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Abstract�This paper reports the most imported results 

of the author�s investigations on the key problem in the 
computer tomography: image reconstruction from 
projections. To solve this problem an energy expression is 
proposed like Hopfield net. During the minimizing  of the 
energy function could be done the reconstruction process. 
To improve the convergence of the algorithm the entropy 
term in energy expression is introduced. The dedicated to 
realize the minimizing task an unsupervised neural 
network structure consists of two layer. Some interesting 
results of the performed computer simulations are shown. 
 
 

Index Terms�Image Reconstruction, Tomography, 
Neural Networks. 
 

I. INTRODUCTION 
omputer tomography, especially its algorithmic aspect, is 

still a very rewarding field of investigations. Since 

Cormack�s publication [4], one of the key tasks in the field  

has been to integrate into the studies many new algorithms 

and apply them to the task of reconstructing an image from 

projections. The most important reconstruction methods are 

those using convolution and back propagation [11][17][23], 

Fourier inversion [17] or an algebraic reconstruction 

technique (ART) [1][8][12]. Considering the increasing 

amount of soft computing algorithms applicable to different 

science disciplines, it is possible that in the foreseeable future 

these algorithms will occupy an important place in computer 

tomography. This paper represents an attempt to approach 

image reconstruction from projections by using neural 

networks � the very popular and important tool of artificial 

intelligence systems to solve different image processing 

problems [3]. The idea of a neural network in application to 

image reconstruction from projection is presented in [13-

16][20]. The investigated in this paper neural network 

structure is based on the formulated energy expression 

including entropy term. Maximum entropy criterion is met 

and has been endorsed by scientists representing different 

disciplines, were studied in papers [7][9]. In this paper a new 

approach to construct neural network solving deconvolution 

problem [18] is applied and investigated. The advantages of 

presented  definition of neural network have been 

demonstrated during computer simulations designed to prove 

the assumption that an appropriately constructed neural 

network is able to reconstruct an image using projections. 

II. PRELIMINARIES 

A. Projections 
Computer tomography, which has its beginnings  in the 

work of Allan M. Cormack [4], who in 1979 was awarded 
the Nobel Prize for medicine and physiology, has became a  
diagnostic method in medicine and in many other fields of 
science. It is regarded as one of the most important 
inventions of the twentieth century. One of the most 
remarkable features of computer tomography is the 
possibility of using it to examine of the inside of an object, 
for example the human body. A three-dimensional image of 
the object is given by applying an appropriate method of 
projection and an image reconstruction algorithm. Currently 
there are several methods of  projection (for example PET, 
NMR etc.), but the most popular and the most widespread 
one is the X-ray method. In diagnostics, knowledge of the 
distribution of the attenuation coefficient in the investigated 
object gives extremely useful information  about both the 
tissue layers and any pathological changes. The depth of the 
shadow cast by the object onto a screen positioned opposite 
the radiation source gives us information about the two 
coefficients that have an influence on the attenuation of 
radiation. The function below gives the distribution of 
radiation attenuation reaching the screen when a projection 
is made at a specific angle. This is called the Radon�s 
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transformation [22]: 
 

( ) ( )∫ ∫
∞

∞−

∞

∞−

+−= ususussp ddcossinsincos ααααµα ,, ,   (1) 

 
where: α �  is the angle of projection, x, y � the co-
ordinates of the examined object, αα sincos yxs +=  � the 
distance from the centre of rotation to the axis of the ray 
falling on the projection screen, αα cossin yxu +−=  � the 
distance between a given point  on the investigated object 
with co-ordinates ( )yx,  and the centre of rotation, measured 
along the axis of the falling ray. 
 

B. Back-projections 
Projections performed in this way may be subjected to the 

next phase of  the signal processing: the values of the 
projection function ( )α,sp  passing through a fixed point 
( )yx,  are accumulated to generate information about the 
attenuation coefficient ( )yx,µ  at this point. The 
accumulation given by the following expression is called the 
back-projection or Radon�s back-projection operator: 
 

( ) ( )∫ +=
π

ααααµ
0

dsincos ,,~ yxpyx           (2) 

 
where: ( )yx,~µ  � the image of the distribution of the X-ray 
attenuation in a section of the investigated body formed on 
the basis of the performed projections. 
 
It is easy to show that the function ( )yx,~µ  gives an image of 
the original distribution of the attenuation ( )yx,µ  in the 
investigated cross-section of the object. The relationship 
between the function and the attenuation coefficient is given 
by [11]: 
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The above equation is true only when projections are 
performed continuously and the object has an unlimited size. 
In practice,  the physical methods that are applied give only a 
finite number of  projections, there are only a limited number 
of measurement points, and the investigation takes place 
within a circle, which is limited by the object�s rotation 
around the  X-ray tube. These constraints and their 
consequences have been widely discussed in existing 
literature, see for example [11][17]. 

Given the available technical and computational tools,  the 
only sensible solution in  tomography seems to be the use of 
a digital image, which from now on we will employ 
exclusively. In this case, the equivalent of the linear 
functions ( )yx,µ  and ( )yx,~µ  will be  ( )yjxi ∆∆ ,µ  and 

( )yjxi ∆∆ ,~µ  respectively, where i, j are integers and the 
functions have discrete values. 

Linear equation (3) has its discrete equivalent in the form: 
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where: ijklh  � gives the discrete impulse response of the 

signal, accountable for the geometric distortion of the 
original image . 
 

Because, for any given projection, the X-ray sensors are 
placed on the screen with raster s∆ , it is possible that no ray 
passes through a given point of the image. To take this into 
account  we will apply linear interpolation. This will ensure 
that the points which are outside of the rays falling directly 
on  the sensors on the screen will be given a projection value  
according to the equation: 
 

( ) ( ) ( ) ( ) ( )( )αααα ,,,,~ mpmpmsmpsp −+−+≅ 1 ,     (5) 
 
where: )(sm Trunc=  � is the integer part of the variable s 
and: αα sincos ss jis ∆+∆= , 1MM −≤≤− m , where: M � is 
the radius of the circle defined by the tube around the 
investigated object. 
 
In this way we can obtain the value of a given projection at 
every point of the discreet image.  The results of the 
projections at each point are then collected to obtain values 
of the function ( )ss ji ∆∆ ,~µ . Aggregation is applied to all the 
projections passing through a given point, satisfying  
following expression: 
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where: α∆  � the angle, given in radians, by which the pair 
tube-screen is rotated after each projection, ( )απ∆= /TruncN  
� the number of projections (integer value). 
 
As one can see from equation (6), the distribution of the 
attenuation coefficient in a given cross-section of the object, 
obtained in the way described above, is equal to the 
amalgamation of the original distribution function of the 
attenuation coefficient and the geometrical distortion 



 

 

 

3

element. In more complex presentations of this effect,  the 
image of the cross-section would have stripes resembling a 
shadow cast by the radiation-absorbing element. The shadow 
can be at the front and back of the radiation-absorbing 
element. 
 Existing methods of image reconstruction from projection 
apply different ways of filtering projections ( )α,sp  to avoid 
the effects of the geometrical distortion term, shown in 
equation (3). Almost all existing commercial solutions are 
based on reconstruction using convolution and back-
projection, but there are many other techniques of image 
reconstruction, which can sometimes be more efficient. 
Scientists keep looking for faster algorithms to shorten the 
time required to perform a complete reconstruction and have 
an image ready for diagnostics, they are also trying to 
improve the quality of the reconstructed image. Therefore 
reconstruction methods using parallel processing could be 
very promising. Most of them are based on the well-known 
algebraic reconstruction technique called ART, which,  
unfortunately, has some major defects limiting its potential. 
 In the above context, the usage of neural networks could 
give a new impulse to the investigations of image 
reconstruction from projection. When we take into account 
the fact that neural networks are one of the pillars of the 
newly fashionable discipline of science called soft 
computing, their usage seems to be even more tempting. This 
is especially so given all the potential benefits that the 
application of artificial intelligence in this field of medical 
engineering could bring. 
 

III. THE NEURAL ALGORITHM OF THE IMAGE 
RECONSTRUCTION FROM PROJECTIONS 

Along with such criteria as the least square error and the 
steepest descent, the entropy criterion is a very popular 
method to determine the direction and the rate of change in 
algorithms. This criterion also has some interesting 
application in the image processing. Many scientists see the 
entropy criterion as a very appealing tool for the whole 
domain of image reconstruction. In publications 
[2][5][6][18][21][24] they present methods for eliminating  
distortion from images, reconstructing of the incomplete 
images using an approach which maximises the entropy of 
the distorted images. Additionally, in paper [7][9] proposals 
for the removal of artefacts from reconstructed image with 
the help of the maximum entropy criterion were described. 
The most important advantage of using neural networks in 
such application is parallel computation. 

Neural network structure using the maximum entropy 
criterion presented below was proposed at the first time in 
[17]. In application to image reconstruction from projections 
this structure is a new concept in this area of image 
processing.  

Optimisation problem taking advantage of the maximum 
entropy criterion in order to reconstruct discreet image can 
be formulated as the constraints: 
 

( )
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



=HFF

F
F~
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                  (7) 

 
where: ( )[ ]ji,µ=F  � the matrix with elements from the 

original image of the given object; ( )[ ]ji,~~ µ=F  � the matrix 
with elements from the distorted image of the given object; 

[ ]ijklh=H  � the matrix of the impulse responses; ( )FEnt  � 

the image entropy, which can take the form of the Shannon�s 
entropy: 
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 or another function [17], where:  
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The problem expressed in equation (7) can be reformulated 
using a penalty method and take the form: 
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where: ( ) ( ) ( )∑∑
= =

−=
K

1

L

1k l
ijklij jilkhe ,~, µµF  � i-th row of 

matrix, FHF ~− , wsp � suitable large positive coefficient, 
( )•f  � penalty function. 

 
Selecting a suitable form for the penalty function could have 
great importance for the learning progress of the neural 
network. Research has shown that the following function 
yields the best results: 
 

( ) 

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λ eef lncosh2 , where 0>λ ,         (11) 

 
which derivation has the quite practical form: 
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where: λ � slope coefficient. 
 

It is worth underlining the importance of the coefficient 
represented by variable wsp. It has been proved that if the 
value of this coefficient is infinity, then the solution to 
equation (12) is identical to the solution to equation (9). If a 
value of this coefficient tends to infinity or in other words is 
suitably large, then the solution to equation (10) tends to the 
solution of the equation (7). 
 After conditioning in the expression (10) we can start to 
construct a neural network to realise the deconvolution task 
of equation (4). To this end, an energy expression is 
formulated by minimizing the value of this function using a 
neural network. The energy expression could take the form: 
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In order to find a maximum of this function is defined its 
derivation with the following form: 

 
( )
( )

( )

( )( )
( )

( )∑∑∑∑

∑∑

= = = =

= =

+

+−=

K

1

L

1

I

1

J

1

I

1

J

1

wsp

d
d

k

t

t
kl

t

l i j kl
t

t
kl

i j

t

t

tt

t
ji

ji
e

e
ef

t
ji

ji
Ent

t
E

∂
∂µ

∂µ
∂

∂
∂

∂
∂µ

∂µ
∂

,
,

,
,

F

F

 ,   (14) 

 
or in other words 
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where index t means the addiction of the variable denoted by 
this symbol to time in the learning progress of the neural 
network: 
 
If we provide: 
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to aim the looping of  learning progress, then equation (18) 
takes the form: 
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One can see that the values of the equation (17) are always 

less or equal to zero, that is 0
d

d ≤
t

E t
, because 0>>wsp , and 

functions ( ) 0<•Ent  and ( ) 0>=•f . Therefore, if 0
d

d =
t

E t
, 

then it results from (17) that ( ) 0
d

d =
t

jit ,µ , which has the 

sense of the global maximum achievement. 
 The structure of the neural network performing such 
formulated task is depicted in Fig. 2. 
 

µ(I,j)~

~µ(i,2)

~µ(1,j)

µ(K,l)

µ(1,1)

µ(2,l)

µ(1,l) µ(1,L)

µ(2,1)

µ(1,2)

µ(K,L)µ(K,1) µ(K,2)

µ(I,1)~

µ(1,1)

µ(2,1)

µ(1,2) µ(1,J)

~

~ ~ ~

µ(I,J)~

 
 
Fig. 2. Structure of the neural network. 
 
The neural network presented above consists of two layers, 
with the same topology of neurons. For convenience of the 
used symbols, it is marked and next depicted one vertical 
cross-section through the neural network structure. So 
carried out section is presented in Fig. 3 together with all 
symbols used in relation to the quantities from the neural 
network. 
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Fig. 3. Vertical cross-section of the neural network structure. 
 

All of the symbols which appear in the neural network 
structure are listed in order from the input to the output of 
the network. 

 

I. layer 

Weights of the connections: 

klijij hw =1 ,                   (18) 

Weighting sum: 
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Activation function: 
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II. layer: 

weights of the connections: 
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t
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activation function: 
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additionally the following notation is used in the figure 

above: 
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Neural network with the above structure was investigated 
using sequential simulations. The results of these 
experiments are presented in the next section. 
 

IV. EXPERIMENTAL RESULTS 

 Owing to computing complexity of image reconstruction 
from projections problem (the number of elements in matrix 
H increases by the power of four in proportion to extension 
in the size of the reconstructed image) the size of the 
processed image was fixed at 5050×  pixels. 

Owing to the lack of physical projection data from the 
tomographic investigation, it is necessary to construct a 
mathematical model of the projected object � a so-called 
phantom. This was first proposed in papers [10][11]. 

Three ellipses with constant attenuation coefficients were 
applied to model the cross-section of a skull.  

The proposed form of interpolation presented in equation 
(7) could be applied to obtain the values of projections 
assigned to every discreet point of the image.  
In this way obtained image was next subjected to an process 
of reconstructions using neural network, which structure was 
explained in previous chapter. The progress in this process is 
presented in Tab. I. 

One can see above that after about one thousand iterations 
the results of the reconstruction process are stabilized at the 
satisfactory level. Therefore, one can say that at this point the 
image is reconstructed and the process can be stopped.  

V. CONCLUSIONS 
 The performed simulations demonstrated a convergence of 
the algorithm of image reconstruction from projections based 
on the neural network described in this work. The image of 

TABLE I 
PROCESS OF THE IMAGE RECONSTRUCTION FROM 

PROJECTION USING THE MATHEMATICAL MODEL OF THE 
CROSS-SECTION OF THE SKULL. 

 

Number of 
iterations 

3 12 25 50

View of the 
reconstructe
d image 

    

Number of 
iterations 

200 400 1000 2000

View of the 
reconstructe
d image 
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the cross-section of the investigated mathematical model, 
obtained after sufficient number of iterations is similar to the 
original image. Therefore, this method is acceptable from a 
diagnostic point of view. 
 Sizes of the processed image are not acceptable for a 
model of the more complicated mathematical object. The 
next step of investigations on the image reconstruction from 
projections using neural network must be an extension of the 
image sizes to apply in the simulations the standard 
mathematical model presented in literature. 

The time consuming (very important factor in the practical 
computer tomography) of this algorithm is inadmissibly 
long. However, the simulations ware done using the sequence 
realization of this algorithm contrary to the natural parallel 
calculations in the neural networks. The hardware 
implementation of this neural network structure could give 
incomparable with another methods of the image 
reconstruction from projections concerning the time of 
reconstruction and the quality of reconstruction. 

Very interesting problem is also the resistance of described 
algorithm from distortions arising in the physical projections 
which nature is explained for example in work [19]. 
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