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Abstract

This paper is concerned with quadratic stability and sta-
bility with disturbance attenuation of a class of uncertain
fuzzy systems with time-delay. The class of systems un-
der consideration is fuzzy time-delay systems with norm-
bounded parameter uncertainties. Fuzzy systems often
approximate nonlinear systems and thus uncertain fuzzy
system description is useful to treat a wide class of sys-
tems. Moreover, uncertain systems with time delays gen-
eralize a wider class of nonlinear systems. Our main re-
sults are the relationship between robust H∞ control via
output feedback and a scaled H∞ control problem and the
one between quadratic stabilization and a standard H∞
control problem for fuzzy systems with time-delay. These
imply that quadratic stabilizing controllers for uncertain
fuzzy systems with time-delay can be designed by solving
H∞ control problems for fuzzy systems with time-delay.

Keywords: Robust Control, Takagi-Sugeno Fuzzy
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Stability

1 Introduction

Control and modeling of nonlinear dynamical systems is
one of the most challenging areas in systems and control
theory. Nonlinear control has been active for many years,
and many results concerning with nonlinear control have
been obtained (for example, [4], [5]). However, it is still
difficult to implement nonlinear controllers for practical
systems. On the other hand, much effort has also been
devoted to modeling nonlinear systems ([1]). System mod-
eling and parameter identification of nonlinear dynamical
systems are also important and difficult problems, and
hence so is practical controller implementation for nonlin-
ear systems. In order to overcome these difficulties, we
pay much attention to robust control and its controller
design. In the past years, there has been considerable at-
tention to the problems of robust stabilization and robust
performance of uncertain systems. One of the most repre-
sentative problems in robust control theory is the so-called
H∞ control problem ([3], [13], [14], [15]). Recently, robust
stabilization and robust H∞ control problems for systems
with uncertain parameters have been studied ([2], [6], [8],
[9], [10]). Uncertainties in the systems come from the
approximation of nonlinear dynamical systems by linear

dynamical systems and identification error between orig-
inal nonlinear systems and mathematical systems. Ob-
viously, linear systems with uncertainties treat a wider
class of systems and hence robust stabilization and robust
H∞ control problem for those uncertain systems are more
practical problems. The solution to the robust H∞ con-
trol problem was given using Riccati equation approach
and LMI approach ([2], [6], [8], [9], [10]).

Time-delay systems often appear in industrial systems
and information networks. Thus, it is important to ana-
lyze time-delay systems and design controllers for them.
However, time-delay systems are, in general, infinite di-
mensional systems, which make the analysis and synthe-
sis complicates. Recently, memoryless controllers have
been successively employed to stabilize time-delay sys-
tems. Such controllers have been applied to fuzzy time-
delay systems([11], [12]). Moreover, robust control for
time-delay systems have been obtained in [7].

In this paper we consider quadratic stability and sta-
bility with disturbance attenuation for fuzzy time-delay
systems with norm-bounded uncertain parameters. The
uncertain parameters in the systems under consideration
are additive structured uncertainties whose values are un-
known but known to be bounded. We show relationships
between quadratic stability with disturbance attenuation
for uncertain fuzzy time-delay systems and a scaled H∞
control for the same class of systems without uncertain-
ties, and between quadratic stability and a standard H∞
control. The relationships are shown through linear ma-
trix inequalities. The paper is organized as follows; we
introduce a class of systems with norm-bounded uncer-
tain parameters and make some important definitions in
Section 2. The robust H∞ analysis and synthesis for un-
certain time-delay systems are given in Section 3. Finally,
concluding remarks are given in Section 4.

2 The Uncertain Systems

In this section, we introduce a class of fuzzy time-delay
systems with norm-bounded parameter uncertainties and
make some important definitions for the systems.

First, consider the Takagi-Sugeno fuzzy time-delay



model described by the following IF-THEN rules:

IF ξ1 is Mi1 and · · · and ξp is Mip,
THEN ẋ(t) = Aix(t) + Adix(t − h) + Biw(t),

z(t) = Cix(t) i = 1, · · · , r
where h is an unknown time-delay, x(t) ∈ �n is the state,
w(t) ∈ �m1 is the disturbance, z(t) ∈ �q1 is the controlled
output, the matrices Ai, Adi, Bi and Ci are of appropriate
dimensions, r is the number of IF-THEN rules, Mij are
fuzzy sets and ξ1, · · ·, ξp are premise variables. We set
ξ =

[
ξ1 · · · ξp

]T . Here we assume that the premise
variables are given and do not depend on u. The state
equation is defined as follows:

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + Adix(t − h) + Biw(t)},

z(t) =
r∑

i=1

λi(ξ(t))Cix(t)

(1)
where

λi(ξ) =
βi(ξ)∑r

i=1 βi(ξ)
, βi(ξ) =

q∏
j=1

Mij(ξj)

and Mij(·) is the grade of the membership function of Mij .
We assume βi(ξ) ≥ 0, i = 1, · · · , r, and

∑r
i=1 βi(ξ) > 0,

for any t. Hence λi(ξ) satisfy λi(ξ) ≥ 0, i = 1, · · · , r and∑r
i=1 λi(ξ) = 1 for any t.

Definition 2.1 The system (1) is said to be input-
output stable if z(t) ∈ L2(0,∞;�q1) for any w(t) ∈
L2(0,∞;�m1) where L2(0,∞; ·) is the space of square in-
tegrable functions.

Definition 2.2 Given a scalar γ > 0, the system (1) is
said to be stable with disturbance attenuation γ if it is
exponentially stable and input-output stable with

‖ z ‖2
L2
≤ d2 ‖ w ‖2

L2
(2)

for some 0 < d < γ.

For the standard linear systems we have the following
lemma.

Lemma 2.1 Let γ > 0 be given, and consider the follow-
ing system

ẋ(t) = Ax(t) + Adx(t − h) + Bw(t),
z(t) = Cx(t). (3)

Then it is stable with disturbance attenuation γ if there
exist matrices X > 0 and Y > 0 which satisfy

AT X + XA + XWX + CT C + Y = −P < 0 (4)

where
W = γ−2BBT + AdY −1Ad.

Proof: Take a Lyapunov function

V (x, t) = xT (t)Xx(t) +
∫ 0

−h

xT (t + β)Y x(t + β)dβ (5)

where X and Y are positive definite matrices satisfying
(4). Note that since both X and Y are positive definite
V (x, t) is positive for all x �= 0. We differentiate V (x, t)
with respect to t along the solution to (3);

dV

dt
= ẋT (t)Xx(t) + xT (t)Xẋ(t) + xT (t)Y x(t)

−xT (t − h)Y x(t − h)
= xT (t)[AT X + XA + Y + CT C

+X(
1
γ2

BBT + AdY −1AT
d )X]x(t)

−γ2 |w(t) − 1
γ2

BT Xx(t)|2

−|Y 1/2(x(t − h) − Y −1AT
d Xx(t))|2

−(|z(t)|2 − γ2 |w(t)|2)
= −xT (t)Px(t) − γ2|w(t) − 1

γ2
BT Xx(t)|2

−|Y 1/2(x(t − h) − Y −1AT
d Xx(t))|2

−(|z(t)|2 − γ2 |w(t)|2).
Since P > αI for some α > 0, we have

V̇ (t) < −|z(t)|2 + γ2|w(t)|2 − α|x(t)|2
−γ2|w(t) − 1

γ2
BT Xx(t)|2

−|Y 1/2(x(t − h) − Y −1AT
d Xx(t))|2.

Integrating both sides from 0 to T , we have

V (T ) + ||z||22T + α||x||22T + γ2 ||w − 1
γ2 BT Xx||22T

+||Y 1/2(x(t − h) − Y −1ET Xx(t))||22T≤ γ2||w||22T + V (0)

where ‖ · ‖2
2T is the norm in L2(0, T ; ·). Hence (3) is both

exponentially stable and input-output stable. Moreover

||z||2L2
+ α||x||2L2

+ ||Y 1/2(x(t − h) − Y −1ET Xx(t))||2L2

< γ2||w||2L2

which yields (2).

Now consider the Takagi-Sugeno fuzzy model with
norm-bounded parameter uncertainties, described by the
following fuzzy IF-THEN rules;

IF ξ1 is M1i and · · · and ξp is Mpi,
THEN ẋ(t) = (Ai + �Ai)x(t)

+(Adi + �Adi)x(t) + Biw(t),
z(t) = Cix(t), i = 1, · · · , r

where �Ai,�Adi represent the time-varying uncertain
matrices of appropriate dimensions, and can describe the
identification errors between the original systems and the
local linear representation of the nonlinear systems. Then
the state equation and the controlled output are defined
as follows;

ẋ(t) = (A(λ) + �A(λ))x(t)
+(Ad(λ) + �Ad(λ))x(t) + B(λ)w(t),

z(t) = C(λ)x(t)
(6)



where

A(λ) =
r∑

i=1

λi(ξ(t))Ai, ∆A(λ) =
r∑

i=1

λi(ξ(t))∆Ai,

Ad(λ) =
r∑

i=1

λi(ξ(t))Adi, ∆Ad(λ) =
r∑

i=1

λi(ξ(t))∆Adi,

B(λ) =
r∑

i=1

λi(ξ(t))Bi, C(λ) =
r∑

i=1

λi(ξ(t))C,

and similar notation will be used hereafter.

Definition 2.3 Consider the system (6). The unforced
uncertain system (6) with w = 0 is said to be quadratically
stable if there exist matrices X > 0, Y > 0 such that

(A(λ) + �A(λ))T X + X(A(λ) + �A(λ))
+X(Ad(λ) + �Ad(λ))Y −1(Ad(λ)Ad + �Ad(λ))T X
+Y < 0

for all admissible uncertainties �A,�Ad. Similarly, the
uncertain system (6) is said to be quadratically stabilizable
via feedback controller if there exists a feedback controller
such that the resulting closed-loop system is quadratically
stable.

3 Robust H∞ Analysis and Syn-
thesis

In this section, we show the relationships between ro-
bust H∞ control and a scaled H∞ control, and between
quadratic stabilization and a standard H∞ control prob-
lem.

Now consider the fuzzy model of Takagi and Sugeno
described by the following fuzzy IF-THEN rules;

IF ξ1 is M1i and · · · and ξp is Mpi,
THEN ẋ(t) = (Ai + �Ai)x(t)

+(Adi + �Adi)x(t − h) + B1iw(t)
+(B2i + �B2i)u(t),

z(t) = C1ix(t) + D12u(t), i = 1, · · · , r,
y(t) = (C2i + �C2i)x(t) + D21iw(t)

+(D22i + �D22i)u(t)
(7)

where u(t) ∈ �m2 is the control input, and y(t) ∈ �q2 is
the observation. We assume that the uncertainties are of
the form[ �Ai �B2i�C2i �D22i

]
=

[
H1i
H2i

]
Fi(t) [ E1i E2i ] ,

�Adi = HdiFi(t)Edi, i = 1, · · · , r
where Fi(t) ∈ �l×s, i = 1, · · · , r are matrices of uncertain
parameters such that

F T
i (t)Fi(t) ≤ I, i = 1, . . . , r,

and E1i, E2i, Edi, H1i, H2i and Hdi are known real matri-
ces of appropriate dimensions that characterize the struc-
tures of uncertainties.

Then the state equation and the controlled output are
defined as follows;

ẋ(t) =
r∑

i=1

λi(ξ(t)){(Ai + H1iFiE1i)x(t)

+(Adi + HdiFiEdi)x(t − h) + B1iw(t)+
(B2i + H1iFiE2i)u(t)},

z(t) =
r∑

i=1

λi(ξ(t)){C1ix(t) + D12iu(t)},

y(t) =
r∑

i=1

λi(ξ(t)){(C2i + H2iFiE1i)x(t)

+D21iw(t) + (D22i + H2iFiE2i)u(t)}.

(8)

Suppose that the following rules concerning the output
feedback controller for each subsystem (7) are given.

IF ξ1 is Mi1 and · · · and ξp is Mip,
THEN ˙̂x(t) = Âix̂(t) + B̂iy(t),

u(t) = Ĉix̂(t), i = 1, · · · , r
where all the matrices are of appropriate dimensions.
Based on these rules, we take the following controller;

˙̂x(t) =
r∑

i=1

λi(ξ(t)){Âix̂(t) + B̂iy(t)},

u(t) =
r∑

i=1

λi(ξ(t))Ĉix̂(t),
(9)

We use the same weights λi(ξ(t)) as those for the rules (7)
of the fuzzy system.

Now we cooperate the H∞ disturbance attenuation per-
formance with the quadratic stability.

Definition 3.1 Given a scalar γ > 0, the unforced un-
certain system (8) with u(t) = 0 is said to be quadratically
stable with disturbance attenuation γ if there exist matri-
ces X > 0, Y > 0 such that for all admissible uncertain-
ties ∆A and ∆Ad,

(A(λ) + �A(λ))T X + X(A(λ) + �A(λ))
+CT (λ)C(λ) + XW (λ)X + Y < 0 (10)

where

W = γ−2B1(λ)BT
1 (λ)

+(Ad(λ) + �Ad(λ))Y −1(Ad(λ) + �Ad(λ))T ,

and (·)(λ) denotes
∑r

i=1 λi(ξ)(·). Similarly, the uncer-
tain system (8) is said to be quadratically stabilizable with
disturbance attenuation γ via output feedback controller
if there exists an output feedback controller of the form
(9) such that the resulting closed-loop system with (9) is
quadratically stable with disturbance attenuation γ.

Remark 3.1 The notion of quadratic stability with dis-
turbance attenuation is a natural extension of quadratic
stability to incorporate H∞ performance and its conserva-
tiveness lies in the requirement of fixed matrices X and
Y in (10) for all admissible parameter uncertainties as in
the quadratic stability. Despite its conservativeness, this
notion naturally combines both quadratic stability and dis-
turbance attenuation.



Our main results will clarify the relationships between
both robust H∞ control via output feedback and a scaled
H∞ control problem and a standard H∞ control problem
for time-delay systems. In connection with the system
(8) we now introduce a system below that will allow us to
establish the relationship between robust H∞ and a scaled
H∞ control problem.

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + Adix(t − h)

+ [
√

εH1i

√
εdHdi γ−1B1i ] w̃(t)

+B2iu(t)},

z̃(t) =
r∑

i=1

λi(ξ(t))







1√
ε
E1i

1√
εd

Edi

C1i


 x(t)

+




1√
ε
E2i

0
D12i


 u(t)


 ,

y(t) =
r∑

i=1

λi(ξ(t)){C2ix(t)

+ [
√

εH2i 0 γ−1D21i ] w̃(t) + D22iu(t)}

(11)

where w̃(t) ∈ �2l+m2 is the disturbance, z̃(t) ∈ �2s+q1 is
the controlled outputs. The matrices Ai, Adi, B1i, B2i,
C1i, C2i, D12i, D21i, D22i, E1i, Edi, H1i and Hdi are the
same as in the system (8), ε > 0, εd > 0 are parameters
to be chosen and γ > 0 is the disturbance attenuation
performance we wish to achieve for the system (8).

Lemma 3.1 ([2]) Suppose there exist ε > 0 and matrix
X > 0 such that the following hold:
a) εHT XH < I, and
b1) AT XA − X + εAT XH(I − εHT XH)−1HT XA +
1
ε
ET E + CT C < 0, or

b2) AT (X−1 − εHHT )−1A +
1
ε
ET E + CTC < 0.

Then, we have

(A + HFE)TX(A + HFE) − X + CTC < 0 (12)

for all F satisfying F T F ≤ I.

Proof: Introducing

Wk = ε
1/2
d (I − εdHT XH)−1/2HT XA

−ε
−1/2
d (I − εdHT XH)1/2FdE

we have

WT
k Wk = εdAT XH(I − εdHT XH)−1HT XA

−ET F T
dkHT XA − AT XHFdkE

+ε−1
d ET F T

dk(I − εdH
T XH)FdkE

= εdAT XH(I − εdHT XH)−1HT XA
−ET F T

dkHT XA − AT XHFdkE
+ε−1

d ET F T
dkFdkE

−ET F T
dkHT XHFdkE

≤ εdAT XH(I − εdHT XH)−1HT XA
−ET F T

dkHT XA − AT XHFdkE

+
ρ2

d

εd
ET E − ET F T

dkHT XHFdkE.

Now considering a), we obtain

εdA
T XH(I − εdH

T XH)−1HT XA +
ρ2

d

εd
ET E

≥ ET F T
dkHT XA + AT XHFdkE

+ET F T
dkHT XHFdkE

Consequently, (12) follows from a) and b).

In view of Definition 3.1 and Lemma 3.1, Lemma 2.1
leads to the following theorem.

Theorem 3.1 Given a constant γ > 0, the unforced sys-
tem (11) with u(t) = 0 is quadratically stable with uni-
tary disturbance attenuation if there exist common matri-
ces X > 0, Y > 0 such that for some ε, εd > 0

Y − 1
ε d

ET
diEdi > 0,

AT
i X + XAi + XWiX + CT

1iC1i

+
1
ε
ET

1iE1i + Y < 0, i = 1, · · · , r
(13)

where

Wi = γ−2B1iB
T
1i + εH1iH

T
1i + εdHdiH

T
di

+Adi(Y − 1
ε d

ET
diEdi)−1AT

di.

In this case, the unforced system (11) with u(t) = 0 is
quadratically stable with unitary disturbance attenuation.
In this case, the unforced system (8) with u(t) = 0 is
quadratically stable with disturbance attenuation γ

Proof: The conditions (13) turn out to be that there exist
matrices X > 0, Ȳ > 0 satisfying

AT
i X + XAi + XWiX + C̄T

i C̄i + Y < 0 (14)

where

Wi = B̄iB̄
T
i + AdiY

−1AT
di,

B̄i = [
√

εH1i

√
εdHdi γ−1Bdi ] ,

C̄i =




1√
ε
E1i

1√
εd

Edi

C1i


 .

It can be proved by Lemma 2.1 that the unforced system
of (11) with u(t) = 0 is stable with unitary H∞ distur-
bance attenuation if there exist matrices X > 0, Ȳ > 0
satisfying (14). Thus we show the first part of the theo-
rem.

Using Lemma 3.1, we calculate the left-hand side of (4)



for the system (8);

(A(λ) + �A(λ))T X + X(A(λ) + �A(λ))T
+XW (λ)X + CT (λ)C(λ) + Y

≤
r∑

i=1

λ2
i (ξ(t))[A

T
i X + XAi +

1
ε
ET

1iE1i

+εXH1iH
T
1iX + Y + CT

1iC1i + X{γ−2B1iB
T
1i

+εdHdiH
T
di + Adi(Y − 1

ε d
ET

diEdi)−1AT
di}X]

+
r∑

i<j

λi(ξ(t))λj(ξ(t))[AT
i X + XAi +

1
ε
ET

1iE1i

+εXH1iH
T
1iX + Y + CT

1iC1i

+X{γ−2B1iB
T
1i + εdHdiH

T
di

+Adi(Y − 1
εd

ET
diEdi)−1AT

di}X
+AT

j X + XAj +
1
ε
ET

1jE1j + εXH1jH
T
1jX

+Y + CT
1jC1j + X{γ−2B1jB

T
1j + εdHdjH

T
dj

+Adj(Y − 1
εd

ET
djEdj)−1AT

dj}X
−(C1i − C1j)T (C1i − C1j)
−X{γ−2(B1i − B1j)(B1i − B1j)T

−(Adi + HdiFiEdi − Adj − HdjFjEdj)Y −1

×(Adi + HdiFiEdi − Adj − HdjFjEdj)T }X].
(15)

The conditions (13) suffices to show (15) is negative defi-
nite, and thus it follows from Lemma 2.1 that we have the
desired result.

The following theorem shows the relationship via output
feedback control.

Theorem 3.2 Let γ > 0 be a prescribed level of distur-
bance attenuation and the output feedback controller be of
the form (9). Then the closed-loop system corresponding
to (11) and (9) is stable with unitary disturbance attenu-
ation if there exist matrices X̄ > 0, Ȳ > 0 such that

ĀT
ijkX̄ + X̄Āijk + X̄W̄ijX̄ + C̄T

1ikC̄1ik

+
1
ε
ĒT

1ikĒ1ik + Ȳ < 0, i, j, k = 1, · · · , r

where

W̄ij = γ−2B̄1ij B̄
T
1ij + εH̄1ijH̄

T
1ij + εdH̄diH̄

T
di

+Ādi(Y − 1
εd

ĒT
diEdi)−1ĀT

di,

Āijk =
[

Ai B2iĈk

B̂jC2i Âj + B̂jD22iĈk

]
,

Ādi =
[

Adi 0
0 0

]
,

H̄1ij =
[

H1i

B̂jH2i

]
, H̄di =

[
Hdi
0

]
,

Ē1ik = [ E1i E2iC̄k ] , Ēdi = [ Edi 0 ] ,

B̄1ij =
[

B1i

B̂jD21i

]
, C̄1ik =

[
C1i D12iĈk

]
.

In this case, the system (8) is quadratically stabilizable
with disturbance attenuation γ via the output feedback con-
troller (9).

Proof: We take the controller (9). the closed-loop system
(11) with (9) becomes

ẋ(t) =
r∑

i=1

r∑
j=1

r∑
k=1

λi(ξ(t))λj (ξ(t))λk(ξ(t))

×{Āijkx̄(t) + Ādix̄(t − h)
+ [

√
εH̄1ij

√
εdH̄di γ−1B̄1ij ] w̃(t)},

z(t) =
r∑

i=1

r∑
k=1

λi(ξ(t))λk(ξ(t))




1√
ε
Ē1ik

1√
εd

Ēdi

C̄1ik


 x̄(t)

where Āijk, Ādi, B̄1ij , H̄1ij, H̄di, Ē1ik, Ēdi and C̄1ik are the
same as above. Also, it follows that the closed-loop system
(8) with (9) is given by the form

˙̄x(t) =
r∑

i=1

r∑
j=1

r∑
k=1

λi(ξ(t))λj(ξ(t))λk(ξ(t))

×{(Āijk + H̄1ijFiĒ1ik)x̄(t)
+(Ādi + H̄diFiĒdi)x̄(t − h) + B̄1ijw(t)},

z(t) =
r∑

i=1

r∑
k=1

λi(ξ(t))λk(ξ(t))C̄1ikx̄(t)

where x̄T =
[

xT x̂T
]
. The desired result follows im-

mediately from Theorem 3.1.

Remark 3.2 Theorem 3.2 established the relationship be-
tween the robust H∞ control problem for the fuzzy time-
delay system (8) and the scaled H∞ control problem for the
system (11). Therefore, a solution to the robust H∞ con-
trol problem for fuzzy time-delay systems can be obtained
via existing H∞ control techniques([13]) for the same class
of systems. Moreover, Theorem 3.2 allows us to obtain
output feedback controllers that solve the robust H∞ con-
trol problem.

Next, we discuss the quadratic stability and quadratic
stabilization problems of fuzzy time-delay system (8).
Similar to the robust H∞ control, the quadratic stabil-
ity and quadratic stabilization of the system (8) will be
shown to be related to the H∞ control of the following
system:

ẋ(t) =
r∑

i=1

λi(ξ(t)){Aix(t) + Adix(t − h)

+ [
√

εH1i
√

εdHdi ] w̃(t) + B2iu(t)},

z̃(t) =
r∑

i=1

λi(ξ(t))







1√
ε
E1i

1√
εd

Edi


 x(t)

+

[ 1√
ε
E2i

0

]
u(t)

}
,

y(t) =
r∑

i=1

λi(ξ(t)){C2ix(t)

+ [
√

εH2i 0 ] w̃(t) + D22iu(t)}
(16)

where x(t) ∈ �n is the state, w̃(t) ∈ �2l is the distur-
bance, z̃(t) ∈ �2s is the controlled output. The matrices



Ai, Adi, B2i, C2i, D22i, E1i, Edi, H1i and Hdi are the same
as in the system (8). The relationships between quadratic
stability and H∞ control, and between quadratic stabiliza-
tion and H∞ control are given in the following theorems.

Theorem 3.3 The unforced system (16) with u(t) = 0
is stable with unitary disturbance attenuation if there ex-
ist common matrices X > 0, Y > 0 such that for some
ε, εd > 0

Y − 1
ε d

ET
diEdi > 0,

AT
i X + XAi + XWiX + CT

1iC1i

+
1
ε
ET

1iE1i + Y < 0, i = 1, · · · , r
(17)

where

Wi = εH1iH
T
1i + εdHdiH

T
di

+Adi(Y − 1
εd

ET
diEdi)−1AT

di.

In this case, the unforced system (8) with u(t) = 0 is
quadratically stable.

Proof: Similar to proof of Theorem 3.1, it can be shown
that (17) is a sufficient condition for stability with unitary
disturbance attenuation for the system (16). Moreover, if
there exists a common positive definite matrix X such
that (17) is satisfied, then we have

(A(λ) + �A(λ))T X + X(A(λ) + �A(λ)) < 0,

which implies that the unforced system (8) with u(t) = 0
is quadratically stable.

Theorem 3.4 The closed-loop system corresponding to
(16) and (9) is stable with unitary disturbance attenua-
tion if there exist matrices X̄ > 0, Ȳ > 0 such that

ĀT
ijkX̄ + X̄Āijk + X̄W̄ijX̄ + C̄T

1ikC̄1ik

+
1
ε
ĒT

1ikĒ1ik + Ȳ < 0, i, j, k = 1, · · · , r (18)

where

W̄ij = εH̄1ijH̄
T
1ij + εdH̄diH̄

T
di

+Ādi(Y − 1
ε d

ĒT
diEdi)−1ĀT

di,

In this case, the system (8) is quadratically stabilizable via
the output feedback controller (9).

Proof: Similar to proof of Theorem 3.2, it can be shown
that the closed-loop system (16) with (9) is stable with
unitary disturbance attenuation, and the closed-loop sys-
tem (8) with (9) is quadratically stable if there exists a
common positive definite matrix X̄ such that (18) is sat-
isfied.

Remark 3.3 In view of Theorem 3.3, it results that the
separation principle for H∞ control also carries over to
quadratic stabilization of (8) via output feedback. More-
over, Theorem 3.3 also allows us to solve output feedback
controllers that quadratically stabilize (8).

4 Conclusion

For fuzzy time-delay systems, we have shown the relation-
ships between robust H∞ control and a scaled H∞ control,
and between quadratic stabilization and a standard H∞
control problem, which allows us to solve the robust con-
trollers for uncertain fuzzy time-delay systems.
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