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Abstract―The paper combines the advantages of the 
grey prediction theory, fuzzy theory and genetic algorithm 
to design a dynamic grey prediction fuzzy PID controller 
for power system stabilizers (PSS). The design of a PSS 
can be formulated as an optimal linear regulator control 
problem; however, implementing this technique requires 
the design of estimators. This increases the 
implementation and reduces the reliability of control 
system. Therefore, favor a control scheme that uses the 
only desired state variable, such as speed. 

To deal with this problem, we employ the Grey 
Prediction Fuzzy PID Control to find control signal of 
each generator. Under considering the difficulty of 
establishing membership function and rule base of a Grey 
Prediction Fuzzy PID controller, we add a Genetic 
Algorithm (GA), which has an optimal searching method 
on the grey predictor, forecast step. The proposed method 
can reduce the oscillation and enhance the dynamic 
stability of the power system. Finally, the advantages of 
the proposed method are verified through a detailed 
simulation of a multimachine power system. 
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I. INTRODUCTION 
 

 The design of PSSs can be formulated as an optimal linear 
regulator control problem whose solution is a complete state 
control scheme [l]. Thus, the implementation requires the 
design of state estimators. But, this increases the 
implementation and reduces the reliability of control system. 
These are the reasons that a control scheme uses the only 
desired state variable such as speed. It is used to design an 
output states feedback controller.  

The traditional PSSs strategies adopt the previous 
information of the system to decide the control signal so that 
it is hard to control the power system before it going to 
change. In this paper, we use the Adaptive Genetic Algorithm 
and Fuzzy PID Control [3] to develop a prediction power 
system stabilizer [4][5]. We use the Fuzzy PID Controller to 
be our controller, to compute a grey predictor forecast step by 
Genetic Algorithm. It appears the proposed method reduces 
the oscillation and enhances the dynamic stability of the 
power system. Then, the proposed method will compare with 
optimal control method and optimal reduced order method 
[6][7][8]. 

 

II. THE PREDICTION POWER SYSTEM 

STABILIZER 

 

 The structure of the Adaptive Genetic Algorithm and 
Fuzzy PID Control power system stabilizer is shown in Fig.1. 
It is compose of three units: 

 
  
 
 
 
 
 
 
 
  
 
 
 
 
 
                                                                      
 

 
 

 
 
 
 
 
 

 
 

        Fig.1. The structure of the Adaptive Genetic 
Algorithm and Grey Prediction Fuzzy PID Control power 

system stabilizer  
 

A. Grey predictor unit: 
  The grey predictor is used to predict the forecasting 
values 

∧
∆ω , these values are provided for power system. 

 
B. GA operation unit: 

  We add a Genetic Algorithm, which has an optimal 
searching method on the Grey predictor step, and it is sure 
to find the best parameters that conform the controlled 

Power 
System 

Grey 
Predictior 

Fuzzy Tuning  
PID controller

Grey 
Predictior 

Fuzzy Tuning 
PID controller

1ω∆

2ω∆

GA 

Adaptive Genetic Algorithm and 
Grey Prediction Fuzzy  PID 
Controller

Adaptive Genetic Algorithm and 
Grey Prediction Fuzzy  PID 
Controller

GA 



   

system. 
C. Fuzzy Turning PID controller unit: 
        The fuzzy system is constructed from a set of Fuzzy IF-

THEN rules that describe how to choose the PID gains 
under certain operation conditions.  The control signal of 
power system is generated from this unit.  

  
III. GREY PREDICTION 

 

 After the grey system theory was initiated by Deng in 
1982 [2][3]; Cheng Bias proposed a grey prediction controller 
to control an industrial process without knowing the system 
model in 1986 [4]. In this paper, we build a dynamic model 
called the grey model GM(n,h) to approximate the system 
dynamic behaviour. The grey modelling procedure of GM(1,1) 
can be described as follows [10][11]: 

Suppose )0(y  be an original data sequence, which are 
denoted as 
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the accumulated generating operation (AGO) on )0(y  is the 
first step in building grey model. AGO is denoted as 
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 Let )1(z  as the data sequence obtained by the following 

MEAN generating operation from )1(y  
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Then the grey differential equation of GM(1,1) is 

 ukazky =+ )()( )1()0(     (4) 

The grey differential equation is 
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The parameters a and u can be solved by means of least-
square method as follows 
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and 
4)),(),...,3(),2(( )0()0()0( ≥= nnyyyyN  (8) 

Based on the solution of the whitening (4) is 
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the GM(1,1) model with respect to the data sequence )1(y  can 

be expressed by 
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where the parameter p is the prediction step size and the 

upscript “ Λ” means this value is a forecasting value.  
The inverse accumulated generating operation (IAGO) is 

used to estimate the value of )0(y , the corresponding IAGO 

sequence 
)0(∧

y  is defined by 
)0(∧

y = IAGO．
)1(∧

y    (11) 
the forecasting value of )()0( pny +  expressed as follows: 
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IV. GENETIC ALGORITHM 

 
   The first genetic algorithm (GA) was developed by Holland 
in 1975 [13]. Many studies have extended the application of 
GA’S in searching, optimizing, and machine learning [14], 
[15].GA’s are both global and robust over a wide range of 
problems. The search procedures rely upon the mechanics of 
natural genetics. That all natural species can survive by 
adaptation is the underlying power of GA’s. GA's combine a 
Darwinian survival-of-the-fittest strategy to eliminate unfit 
components and use random information exchange, with an 
exploitation of knowledge contained in old solutions, to affect 
a search mechanism with surprising power and speed. GA’s 
employ multiple concurrent search points 
called ”chromosomes” which process through three genetic 
operations, reproduction, crossover, and mutations, to 
generate new search points called ”offspring” for the next 
iterations. Such operations ensure the discovery of an optimal 
solution to the problem in an appropriate manner. 
 

V. THE FUZZY TUNING PID CONTROLLER 
 

A.  The PID Controller 
Due to their simple structure and robust performance, 

proportional-integral-derivative (PID) controllers are the most 
commonly used controllers in industrial process control. The 
transfer function of a PID controller has following form： 
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where pK , iK and dK are called the prepositional, integral, 

and derivative gains, respectively. 
 
B. Fuzzy Tuning PID Control 
  Consider a PID controller using the fuzzy system turns the 
PID gains in real time. The fuzzy system is constructed from a 
set of fuzzy IF-THEN rules that describe how to choose the 
PID gains under certain operation conditions. 
  Suppose that we can determine the 
ranges RKK pp ⊂],[ maxmin  and RKK dd ⊂],[ maxmin  such that 



   

the proportional gain ],[ maxmin ppp KKK ∈ and derivative gain 

],[ maxmin ddd KKK ∈ . For convenience, pK and dK  are 

normalized toe the range between zero and five hundred by 
the following linear transformation： 
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Assume that the integral time constant is determined with 
reference to the derivative time constant by  
 di TT α=                                                    (16) 
from which we obtain 
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Hence, the parameters to be turned by the fuzzy system 
are pK ′ , dK ′  and α . If we can determine these parameters, 

then the PID gains can be obtained form（14）,（15）and
（17）. 

Assume that the inputs to the fuzzy system are )(te  and 
)( te& , so the fuzzy system turner consists of three two -

input-output fuzzy system, as shown in Fig.2. 
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Fig.2 Fuzzy system turner for the PID gains 
  

Let the fuzzy IF-THEN rules be of the following form: 
IF )(te  is lA  and )(te&  is lB , THEN pK ′  is lC , dK ′  is 

lD , α  is lE . 
 

where lA , lB , lC , lD and lE  are fuzzy sets, and 
Ml ,,2,1 L= 。Suppose that the domains of interest of )(te

和 )(te&  are ],[ +−
MM ee  and ],[ +−

MdMd ee , respectively, and we 
define 7 fuzzy sets , as shown in Fig. 3. 
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Fig. 3 Membership functions for )(te  and )(te& . 

 
Thus, a complete fuzzy rule base consists of 49 rules. For 
simplicity assume that lC  and lD  are either the fuzzy set big 
or the fuzzy set small whose membership functions are show 
in Fig. 4. 

d

p

K

orK

′

′

1

1

0

BigSmall

 
Fig.4 Membership functions for pK ′ and dK ′ . 

 
Finally, assume that lE  can be the four fuzzy sets shown 
in Fig. 5. We are now ready to deriver the rules. 
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Fig.5 Membership functions for α . 
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Fig. 7 Fuzzy turning rules for pK ′ . 
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Fig. 8 Fuzzy turning rules for dK ′ .  
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VI.  NUMERICL RESULTS 

 
A. Full Order Model 

 The Two machine-infinite-bus power system full order 
model given in [8][9] is shown Fig. 8. 

Fig.8  the two machine-infinite-bus power system  

  BuAxx +=
•

  (18) 
where 
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 ∆ denotes deviation from operation point 
 ω speed 
 δ torque angle 
 qe ′  voltage proportional to direct axis flux linkages 
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 The full model optimal controller is designed by solving 
the following linear regulator problem: 

 Minimize { }∫
∞ += 0 )()()()(

2
1 dttRututQxtxJ TT  (19) 

Where 
 Q=diagonal (1, 1, 10, 10) 
 R=diagonal (1, 1) 

The eigenvalues of the power system are given in Table 1. 
Table 1. System eigenvalues 

-0.0904±j9.843 -25.1741±j67.8187
-0.0006 -25.2392±j30.3072
-0.2443  

 
B. Grey predictor 

 From the (12) ,we use Ga’s search the forecasting step 
size p=2 for each forecasting values ( 21, ωω ∆∆ ). 

 
C. Simulation results 

In the grey system process, we suppose the original data 
sequence is shown Fig. 9. And the first or second order 
accumulated generating operation (AGO) is shown Fig. 10.  

We will make simulations to verify that the different 
forecasting step-size in the grey predictor brings about the 
different effect that is shown in Fig. 11.   

Finally, the transient responses of the angular frequencies 
with a 5% change in the mechanical torque of both machines 
are shown in Fig. 12-13. And the torque angle responses are 
shown in Fig. 14-15. 
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Fig. 9 The original data sequence  
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Fig. 10 The first and second order accumulated generating  

operation (AGO) 
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Fig. 11 The angular frequency response of machine1 in the 

two machine-infinite-bus power system 
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Fig. 12 The angular frequency response of machine1 in the 

two machine-infinite-bus power system 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-3 step response

time(sec)

The reduced order method
The full states method  
The proposed method     

 
Fig. 13 The angular frequency response of machine2 in the 

two machine-infinite-bus power system 
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Fig. 14  The torque angle response of machine 1 in the two 
machine-infinite-bus power system 
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Fig. 15 The torque angle response of machine 2 in the two 

machine-infinite-bus power system 
 

VII. CONCLUSIONS 
 

 In this paper we suggest a new design procedure for the 
power system stabilizer. The proposed method combines the 
genetic algorithm and grey system theorem, the fuzzy theorem 
and the PID control to replace the traditional full order 
optimal control method. A two machine-infinite-bus power 
system have been considered in this paper. 
Finally, Comparison of the proposed method with the 
traditional optimal control and the optimal reduced method, 
the effectiveness of the Adaptive Genetic Algorithm and Grey 
Predictor Fuzzy PID Control power system stabilizer in 
enhancing the dynamic performance stability is verified 
through the simulation results. 
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