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Abstract– When using the Lyapunov synthesis ap-

proach to construct an adaptive fuzzy control system,

one important way is to regard the fuzzy systems as

approximators to approximate the unknown functions

in the system to be controlled. Concerning the un-

knownness, generally there are two cases: a completely

unknown case, and a partly unknown case. However,

most of the schemes presented so far have only fo-

cused on the former. Clearly, if an unknown function

belongs to the latter, the knowledge available about

the function should be utilized as much as possible in

the development of the control system. In this paper,

our goal is to design an adaptive fuzzy controller for

a class of nonlinear systems with uncertainty, which

can correspond to the either case. Also, we propose a

unique way to deal with the uncertainties, i.e., adopt a

switching function with an alterable coefficient, which

is tuned by adaptive law based on the tracking error.

I. Introduction

For the last decade and more, a large number of re-
searches have been focused on the adaptive fuzzy control
systems, and have achieved success in a sense. In such
an adaptive fuzzy control system, the Lyapunov synthesis
approach is used to construct a stable adaptive fuzzy con-
troller. A key of element of these successes has been the
merger of robust adaptive control theory with fuzzy ap-
proximation theory, where the unknown functions in the
system are approximated by parameterized fuzzy approx-
imators.
Obviously, before using a fuzzy approximator to approx-

imate an unknown function, the extent of the unknown-
ness should be examined. Generally, there are two cases:
a completely unknown case, and a partly unknown case.
Actually, most of the schemes presented so far have only
focused on the former, and few studies pay attention to
the latter. In a system to be controlled, if an unknown
function belongs to the latter, the knowledge available
about the function, clearly, should be utilized to the max-
imum in the development of the control system. Although
some papers [1]-[2] focused such a problem, the proposed
schemes did not involve the control gain, which is not a

trivial problem indeed in a control system.
On the other hand, among the schemes of adaptive fuzzy

control system proposed so far, the upper bounds of un-
certainties, and the reconstruction errors between the op-
timal approximators and their corresponding functions to
be approximated are assumed to be known. Actually, such
an upper bound is not easy to be known in a practical con-
trol system.
In this paper, our goal is to design an adaptive fuzzy

controller for a class of nonlinear systems with uncertainty
of either of the previously mentioned types. Also, to deal
with the uncertainty, we adopt a switching function with
an alterable coefficient, which is tuned by an adaptive law
based on the tracking error. The adaptive law to adjust
all parameters will be developed based on the Lyapunov
synthesis approach. It is shown that the proposed adap-
tive fuzzy controller guarantees tracking error, between
the output of the considered system and the desired value,
to be uniformly bounded, also the bound can be made ar-
bitrarily small by choosing appropriately related param-
eters, while maintaining all signals in the system asymp-
totically stable.

II. Problem Statement

This paper focuses on the design of adaptive fuzzy con-
trol algorithms for a class of nonlinear systems whose
equation of motion can be expressed in the canonical form:

x(n)(t) + f1(X(t)) = b1(X(t))u(t) + d(t) (1)

where XT (t) =
£
x(t), ẋ(t), . . . , x(n−1)(t)

¤
is the state, u(t)

is the control input, f1, and b1 are linear or nonlinear
functions, and d denotes the uncertainty of the system.
In the above system, generally functions f1, b1 are not
known as well as d. However, there is a case that they can
be partly known prior to developing the control system.
In this way, the knowledge about the functions, clearly,
should be utilized as much as possible in the development
of the control system to improve the control performance.
Therefore, system (1) can be rewritten as,

x(n)(t) + f0(X(t)) + f(X(t))

= [b0(X(t) + b(X(t))]u(t) + d(t) (2)
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where f0, and b0 are the known parts in f1, and b1, re-
spectively, which will be used in the controller structure
directly, and f , and b are the unknown parts in f1, and b1,
respectively. If f1 or b1 in (1) is completely unknown pre-
viously, f0 or b0 simply becomes 0. Clearly, form (2) can
correspond to either case: f1 or b1 is completely unknown
or partly unknown.
Let xd(t) be a desired trajectory and define the tracking

error,
x̃(t) = x(t)− xd(t) (3)

The problem we consider in this paper is to design a con-
troller u(t) for (2) which ensures the tracking error is uni-
formly bounded, also the bound can be made arbitrarily
small by choosing appropriately related parameters, while
maintaining all signals in the system asymptotically sta-
ble.
The nonlinear functions f and b in (2) are unknown, so

before developing our control algorithm we have to solve
the problem of approximating f and b. In the following
section, it will be shown that using fuzzy IF-THEN rules,
the unknown functions f and b can be approximated by
some parameterized fuzzy approximators.
To proceed with our development, we state our assump-

tions on the system.
Assumption 1: Uncertainty d(t) is bounded by a con-

stant d∗, i.e.,
|d(t)| ≤ d∗ (4)

Assumption 2: The control gains b0, and b satisfy the
following inequalities,

b0 ≥ 0 (5)

b > 0 (6)

Remark 1 Compared with other schemes, there is an im-
portant difference about the assumption postulated
on the uncertainty. In this paper, we just suppose
that the boundary d∗ exists, but its real value does
not need to be known.

Remark 2 As the regular assumptions postulated on the
control gain b [3][4], a prior gradient boundary | ddtb|
should be known as well as the boundary of |b|. Here
we remove them to improve the reality of system.

III. Adaptive Fuzzy Control

A. Fuzzy approximator

We consider a subset U ⊂ Rn of the fuzzy system with
singleton fuzzifier, product inference, and Gaussian mem-
bership function. Hence, such a fuzzy system can be writ-
ten as

F(X) = WT (t) ·G(X) (7)

where X = [x1, x2, . . . , xn]
T ∈ U , WT (t) =

[ω1(t),ω2(t), . . . ,ωN (t)] with ωj(t) being the so-called con-
nection weight; GT (X) = [g1(X), g2(X), . . . , gN (X)], and

gj(X) =

Qn
i=1 µAi

j
(xi)PN

j=1

Qn
i=1 µAi

j
(xi)

where µAi
j
(xi) is a Gaussian

membership function, defined by

µAi
j
(xi) = exp

−Ãxi − ξij
σij

!2
 (8)

where ξij indicates the position, and σ
i
j indicates the vari-

ance of the membership function. We now can show an
important property of the above fuzzy system.

Theorem 1 For any given real continuous function f on
the compact set U ⊂ Rn and arbitrary ε∗, there exists
an optimal fuzzy system expansion F∗(X) =W ∗T ·G(X)
such that

sup
X∈U

|f(X)− F∗(X)| < ε∗ (9)

The theorem above shows that the fuzzy system F can
be viewed as an approximator to approximate a real con-
tinuous function f . In this paper such a approximator is
referred to be as an optimal fuzzy approximator.

B. Design of Controller

In this paper, we adopt the variable structure theory to
construct our adaptive fuzzy control system. The sliding
mode hyperplane is firstly defined as

s(t) =

µ
d

dt
+ λ

¶n−1

x̃(t) with λ > 0 (10)

where λ defines the bandwidth of the error dynamics of the
system. The equation defines a time-varying hyperplane
in Rn on which the tracking error x̃(t) decays exponen-
tially to zero, so that perfect tracking can be asymptot-
ically obtained by maintaining this condition. Similarly,
if the magnitude of s can be shown to be bounded by a
constant Φ, then the actual tracking errors can be shown
[4, 5] to be asymptotically bounded by:

|x̃(i)(t)| ≤ 2iλi−n+1Φ, i = 1, 2, . . . , n− 1. (11)

The time derivative of the error metric can be rewritten
as

ṡ(t) = (b0 + b) u+ d− f0 − f
−x(n)

d + ΛT X̃ (12)

where ΛT =
£
0,λn−1, (n− 1)λn−2, . . . , (n− 1)λ

¤
, X̃T =£

x̃, ˙̃x, . . . , x̃(n−1)
¤
. Referring to system (2), it naturally

suggests that when b, and f are known, a controller of
form,

u(t) = (b0 + b)
−1 (−ks+ f + ar − d∗ · sgn(s)) (13)

leads to ṡs = −ks2−d∗|s|+ds ≤ −ks2, and hence, x̃(t)→
0 as t→∞, where k > 0, ar = f0+x

(n)
d −ΛT X̃, and d∗ is

the upper boundary of d. However, as mentioned before,
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the functions f , and b in this paper are supposed to be un-
known as well as uncertainty d. Therefore, the problem is
how u(t) can be determined when a system involves such a
kind of unknown functions. Thus we have to approximate
them to proceed with the development. Here the fuzzy ap-
proximator described in the previous subsection is used.
Let us denote b∗(X) = W ∗Tb Gb(X), f

∗(X) = W ∗Tf Gf (X)
to be the optimal fuzzy approximators of the unknown
functions b(X), f(X), respectively. According to Theo-
rem 1, there are two small positive value ε∗b , ε

∗
f such that,

the errors,

εb = b− b∗ (14)

εf = f − f∗ (15)

which are referred to as reconstruction errors, satisfy the
following inequalities,

|εb| < ε∗b (16)

|εf | < ε∗f (17)

We also should note that the boundaries of ε∗b , ε
∗
f do

not need to be known in this paper. In this way, in
the approximations of b and f , the necessity to assume a
prior knowledge of some bounds on the reconstruction er-
rors can be removed. Apparently, the optimal vectors W ∗b
and W ∗f in the optimal fuzzy approximators are unknown
either, therefore, as usual, their estimates, denoted as
b̂(X) = ŴT

b (t)Gb(X), f̂(X) = Ŵ
T
f (t)Gf (X) are adopted,

and which will be tuned based on the error dynamics s.
Now, we are ready to develop our control system. In-

spired by the above control structure in (13), our adaptive
fuzzy controller is determined by,

u = (b0 + b̂)
−1
h
−ks+ f̂ + ar − (ε̂bu+ ε̂f + d̂)sgn(s)

i
(18)

where ε̂b, and ε̂f are the estimates of ε
∗
b , and ε

∗
f , respec-

tively, and d̂ is the estimate of d∗. The role of adopting
ε̂b, ε̂f is not only to avoid a prior knowledge about the
reconstruction errors, but also to make compensation for
their approximation errors. ε̂b, ε̂f , and d̂ are estimated by,

˙̂εb = Pε{−γbσε̂b + γb|u||s|} (19)

˙̂εf = −γfσε̂f + γf |s| (20)

˙̂
d = −γdσd̂+ γd|s| (21)

where γb, γf , and γd are the adaptation rates, and σ > 0
is a leakage constant [6], which counteracts a draft of pa-
rameter values into regions of instability in the absence of
persistent excitation, Pε represents a projection operator
[6] necessary to ensure that ε̂b ∈ Cε ⊂ R that is a subspace
in which ε̂b ≤ 0 is held.
The adaptive laws are synthesized by,

˙̂
W b = Pw{−ΓbσŴb + uΓbGb(X)s} (22)

˙̂
W f = −ΓfσŴf − ΓfGf (X)s (23)

where Ŵb, and Ŵf are the estimates of W
∗
b , and W

∗
f , re-

spectively; Γb, and Γf are some appropriate symmetric
positive definite matrices which determine the adaptation
rates, and Pw also represents a projection operator neces-
sary to ensure that Ŵb ∈ Cb ⊂ RN that is a subspace in
which ŴT

b Gb(X) > 0 is held.

Remark 3 Via the projection operator Pw in (22), the
risk of a zero-denominator calculation in (18) is pre-
vented. Also, the boundedness of Ŵb is assured, even
it involves the control signal u. Besides, the projec-
tion operator Pε in (19) is due to a need for the system
stability which is shown later.

Remark 4 Let ω̂ be an updating scalar, and ω̂np denotes

the parameter before projection, i.e., ˙̂ω = P{ ˙̂ωnp}. In
general, the magnitudes of | ˙̂ωnp|, and |ω̂np| are greater
then or equal to | ˙̂ω|, and |ω̂|, respectively. Namely,

| ˙̂ωnp| ≥ | ˙̂ω| (24)

|ω̂np| ≥ |ω̂| (25)

Before the stability analysis of the control system
showed above, we give a lemma which is needed in the
stability analysis.

Lemma: The following inequality holds:

ω̃ ˙̃ω ≤ ω̃ ˙̃ωnp (26)

where ω̃ = ω̂ − ω∗, ω̃np = ω̂np − ω∗ with ω∗ being a
constant, and ω̂, ω̂np are same things as in Remark 4.

Proof:

ω̃ ˙̃ωnp − ω̃ ˙̃ω = ω̃
³
˙̂ωnp − ˙̂ω

´
(27)

As to ˙̂ωnp, there are two cases: (a) ˙̂ωnp is on an increasing

direction; or (b) ˙̂ωnp is on a decreasing direction. Now if
we can show that (27) ≥ 0 in either case, then (26) holds.
(a) In case of ˙̂ωnp increasing:

Because ˙̂ωnp is increasing, the following relations are held:

˙̂ωnp − ˙̂ω
½
= 0, if ω̂np ∈ C
> 0, if ω̂np 6∈ C (28)

ω̃ > 0, if ω̂np 6∈ C (29)

where C ⊂ R is a subset in which ˙̂ωnp = ˙̂ω, and ω̂np = ω̂
are held. Substituting (28-29) into (27), we can, appar-
ently, get that (27) ≥ 0.
(b) In case of ˙̂ωnp decreasing:
The proof of (27) ≥ 0 follows after straightforward getting
the counterpart of case (a).

We begin the stability analysis by defining a Lyapunov
function as

V =
1

2

³
s2 + W̃T

b Γ
−1
b W̃b + W̃

T
f Γ
−1
f W̃f

+γ−1
b ε̃2

b + γ−1
f ε̃2

f + γ−1
d d̃2

´
(30)
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where,

W̃b = Ŵb −W ∗b (31)

W̃f = Ŵf −W ∗f (32)

ε̃b = ε̂b − ε∗b (33)

ε̃f = ε̂f − ε∗f (34)

d̃ = d̂− d∗ (35)

Let Ŵb,np denote the parameter vector before projection,

i.e., Ŵb = Pw{Ŵb,np}. Thus,
˙̂
W b,np = −ΓbσŴb + uΓbGb(X)s (36)

According to the lemma above, we have

W̃T
b Γ
−1
b
˙̃W b ≤ W̃T

b Γ
−1
b
˙̃W b,np (37)

Correspondingly,

˙̂εb,np = −γbσε̂b + γb|u||s| (38)

γ−1
b ε̃b ˙̃εb ≤ γ−1

b ε̃b ˙̃εb,np (39)

Taking the time derivative of the Lyapunov function of
(30), and substituting (37) and (39) in which yields,

V̇ ≤ sṡ+ W̃T
b Γ
−1
b
˙̂
W b,np + W̃

T
f Γ
−1
f
˙̂
W f

+γ−1
b ε̃b ˙̂εb,np + γ−1

f ε̃f ˙̂εf + γ−1
d d̃

˙̂
d (40)

Substituting (12) into (40), we have,

V̇ ≤ [(b0 + b)u− f + d− ar] s
+W̃T

b Γ
−1
b
˙̂
W b,np + W̃

T
f Γ
−1
f
˙̂
W f

+γ−1
b ε̃b ˙̂εb,np + γ−1

f ε̃f ˙̂εf + γ−1
d d̃

˙̂
d (41)

Combining relations (14-15), and (31-34) with the first
right-hand term in (41), one becomes,

[(b0 + b)u− f + d− ar] s
= [b0u+ εbu+ b

∗u− εf − f∗ + d− ar] s
=

h
b0u+ εbu+ (Ŵ

T
b Gb − W̃T

b Gb)u

−εf − (ŴT
f Gf − W̃T

f Gf ) + d− ar
i
s (42)

Substituting (42), (18-21), (23), (36), and (38) into (41)
follows,

V̇ ≤ −ks2 + ε̂b|s| (|u|− u)
−σ

³
W̃T
b Ŵb + W̃

T
f Ŵf + ε̃bε̂+ εf ε̂f + d̃d̂ (́43)

Let’s pay attention to the second right-hand term in above
expression. It leads to that ε̂b|s| (|u|− u) ≤ 0, because
|u|− u ≥ 0 and ε̂v ≤ 0 due to the projection algorithm in
(19). Therefore, (43) becomes,

V̇ ≤ −ks2 − σ

2

³
W̃T
b W̃b + W̃

T
f W̃f + ε̃2

b + ε̃2
f + d̃

2
´

+
σ

2

¡
W ∗Tb W ∗b +W

∗T
f W ∗f + ε∗2b + ε∗2f + d∗2

¢
≤ −αV + ² (44)

where,

² =
σ

2

¡
W ∗Tb W ∗b +W

∗T
f W ∗f + ε∗2b + ε∗2f + d∗2

¢
(45)

α = min (2k,λmin(Γb)σ,λmin(Γf )σ, γbσ, γfσ, γdσ) (46)

which implies,

V (t) ≤ e−α(t−t0)V (t0) +

Z t

t0

e−α(t−τ)²dτ

=
³
V (t0) +

²

α

´
e−α(t−t0) +

²

α
(47)

Therefore, all signals in (30), which also are signals in-
volved in the system, are bounded. Besides, from (30)
and (47), we can get that there exists T such that for
t ≥ T , s(t) satisfies

s(t) ≤
r
2²

α
(48)

which implies s(t) tends to a ball centered at the origin

with radius
q

2²
α . Also, from (11) and (48), we have,

|x̃(t)| ≤ 1

λn−1

r
2²

α
(49)

which means the tracking error x̃(t) is uniformly bounded.
Further, from (49) and (45)-(46), we can see that the bun-
ndary of x̃(t) depends on the bandwidth of the error dy-
namics λ in (10), the coefficient for error dynamics k in
(18), the leakage constant σ and the adaptation rates Γ
(γb, γf , γd,Γb,Γf ) in (19)-(23), therefore, the magnitude
of boundary of x̃(t) can be made arbitrarily small by ad-
justing the parameters λ, k,σ, and Γ.

IV. Simulation

To clarify the proposed design procedure, we apply the
adaptive fuzzy controller developed in previous section to
control the following unstable nonlinear system:

ẋ(t) = 1 + f(x) + (1.1 + b(x))u(t) + d(t) (50)

where f(x) = 0.5 × 1−e−x(t)

1+e−x(t) , and b = cos(2x) are two

unknown functions, and d(t) = 2.5 sin(7t) is an unknown
uncertainty. Without the control, i.e., u(t) = 0, it can be
easily seen that the system is unstable (Fig.1). The control
objective is to force the system state x(t) to the origin,
i.e., xd(t) = 0. To approximate the unknown functions
f(x) and b(x), we use the fuzzy system as mentioned in
subsection 3.1. For them, the simulation is conducted with
the following fuzzy rules:

Rj : IF x is Aj THEN f is wfj

or,

Rj : IF x is Aj THEN b is wbj
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Fig. 1. Trajectory of state x(t) with u(t) = 0 and x(0) = 3

Fig. 2. Membership functions in precedent

where j(= 1, 2, . . . , 7) is rule’s number; Aj is fuzzy set,
which is shown as in Fig.2; and wfj , and wbj are some
singleton values for which 1 is initially assigned.

Control law (18) was used where k = 0.5, with the adap-
tive laws (19)-(23) where σ = 1, γb = 0.2, γf = 0.4, γd =
0.1, and Γb = 0.8I,Γf = 0.8I,ΓB = 0.2I with I being
some appropriate identity matrices. To perform the pro-
jectron algorithm in (19), we take ε̂b = 0, if ε̂b,np > 0
where ε̂b,np is the estimate before projection. Correspond-

ingly for Ŵb in (22), we take Ŵb = 0I, if Ŵ
T
b,npGb(X) < 0.

In addition, this simulation takes the values that λ = 1
and initial state x(0) = 3.

Simulation results are shown in Fig.3-4. Fig.4 shows the
evolution of x(t) where a good performance is observed.
The amount of control effort required to achieve the above
level of the performance is illustrated in Fig.4. Although
the control effort is involved in the adaptive law (22), the
boundedness can be confirmed in Fig.4. We also should
note that, when the system state x(t) enters around the
sliding surface, sign function sgn(s) begins working fre-
quently so that such a control law leads to control chatter-

Fig. 3. Evolution of state x(t)

ing. Actually, by adopting a saturation function sat(s/φ)
where φ is a little constant instead of sgn(s), the control
chattering can be surely prevented [7].

Fig. 4. Amount of control law u(t)

V. Conclusion

In this paper, we proposed an approach for a class of
nonlinear systems with uncertainties. The results achieved
in this paper can be summarized in a theorem as follows:

Theorem 2 If the plant (1) is controlled by (18) with
the adaptive laws (19)-(23), then tracking errors will be
uniformly bounded, also the bound can be made arbitrarily
small by choosing appropriately control parameters, while
maintaining all signals in the system asymptotically stable.
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