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Abstract— Two problems of correspondence matching
among the images in a sequence and shape recovery from
the image sequence are dealt with. To solve these two
problems, grouping and model fitting in a spatio-temporal
domain are required. For the achievement of the two tasks,
a voting-based method is proposed. In general, voting pro-
vides an unified framework for grouping and model fitting
from a bottom-up point of view. The aim of this work
is to construct a framework for correspondence matching
and shape recovery from a sequence of images using voting.
Furthermore, in order to derive an algorithm for solving
the two problems, the fomulation, called nullspace search,
is given from a algebraic point of view. The algorithm is
demonstrated on synthetic and real image sequences.

Keywords— Correspondence Matching, Shape Recovery,
Voting, Hough Transform.

I. Introduction

Grouping and model fitting play an important role in
inductive or bottom-up reasoning in a variety of fields
such as artificial intelligence, pattern recognition and
computer vision. These two processes produce compact
descriptions that emphasize relevant distribution pattern
structures. The compact descriptions enable us to per-
form reasoning at higher levels than that at the raw
data level. For example, polyhedral approximation of ob-
jects obtained by fitting straight line segments to a set
of edge points in an image is used for object identifica-
tion and three-dimensional scene interpretation [1]. From
a bottom-up point of view, it is very important to con-
struct a framework for achievement of grouping and model
fitting [2].

Three-dimensional shape recovery from a sequence of
images involves grouping and model fitting; grouping is
matching of corresponding features such as planar points
and lines among the images in a sequence, and model fit-
ting is parameter estimation of geometric features such as
spatial points and lines that represent a three-dimensional
shape [3]. In most of the proposed methods for shape re-
covery, correspondence matching among the images in a
sequence is performed as a pre-processing using correla-
tion [4][5] or assumed to be done [6][7]. However, since
correlation matching is based on similar appearance in
the images in a sequence, it does not work well for drastic

appearance changes between two consecutive images.
This paper formulates the two problems of correspon-

dence matching and shape recovery as nullspace search,
and proposes a voting-based method for nullspace search.
The formulation converts these two problems into search-
ing the basic vectors spanning the nullspaces that repre-
sent geometric features such as spatial points and lines.
Mathematically, the formulation is equivalent to solving
a set of simultaneous equations

Aixi = 0, i = 1, . . . ,m. (1)

The reason why the formulation is called nullspace search
is that, in addition to xi, the number of simultane-
ous equations m and the coefficient matrices Ai, i =
1, 2, . . . ,m must be determined because both are also un-
known. Our voting method performs the searching and
determination of the solutions to eq. (1). In general, vot-
ing repeatedly generates relevant model parameters from
randomly sampled data as a series of hypotheses, and fi-
nally produces the solutions supported by a large num-
ber of the hypotheses. This process enables us to remove
mismatching pairs of perspective projections among the
images in a sequence even if the sequence has appearance
changes. In pattern recognition, the idea can be traced to
Hough’s work in 1962 for the detection of straight line
segments on an images [8], which is called the Hough
transform [9][10][11]. The formulation and method can
be applied to many grouping and model fitting problems
in pattern recognition and computer vision, and hence
the approach provides an unified approach for bottom-up
methodology.

Section II reviews multiple view geometry of points
and lines, and then provides linear equations describing
the perspective projection process. Section III formulates
correspondence matching and shape recovery from a se-
quence of images using linear algebra. The formulation
is called nullspace search. Section IV presents a voting-
based algorithm for nullspace search. Section V demon-
strates the performance of our algorithm with synthetic
and real image sequences.
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Fig. 1. Perspective projection of a point (left) and a line (right).

II. Multiple View Geometry of Points and Lines

The relationship between spatial points and their per-
spective projections as well as spatial lines onto images is
reviewed. The multiple view geometry derive linear equa-
tions for the relationship. The expressions derived in this
section are used in formulating correspondence matching
and shape recovery in Section III.

A. Points

Let υ = (X,Y,Z,W )� be a three-dimensional point
and ξ = (x, y, z)� be a perspective projection of υ onto an
image in homogeneous coordinates. Fig. 1 (left) shows the
configuration between υ and ξ. The relationship between
a three-dimensional point υ and its perspective projection
ξ can be written as

λ ξ = Pυ, (2)

where λ is an arbitrary nonzero scalar and P is a 3 × 4
matrix called a perspective projection matrix [12]. By
eliminating a scale factor λ in eq. (2), a pair of linear
equations in υ

{
(xp3 − zp1)�υ = 0,
(yp3 − zp2)

�υ = 0,
(3)

is obtained, where p�i , i = 1, 2, 3, are the rows of the ma-
trix P . If at least two projections of the same three-
dimensional point are observed, a system of equations in
υ can be uniquely solved except for degenerate cases.

B. Lines

Setting ξ1 and ξ2 to be two distinct points on an image
plane, the two-dimensional line passing through these two
points is calculated by

λψ = ξ1 × ξ2 (4)

up to a scale factor. This equation and eq. (2) lead to the
following relationship:

λψ = Pυ1 ×Pυ2 =


 (p2 ∧ p3)

�

(p3 ∧ p1)�

(p1 ∧ p2)
�


 [

υ1 ∧ υ2

]
, (5)

where ∧ is the exterior product [13][14] (see, Appendix).
In eq. (5), a 6 × 1 vector ρ = υ1 ∧ υ2 expresses the
three-dimensional line passing through the two three-
dimensional points υ1 and υ2 [13][14]. The coordinates

of ρ are called the plücker coordinates of the three-
dimensional line. Equation (5) is rewritten as

λψ = P lρ, (6)

where P l is the 3 × 6 matrix defined by

P l =


 (p2 ∧ p3)�

(p3 ∧ p1)�

(p1 ∧ p2)
�


 . (7)

Since eq. (6) describes the relationship between a three-
dimensional line and its perspective projection,P l models
perspective projection of lines. Fig. 1 (right) shows the
configuration between ρ and ψ. By eliminating a scale
factor λ in eq. (6), a pair of linear equations in ρ

{
(ap1 ∧ p2 − cp2 ∧ p3)

�ρ = 0,
(bp1 ∧ p2 − cp3 ∧ p1)�ρ = 0,

(8)

is obtained, where ψ = (a, b, c)� expresses a straight line
on an image plane. If at least three projections of the same
three-dimensional line are observed, a system of equations
in ρ can be uniquely solved except for degenerate cases.

III. Problem Formulation

In this section, correspondence matching and shape
recovery from a sequence of images is formulated as
nullspace search using linear algebra. The formulation
converts these two problems into searching the basic vec-
tors spanning the nullspaces that represent spatial points
and lines from their perspective projections.

A. Shape Recovery

Each perspective projection of a three-dimensional
point υ provides a pair of linear equations in eq. (3). Such
pairs of linear equations in υ lead to a homogeneous sys-
tem of linear equations Ξυ = 0. If m three-dimensional
points υi, i = 1, . . . ,m are observed from n cameras , m
homogeneous systems of linear equations

Ξiυi = 0, i = 1, . . . ,m. (9)

are obtained. Also, a collection of perspective projec-
tions of the same three-dimensional line gives a homoge-
neous system of linear equations Ψρ = 0. If m three-
dimensional lines ρi, i = 1, . . . ,m are observed from n
cameras, m homogeneous systems of linear equations

Ψiρi = 0, i = 1, . . . ,m. (10)

are obtained. The solutions to eqs. (9) and (10) provide
the positions of three-dimensional points and lines, re-
spectively. To avoid the trivial solutions υi = 0 and
ρi = 0, the coefficient matrices Ξi and Ψi are rank-
deficient, i.e., the ranks of Ξi and Ψi are at most 3 and 5,
respectively. This means that the solutions υi and ρi are
in the nullspaces of the coefficient matrices Ξi and Ψi,
respectively, that is,

υi ∈ N (Ξi), ρi ∈ N (Ψi), (11)
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where N (A) = {x|Ax = 0}. Therefore, the estimation
of three-dimensional positions is generally formulated as
follows.

Problem 1 Setting Ai to be a M × N matrix such
that M > N , solve an overdetermined set of homogeneous
equations

Aixi = 0, i = 1, . . . ,m. (12)

This problem is solved by searching the solution xi in the
nullspace of the matrix Ai. Since the vector spanning the
nullspace is defined up to a scale factor, the normalization
of the length of the vector is required, that is, ||xj || = 1.
From this normalization, the vectors to be estimated are
distributed on the (N − 1)-dimensional unit sphere.

B. Correspondence Matching

If corresponding geometric features among the images
are not predetermined, the entries of the coefficient ma-
trices Ξi and Ψi are unknown. As shown in Section II,
the determination of Ξi and Ψi is equivalent to corre-
spondence matching among the images.

The ranks of Ξi and Ψi are at most 3 and 5, respec-
tively. Except for some degenerate configurations, each
solution is in an one-dimensional nullspace, and then

dimN (Ξi) = 1, dimN (Ψi) = 1. (13)

These geometrical properties of Ξi and Ψi lead to the
following problem for correspondence matching.

Problem 2 Let ai be a N-dimensional homogeneous
vector. From given data ai, i = 1, . . . , k, find M × N
matrices Aj , j = 1, . . . ,m, M > N such that

A�
j = [a1(j)a2(j) . . . aM(j)], s.t. dimN (Aj) = 1. (14)

The formulation includes many model detection prob-
lems in computer vision, e.g., straight line detection in an
image since a subset of sample points which lies on one
line has the same form as eqs. (9) and (10).

IV. Voting Method for Nullspace Search

In the formulation in Section III, Problem 1 is an in-
verse problem, since it is solved by fitting a model to given
data points. This problem can be solved by a least-squares
method, and then its solution can be uniquely obtained.
Problem 2 is also an inverse problem but different from
Problem 1. The difference between Problems 1 and 2 is
that the solution of Problem 2 is not uniquely determined.
There are many combinations for the selection of the vec-
tors {ai} in Problem 2. In this section, a voting method
is proposed for solving the two inverse problems.

A. Algorithm

As mentioned above, the nullspaces to be estimated are
distributed on the (N − 1)-dimensional unit sphere. For
searching the nullspaces, our voting method repeatedly
generates a hypothesis onto the (N − 1)-dimensional unit
sphere, and finally the solutions are accepted by select-
ing the hypotheses supported by a large number of given

data. This hypothesis generation is based on the following
proposition.

Proposition 1 Let A be a M ×N matrix with M > N
and B be any N ×N matrix which is obtained by selecting
N rows from A. If rank(A) = N − 1, then

rank(B) = N − 1, (15)

or equivalently
dim(N (B)) = 1, (16)

and the matrices A and B share a one-dimensional
nullspace.

We show an example for this proposition.

Example 1 Setting A to be a 4 × 3 matrix such that

A =




1 1 1
2 2 1
3 3 1
4 4 1


 , (17)

the rank of A is two and the nullspace of A is spanned
by a vector (−1/

√
2, 1/

√
2, 0)�. Furthermore, setting

Bi, i = 1, . . . 4 to be the 3×3 matrices which are obtained
by selecting 3 rows from A as follows

B1 =


 1 1 1

2 2 1
3 3 1


 , B2 =


 1 1 1

2 2 1
4 4 1


 ,

B3 =


 1 1 1

3 3 1
4 4 1


 , B4 =


 2 2 1

3 3 1
4 4 1


 ,

(18)

the rank of Bi is also two and the nullspace of Bi is also
spanned by a vector (−1/

√
2, 1/

√
2, 0)� for i = 1, . . . , 4.

Proposition 1 enables us to generate a hypothesis onto
a nullspace on the (N − 1)-dimensional unit sphere from
sampled data points as follows:

Procedure: Hypothesis Generation
1. Randomly select N homogeneous vectors ai(1),
ai(2), . . ., ai(N) from all sample data ai, i = 1, . . . , k.

2. If the matrix B such that B� =
[ai(1),ai(2), . . . ,ai(N)] has a one-dimensional
nullspace, vote 1 to the nullspace of B.

If this hypothesis generation is iterated until an appro-
priate number, the nullspaces are estimated by detecting
peaks of the votes on the (N−1)-dimensional unit sphere.
Therefore, the estimation of three-dimensional positions
can be solved by this iteration.

In Procedure Nullspace Search, the computation of the
nullspaces of given matrices is required. In our imple-
mentation, the singular value decomposition (SVD) (see,
e.g.,[15]) has been applied. If matrix A has only a zero
singular value, then the nullspace of A is spanned by
the right singular vector associated with the zero singular
value. Therefore, setting σ1 ≥ . . . ≥ σN to be the singular
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values of the sampled N × N matrix B and v1, . . . ,vN

to be the corresponding right singular vectors, if the re-
lationship σ1 ≥ . . . > σN = 0 holds, the nullspace to be
generated is the vector vN .

These properties of matrices lead to the following algo-
rithm for nullspace search.

Algorithm: Voting for Nullspace Search
1. Repeat the following steps from Step 2 to Step 6
until a predefined number.

2. Randomly select N homogeneous vectors ai(1),
ai(2), . . ., ai(N) from ai, i = 1, . . . , k.

3. Construct the N × N matrix B such that B� =
[ai(1),ai(2), . . . ,ai(N)].

4. Compute the SVD of B and let σ1 ≥ . . . ≥ σN be
its singular values and v1, . . . ,vN be the correspond-
ing right singular vectors.

5. If the smallest singular value is not equal to 0, that
is, σ1 ≥ . . . ≥ σN > 0, then go to Step 2.

6. Add 1 to the accumulator of the right singular vec-
tor vN associated with the smallest singular value
σN .

7. Detect the vectors whose values of the accumula-
tors are larger than a predefined constant.

B. Efficient Algorithm using Multilinear Constraints

Rigid motion leads to multilinear constraints on a set of
corresponding perspective projections between two, three
and four images [16]. Conversely, non-rigid motion does
not provides the constraints and a set of mismatching per-
spective projections does not obey the constraints. Note
that some of mismatching perspective projections satisfy
the constraints because they are a necessary condition.
Therefore the multilinear constraints can be used to re-
duce a set of mismatching perspective projections in num-
ber. This enables us to reduce the computational cost of
the algorithm proposed in the previous subsection. In the
following, the bilinear and trilinear constraints are used
for points and lines, respectively.

B.1 Bilinear constraint

Two perspective projections of the same three-
dimensional point lead to a 4 × 4 matrix containing the
entries of perspective projection matrices and the coordi-
nates of the projections. Setting Ξi to be the 4×4 matrix,
and ξj

i and ξj′
i′ to be two perspective projections of the

same three-dimensional point, if the 4 × 4 matrix Ξi is a
singular matrix, the singular condition is written in the
following bilinear form

ξj�
i Fξj′

i′ = 0, (19)

where F is a fundamental matrix containing only the en-
tries of perspective projection matrices [12]. This means

rank(Ξi) ≤ 3 iff ξj�
i Fξ

j′
i′ = 0. (20)

Therefore, if eq. (19) does not holds for a sampled pair of
two-dimensional points, the SVD computation at Step 4

(a) (b) (c)

Fig. 2. Figures (a) and (b) show an example of input images of
“Sphere Object” and 3D configurations between the spherical object
and the cameras, respectively. Figure (c) shows the reconstructed
result of our algorithm.

Type Time (s)
Algorithm 1 60.06
Algorithm 2 5.62

TABLE I

The execution time for the spherical object.

in the algorithm can be omitted, i.e., if a sampled pair of
points does not satisfy eq. (19), another pair of points is
selected.

B.2 Trilinear constraint

In the case of lines, there are no constraints for per-
spective projections between two images. Three perspec-
tive projections of the same three-dimensional line are
required. Setting Ψi to be a 6 × 6 matrix containing a
selected triplet of lines on three different images and ψj

i ,
ψj′

i′ and ψj′′
i′′ to be the selected lines, if the 6 × 6 matrix

Ψi is a singular matrix, the singular condition is written
in the following trilinear form

ψj
i ×



ψj′�

i′ T 1
1ψ

j′′
i′′

ψj′�
i′ T 2

1ψ
j′′
i′′

ψj′�
i′ T 3

1ψ
j′′
i′′


 = 0, (21)

where T 1
1, T

2
1 and T 3

1 are trifocal tensors containing only
the entries of perspective projection matrices. As well as
the case of points, the SVD computation for a meaning-
less triplet of lines can be omitted by checking whether
eq. (21) holds or not.

V. Experiments

A. Synthetic Data

The performance of the proposed algorithms is evalu-
ated using two synthetic data “Sphere Object” and “Grid-
Object”, shown in Figures 2 and 3, both of which are
digitized in 256 × 256 pixels. The spherical object and
grid-object are measured from 30 views and 20 views, re-
spectively. For the spherical object, the spatial configu-
ration between the object and the cameras is shown in
Figures 2 (b).
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(a) (b) (c)

Fig. 3. Figure (a) shows an example of input images of “Grid-
Object”. Figures (b) and (c) show the reconstructed results of our
algorithm for three-dimensional points and three-dimensional lines,
respectively.

A.1 Sphere Object:

Grid points on the spherical object in the image se-
quence are predetected and the homogeneous coordinates
of the grid points are given to the algorithm. In this ex-
periment, the number of iterations is set to be 106 times
and the threshold for detecting peaks in the parameter
space is set to be 10.

Figure 2 (c) shows the recovered result of the algorithm.
The relative average error between the true and recov-
ered points is 0.207 units. The result shows the algo-
rithm recovers the three-dimensional points on the sphere
from the images without knowing a set of correspond-
ing points among the images. Also, since the spherical
three-dimensional object produces a similar pattern over
an image sequence, it has been difficult to determine cor-
respondences among the images. The algorithm can re-
cover such three-dimensional objects

For the evaluation of the efficiency of the algorithm,
that uses the multilinear constraint, two algorithms are
tested for the same spherical object. One algorithm does
not use the multilinear constraint, as described in Sec-
tion IV-A, and another algorithm uses the constraint, as
explained in Section IV-B. Table I shows the execution
time of the two algorithms. In the table, Algorithms 1
and 2 indicate the former and the latter algorithms, re-
spectively. The experiment is done using UltraSPARC-II
297MHz processor. For both algorithms, the number of
iterations and thresholds for peak detection are the same
as in the above experiment. Table 1 shows that the com-
putation speed of Algorithm 2 is about eleven times faster
than that of Algorithm 1, that indicates the efficiency of
the computation using multilinear constraint in the algo-
rithm.

A.2 Gird-Object:

In the previous experiment, sparse feature points on
the three-dimensional spherical object are recovered. In
this experiment, a set of edge points on the images of
the three-dimensional grid-object is used as the fed data,
that is, the proposed algorithm is tested for a dense data
set. Figure 3 (b) shows the reconstructed result of the
algorithm. The result shows the algorithm recover the
three-dimensional points on the lines of the grid-object.

Fig. 4. The figures show the image sequence “Model House”.

Most existing recovery algorithms are applied to sparse
image features such as corners on images. Unlike the ex-
isting algorithms, the proposed algorithm works for the
case of dense data. This enables us to apply the proposed
algorithm to a three-dimensional object on which curve
segments appear, because a curve segment consists of a
series of points.

Next, straight lines on the grid-object in the image
sequence are predetected and the homogeneous coordi-
nates of the straight lines are given to the algorithm.
Figure 3 (c) shows the reconstructed result of the algo-
rithm. Unlike the recovery of three-dimensional points,
the nullspaces to be estimated are distributed on the five-
dimensional unit sphere, since a three-dimensional line
is expressed by the six-dimensional homogeneous coordi-
nates. In the previous and these experiments, the results
show that the algorithm described in Section IV-A has
a possibility to apply for both the 3- and 6-dimensional
cases.

B. Real Data

The performance of the proposed algorithms is also
evaluated using real data “Model House”, shown in Figure
4, each of which is digitized in 768× 576 pixels. This im-
age sequence is created at Visual Geometry Group, Uni-
versity of Oxford. In the experiment, corner points on
the images are predetected using SUSAN corner detector
[17], and then a part of the detected points is manually
selected because of the removal of the points which do not
correspond to actual corners on the images.

In the experiment, the images are given at random,
as shown in Figure 4. Since the algorithm can find a
set of corresponding points among images in a sequence
without knowing the order of the image sequence, the
experiment is intended to confirm the characteristics of
the algorithm. Figure 5 shows the reconstructed result of
the algorithm for the image sequence “Model House”. In
this experiment, the number of iterations is set to be 107

and the threshold for detecting peaks in the accumulator
space is set to be 55. In Figure 5 (b), the wireframe model
of the three-dimensional house object is superimposed on
the reconstructed corner points in Figure 5 (a), to clearly
show the relationship between the reconstructed points
and the three-dimensional house object. The result shows
the algorithm recovers corner points on the house object.
Furthermore, since the order of the images is assumed to
be unknown, the result shows that the algorithm organizes
image data.
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Fig. 5. Figure (a) shows the reconstructed result for the image
sequence “Model House”. In Figure (b), the wireframe model of the
house object is superimposed on the result.

VI. Conclusions

The two problems of correspondence matching and
shape recovery from a sequence of images are addressed.
In order to solve these two problems, a voting-based al-
gorithm is proposed. The algorithm repeatedly gener-
ates relevant geometric parameters from randomly sam-
pled projections as a series of hypotheses, and finally pro-
duces the solutions supported by a large number of the
hypotheses. Although the idea of voting is simple and
its mechanism requires a large number of iterations, it
can solve, in principle, a wide variety of grouping and
model fitting problems. This paper tests the potential
in the case of three-dimensional shape recovery from a
sequence of images, which is a common problem in com-
puter vision. Furthermore, using multilinear constraints,
more efficient voting-based algorithm is developed. The
use of the multilinear constraints reduces the mismatch-
ing of correspondences among the images in a sequence by
checking whether or not sampled perspective projections
satisfy the constraint equations. Finally, to evaluate the
performance of the algorithms, the experiments with syn-
thetic and real image sequences are demonstrated. The
results indicate the algorithms are able to recover the
three-dimensional objects for the synthetic and real image
sequences.
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Appendix

I. Exterior Product

Let a = (a0, a1, a2, a3)� and b = (b0, b1, b2, b3)� be two
homogeneous vectors and Q be the matrix such that

Q =
[

a0 a1 a2 a3

b0 b1 b2 b3

]
, (22)

where a3 = b3 = 1. Furthermore, the 2×2 minors of the
matrix Q are denoted by Qij as

Qij =
∣∣∣∣ ai aj

bi bj

∣∣∣∣ .

The coordinates of a ∧ b are defined as follows:

a ∧ b = (Q03,Q13,Q23,Q01Q12,Q13)�.
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