is non-negative) and stable modes (the
real part of eigenvalue is negative). Applying the slaving
principle here, the stable modes are represented by the
unstable modes and eliminated from (8). Consequently, the
following order parameter equations of Synergetics
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are led, where B and C are positive constants, and ξk and λk are
called order parameter and attention parameter, respectively.
The initial value of order parameter is given with an inner
product.

>=< + )0()0( qvkkξ . (10)
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One of ξk’s survives, namely, grows to a positive value, in (9)
and forms a new ordered state in the system.

In the application of equation (9) to pattern recognition, q

and vk correspond to an input pattern vector and the k-th
prototype pattern vector, respectively. Thus, ξk represents a
kind of similarity between an input pattern vector and the k-th
prototype vector. λk plays a roll to control the increase of ξk. In
equation (9), a surviving order parameter converges to a
positive value and the others converge to 0. This means, from
equation (5), the prototype pattern corresponding to the index
of the surviving order parameter is recognized.

B. Outline of Stereo Matching Algorithm

This section describes the application of Synergetics to a
stereo matching problem. This paper considers the following
stereo vision system:
a) Camera geometry is parallel as shown in Fig.’s 1(a) and (d),
so that epipolar lines are parallel with X-axis in a camera
coordinate system (Fig.’s 1(b), (c), (e), and (f)).
b) The object of stereo vision is building blocks.
c) Feature points are the edges of the building blocks and  
obtained by Smooth filter of 3×3 pixels window, Laplacian
operator of a 3×3 pixels window, and the Thinning operator
of a 3×3 pixels window.
d) Matching primitives are edge points as shown in Fig.’s 1(b),
(c), (e), and (f), where occlusion (a point C) appears in the
right image (Fig. 1(c)), and reversal position (points G, H, and
I) appears in the both image (Fig.’s 1(e) and (f)).

Hence, stereo images generally include occlusion and
reversal position. The stereo images with occlusion have
feature points not to be match. And the stereo image with
reversal position cannot obtain correct correspondence by the
method based on Markov condition such as DP-matching. 　
Then, we take a two-stage matching approach. In the first
stage, the feature points to be obviously corresponded are
found. Here, it is expected the occluded feature points are not
corresponded. The remaining points are matched in the second
stage.

In a stereo matching problem, we assign an input pattern
vector on an edge point in one image to q and do the k-th
prototype pattern vector on edge points in the other image to
vk.

The elements of pattern vector and attention parameter used
in each stage is described below.

1) Elements of pattern vector
We adopted the following elements as the pattern vector in

the first and the second stage:
a) Brightness values of pixels of four area windows (small

77× , large 57×  of 53×  unit, perpendicular 481× , and both
ends area of edge a couple of 1111× ).
b) Length and angle of an edge sequence, which extends in
direction of Y-axis from the current edge.
Therefore, pattern vector has the pixel elements of a) and b).

2) Elements of attention parameter
The following elements are adopted as the determination of

an attention parameter:
a) Brightness values of pixels of two area windows (horizontal

1106×  and perpendicular 2401× ).
b) Average brightness of pixels of small area window.
c) Information about position of the feature point on the image.
d) Information about distance to the neighborhood edge of the
feature point.
e) Length and angle of an edge sequence, which extends in the
direction of Y-axis from the current edge.
Here, similarity between an input pattern and a prototype
pattern is defined with respect to five elements a)-e), and the
attention parameter is set up by the weighted sum of
similarities.

Let's consider a case where two candidates (v1 and v2) for
correspondence point to an input pattern exist. This is the case
of N=2 (B=1 and C=1) in (9), and is as follows:
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The initial values of order parameters obtained by (10) and the
attention parameters are substituted for (11) and (12). And Fig.
2 shows the dynamics of the order parameters, where ξ1(0)=0.5,
ξ2(0)=0.6, λ1=1.0 and λ2=0.8. This case shows that ξ1 grew to 1,
namely pattern v1 is recognized. Thus, the previous method
needed to solve the order parameter equations numerically.

III. ANALYSIS OF ORDER PARAMETER EQUATION, AND HIGH-
SPEED ALGORITHM

In this section, the meaning of the order parameter
equations is analyzed in more detail, and a high-speed
algorithm is derived

A. Analysis of meanings of the order parameter equations

Firstly, let us consider the order parameter equations of two
dimensions, namely (11) and (12). We can find the singular
points ξ1, ξ2 of real number  at 021 == ξξ && , and obtain the

following four cases.
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(i) Unstable focus P0  021 == ξξ . (13)

(ii) Stable focus P1  11 λξ ±= , 02 =ξ . (14)

(iii) Stable focus P2  01 =ξ , 22 λξ ±= . (15)

(iv) Saddle point Ps  
3

2 12
1

λλ
ξ

−
±= ,

3

2 21
2

λλ
ξ

−
±= .  (16)

These singular points are shown in Fig. 3. In the following, we
discuss only the first quadrant because singular points are
symmetry. Here, a potential function is introduced in order to
clarify the meaning of the singular points. Potential function V
is defined by

k
k
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Using (17) and (9), we find
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Now we consider two dimensions, namely N=2, then
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The contour map and the landscape of potential (19) are
shown in Fig. 4(a) and Fig. 4(b), where λ1=1.0 and λ2=0.8, for
instance, and a saddle point, stable focuses, unstable focuses
are shown as symbols △ , ○ , □ . The order parameter
equations (11) and (12) represent the motion of a particle on a
potential surface. If the initial values of the k-th order
parameter is given as the location X in Fig. 4(a), the particle
which corresponds to the value of order parameter, roles down
on the potential surface and settles in one stable focus (ξ1=1).
Since this stable focus is corresponding to a prototype pattern,
the corresponding pattern is recognized as v1. At this time the
ridge of potential, which is represented by the line through □
to △ in Fig. 4(a), is the watershed to determine which stable
focus is chosen. Thus, if we can approximate this ridge that
passed from the origin (unstable focus) to the saddle point, the
recognized pattern can be easily judged only by the initial
values of the order parameters.

Thus,  the position and the property of the singular points
are important in the order parameter equations. Since the order

parameter equations cannot be solved directly, we represent
those  with the first-order approximation using jacobian and
analyze the orbits of the solutions near the singular points.
Linear expression of (11) and (12) is
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where A is Jacobian and is expressed with
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The property of the singular points is specified  by the
eigenvalues of A. Let us be 1,0 21 ≤≤ λλ  without the loss of

generality. In a case of two dimensions, if both of the
eigenvalues e1 and e2 at a singular point are positive real
numbers, the orbit of the solution grows away from the
singular point. This singular point is an unstable focus.
Conversely, if both of the eigenvalues are negative real
numbers, it is a stable focus, and the orbit of the solution
approaches the singular point. And the case of 021 <×ee , the

singular point is a saddle point. Table I shows the properties
of the singular points and the corresponding conditions of the
eigenvalues. Now, we analyze the singular points P0, P1, P2

and Ps by using the eigenvalues . Here, in the case of λ1= λ2= 0,
all the singular points become the same as the origin, and lead
all the eigenvalues to 0. This is trivial and excepted from the
consideration.

1) In case of 0PA

The coordinates of the singular point P0  is given in (13),
and the Jacobian at P0 is
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Here, the eigenvalues e1 and e2 are calculated as 011 ≥= λe  and

022 ≥= λe . P0 is an unstable focus.

2) In cases of 1PA and 2PA

In the same manner, the Jacobian at P1 and P2 are
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Here, three cases exist for 1PA  and are summarized as follows
(Note that 1,0 21 ≤≤ λλ ):

(Stable focus P1) 02 11 <−= λe , 02 212 <+−= λλe (24)

(Saddle point P1) 02 11 <−= λe , 02 212 >+−= λλe (25)

(NS-singular points P1) 02 11 <−= λe , 02 212 =+−= λλe (26)

In the same manner, three cases for 2PA are shown below.

TABLE I   SINGULAR POINT AND EIGENVALUE

e1 > 0, e2 > 0

e1 < 0, e2 < 0

e1<0, e2>0 (e1>0, e2<0)

Unstable focus

Stable focus

Saddle point

e1<0, e2=0 (e1=0, e2<0) Non-simple (NS) singular point

Condition of Eigenvalue Singular point

Fig. 3.  Configuration of singular point (2-D)
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Fig. 4.  Potential function (λ1=1.0, λ2=0.8)
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(Stable focus P2) 02 121 <+−= λλe , 02 22 <−= λe  (27)

(Saddle point P2) 02 121 >+−= λλe , 02 22 <−= λe (28)

(NS-singular points P2) 02 121 =+−= λλe , 02 22 <−= λe (29)

Here, the conditions are considered together about the singular
points P1 and P2. In formula (24)-(26) and formula (27)-(29),

02 1 <− λ  and 02 2 <− λ  are clear from conditions 1,0 21 ≤≤ λλ .

Therefore, either of the condition (30.a) or (30.b) is satisfied
in (24) and (27).

02 21 >− λλ …(a),   02 12 >− λλ …(b) (30)

And all the combinations of two singular points P1 and P2 are
as follows:
a) Stable focus P1 and stable focus P2.
b) Stable focus P1 and NS-singular point P2. (And reverse.)
c) Stable focus P1 and saddle point P2. (And reverse.)
Here, a) is described in 3). And Fig.’s 5(a), (b) show the orbit
of the solutions near these singular points in case of c) and b),
respectively.

3) In case of SPA

The coordinates of the singular point Ps is given in (16),
and the Jacobian at Ps of a saddle point,







−−
−−

=





















−−
−−

−

−−
−−−

=
bc

ca
sP

3

)2(2

3

)2)(2(4
3

)2)(2(4

3

)2(2

212112

211212

λλλλλλ

λλλλλλ

A . (31)

The eigenvalues are calculated as follows:
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Here, since ξ1 and ξ2 are the real numbers )0,0( 21 >> ξξ , it

must satisfy (30). Hence a, b, and c are positive, and then
01 >e  and 02 <e . Namely, Ps is a saddle point. In this case, P1

and P2 are the stable focuses, and Fig. 5(c) shows these
singular points. Here, the emphases are that 1) the change of
the properties of P1 and P2 by the conditions, 2) the conditions
in which Ps exists, 3) the position of the saddle point. The
above main point is summarized as follows:
a) The singular points of order parameter equations are
specified by the values of attention parameters.
b) The property of singular points is determined by the sign of
eigenvalues of Jacobian A, as shown in Table I.
c) When a saddle point exists, the ridge curve passing through
origin to the saddle point determines which stable focus is
recognized.

B. In case of n Dimensions

Secondly, the case of n dimensions is considered based on
two-dimensions. Here, let us give some definitions and
propositions.

[Definition 1]
A n-dimensional singular point is the point that satisfies

021 ==== nξξξ &L&&  and i∀  0>iξ  in equation (9).

[Definition 2]
 A n-(k)-dimensional singular point is the point that satisfies

021 ==== nξξξ &L&& and 0>iξ , 0=jξ , ),...,1,,...,1( nkjki +==  in equation

(9). Here, the index i that satisfies 0>iξ  is rearranged in small

order, and the index j that satisfies 0=jξ  is also rearranged in

small order.
[Definition 3]

A lower derivative singular point is the singular point that is
produced by setting up 0>iξ  of a n-(k)-dimensional singular

point to 0=iξ . Conversely, a upper derivative singular point is

the singular point that is produced by setting up 0=iξ  of a n-

(k)-dimensional singular point to 0>iξ .

[Definition 4]
A n-dimensional ridge hypersurface is the border

hypersurface that is constructed by a hypercurve which
connects origin to a n-dimensional singular point, and
hypercurves which connect origin to n-(n-1)-dimensional
singular points, and determines which order parameter grows
to 1.
We consider the case where a n-dimensional singular point
exists. If a n-dimensional singular point does not exist and a
n-(n’)-dimensional singular point )( nn <′  exists, the following

can be discussed without the loss of generality by replacing n
for n’.

[Proposition 1]
A n-dimensional singular point exists, iff condition (33) is

satisfied, and its coordinate is given as (34).
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(Proof)
The following equation is obtained from (9) as 1== CB .

)222( 222
2

2
1 iniii λξξξξξξ −+++++−= LL& , ),2,1( ni L= . (35)

From (35), 0=iξ&  and 0>iξ ,

0222 222
2

2
1 =−+++++ ini λξξξξ LL , ),2,1( ni L= . (36)

By solving simultaneous equations (36), (33) and (34) are
obtained. Detailed derivation is omitted.
(End of proof)

We present the following propositions without proofs.
[Proposition 2]

If a n-dimensional singular point exists, n-(n-1)-
dimensional lower derivative singular points exist.
[Proposition 3]

If a n-(n-1)-dimensional singular point doesn’t exist, n-
dimensional upper derivative singular point doesn’t exist.

   (a)
P1: Stable focus
P2: Saddle point
P0: Unstable focus

P2
P2

P2

P1 P1 P1ξ1ξ1 ξ1

ξ2ξ2 ξ2

PS

P0 P0 P0
    (b)

P1: Stable focus
P2: NS-singular point
P0: Unstable focus

   (c)
P1: Stable focus
P2: Stable focus
Ps: Saddle point
P0: Unstable focus

Fig. 5.  The orbit of the solution near each singular point
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[Proposition 4]
If a n-(k-1)-dimensional singular point doesn’t exist, n-(k)-

dimensional upper derivative singular point doesn’t exist.
[Proposition 5]

If a n-dimensional singular point exists, the eigenvalues of
Jacobian A have (n-1) positive real numbers and one negative
real number.
[Proposition 6]

If a n-dimensional singular point exists, the eigenvalues of
Jacobian A of n-(n-1)-dimensional lower derivative singular
points have two negative real numbers.
[Proposition 7]

If a n-(k)-dimensional singular point exists, the eigenvalues
of Jacobian A of n-(k-1)-dimensional lower derivative singular
points have at least two negative real numbers.

[Theorem 1]
If formula (33) is not satisfied in an index i*, one of the

lower derivative n-(k)-dimensional singular points ,0( * =
i

ξ

)1,...,0 −= nk  has the same combination of signs as the signs of

eigenvalues of n-dimensional singular point. Here, “the same
combination of signs as the signs of eigenvalues” is (n-1)
positive real numbers and one negative real number.

Here, the elements of Jacobian in n dimensions are
expressed as follows:
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Then, we present the approximate construction of ridge
hypersurface as follows:

1) When a n-dimensional singular point exists
In this case, all the n-(k)-dimensional singular points

)1,...,0( −= nk  exist by Proposition 2. Then, the ridge

hypersurfaces between n and (n-1) dimensions are
approximately consisted of connecting the following
hypercurves (Theorem 1).
a) The hypercurve that connects n-dimensional singular point
and origin.
b) The hypercurves that connect n-(n-1)-dimensional singular
points and origin.
And the ridge hypersurface between k and (k-1) dimensions
are approximately consisted in a similar manner.

2) When a n-(k)-dimensional singular point doesn’t exist
In this case, a n-(k-1)-dimensional singular point exists, and

all the n-(k-2)-dimensional lower derivative singular points
exist by Proposition 2. Then, the ridge hypersurfaces are
approximately consisted of connecting the following
hypercurves. And the ridge hypersurfaces in (k-2) dimensions
or lower dimensions are done in the same manner as 1)
(Theorem 1).
a) The hypercurve that connects a singular point which has the
same combination of signs as the signs of eigenvalues of a n-
dimensional singular point, and origin.
b) The hypercurves that connect singular points which have
the same combination of signs as the signs of eigenvalues of
n-(n-1)-dimensional singular points, and origin.

C. High-Speed Algorithm

Finally, a high-speed algorithm is constructed here. Now, we
consider the case where n-dimensional singular point exists,
and search by n-(k)-dimensional singular points ),...,2( nk = .

This n-dimensional singular point has an eigenvalue of
negative real number by Proposition 5 (namely, it is a saddle
point). Here, the value of k represents the depth of search. If k
is set up to a large number, the precision of search is high but
the computation time of search increases.

Then, we present the high-speed algorithm with k=3 in this
paper, which has sufficient precision empirically. Here, some
notations are defined.

Initial value vector of order parameter: ))0(),...,0(),0(()0( 21 nξξξξ =

Projection: ),,(),...,( 1,, kjinkji xxxxx =π , ),...,1(},,{ nkji ⊆

[High-speed algorithm]
Step 1: Search the n-3-dimensional singular points that have
the same combination of signs as the signs of eigenvalues of a
n-dimensional singular point.
Step 2: Search the n-2-dimensional singular points that are
lower derivative singular points of the n-3-dimensional
singular point founded in Step 1.
Step 3: Approximate the hypercurves that connect origin and
the singular points of Step 1, 2 by straight lines.
Step 4: Approximate the hypersurfaces that connect the n-3-
dimensional singular point with the n-2-dimensional singular
points on the lines in Step 3 by hyperplanes.
Step 5: Project an initial value vector of order parameter on 3-
dimensions by using kji ,,π . The number of extraction of 3-

dimensions from n-dimensions is knC .

Step 6: Choose an axis of the same region as the initial value
vector projected on the region divided by hyperplanes.
Step 7: Repeat the Step 6 knC  times and count up the number

of choices for every axis.
Step 8: Determine the axis with the maximal number of
choices.
It is judged that the pattern according to the determined axis is
recognized.

IV. EXPERIMENT

A. Experimental Environment

The environment of experiment is as follows:
a) Camera geometry is parallel, and camera parameter is
known.
b) A stereo image has 240320×  pixels with 256 gray scales.
c) 30 stereo images including occlusion and reversal position
are taken.

We evaluated the conventional method that numerically
solved order parameter equations (9) and the proposed method
with respect to computation time and matching precision for
the 30 stereo images. For example, Fig. 6 shows the sample
that include occlusion and reversal position. Here, the edges
of objects are emphasized.
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B. Experimental Results

1) Evaluation about the computation time
First, the comparison of the computation time is shown in

Fig. 7. The symbols △ and ● show the conventional method
and the proposed method. And horizontal axis is the number
of the feature points that can be matched. It is confirmed that
the computation time of the proposed method remarkably
decreases with the increase of the number of feature points.
On the other hand, it turns out that the conventional method
needs much computation time with the increase of the number
of feature points.

2) Evaluation about the matching precision
Secondly, the results of matching precision are shown in

Fig. 8. The matching precision is defined as

100×=
pointsencecorrespondpossibleofnumberThe

pointsencecorrespondcorrectofnumberThe
T . (38)

Here, the number of possible correspondence points is
counted up by a man. In Fig. 8, it is confirmed that the
proposed method has obtained almost the same precision as
the conventional method.

V. CONCLUSIONS

We proposed a high-speed stereo matching algorithm based
on Synergetics. The method does not numerically solve order
parameter equations but determines the pattern by the
approximated ridge hypersurface and initial values of order
parameter. From the experimental results with 30 images, it
was confirmed that the computation time remarkably
decreases without the loss of matching precision. Hence, high
precision and high-speed stereo matching algorithm was
attained.
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Fig. 6.  Sample stereo image

Fig. 8.  The result of matching precision (CPU: Pentium II 400MHz)
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Fig. 7.  The result of computation time
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